
Django Documentation
Release 1.2.7

Django Software Foundation

May 09, 2012

CONTENTS

i

ii

CHAPTER

ONE

DJANGO DOCUMENTATION

Everything you need to know about Django (and then some).

1.1 Getting help

Having trouble? We’d like to help!

• Try the FAQ – it’s got answers to many common questions.

• Looking for specific information? Try the genindex, modindex or the detailed table of contents.

• Search for information in the archives of the django-users mailing list, or post a question.

• Ask a question in the #django IRC channel, or search the IRC logs to see if it’s been asked before.

• Report bugs with Django in our ticket tracker.

1.2 First steps

• From scratch: Overview | Installation

• Tutorial: Part 1 | Part 2 | Part 3 | Part 4

1.3 The model layer

• Models: Model syntax | Field types | Meta options

• QuerySets: Executing queries | QuerySet method reference

• Model instances: Instance methods | Accessing related objects

• Advanced: Managers | Raw SQL | Transactions | Aggregation | Custom fields | Multiple databases

• Other: Supported databases | Legacy databases | Providing initial data | Optimize database access

1.4 The template layer

• For designers: Syntax overview | Built-in tags and filters

• For programmers: Template API | Custom tags and filters

1

http://groups.google.com/group/django-users/
http://groups.google.com/group/django-users/
http://botland.oebfare.com/logger/django/
http://code.djangoproject.com/

Django Documentation, Release 1.2.7

1.5 The view layer

• The basics: URLconfs | View functions | Shortcuts | Decorators

• Reference: Request/response objects

• File uploads: Overview | File objects | Storage API | Managing files | Custom storage

• Generic views: Overview | Built-in generic views

• Advanced: Generating CSV | Generating PDF

• Middleware: Overview | Built-in middleware classes

1.6 Forms

• The basics: Overview | Form API | Built-in fields | Built-in widgets

• Advanced: Forms for models | Integrating media | Formsets | Customizing validation

• Extras: Form preview | Form wizard

1.7 The development process

• Settings: Overview | Full list of settings

• Exceptions: Overview

• django-admin.py and manage.py: Overview | Adding custom commands

• Testing: Overview

• Deployment: Overview | Apache/mod_wsgi | Apache/mod_python | FastCGI/SCGI/AJP | Apache authentication
| Serving static files | Tracking code errors by e-mail

1.8 Other batteries included

• Admin site | Admin actions | Admin documentation generator

• Authentication

• Cache system

• Conditional content processing

• Comments | Moderation | Custom comments

• Content types

• Cross Site Request Forgery protection

• Databrowse

• E-mail (sending)

• Flatpages

• GeoDjango

2 Chapter 1. Django documentation

Django Documentation, Release 1.2.7

• Humanize

• Internationalization

• Jython support

• “Local flavor”

• Messages

• Pagination

• Redirects

• Serialization

• Sessions

• Signals

• Sitemaps

• Sites

• Syndication feeds (RSS/Atom)

• Unicode in Django

• Web design helpers

• Validators

1.9 The Django open-source project

• Community: How to get involved | The release process | Team of committers | The Django source code reposi-
tory

• Design philosophies: Overview

• Documentation: About this documentation

• Third-party distributions: Overview

• Django over time: API stability | Release notes and upgrading instructions | Deprecation Timeline

1.9. The Django open-source project 3

Django Documentation, Release 1.2.7

4 Chapter 1. Django documentation

CHAPTER

TWO

GETTING STARTED

New to Django? Or to Web development in general? Well, you came to the right place: read this material to quickly
get up and running.

2.1 Django at a glance

Because Django was developed in a fast-paced newsroom environment, it was designed to make common Web-
development tasks fast and easy. Here’s an informal overview of how to write a database-driven Web app with Django.

The goal of this document is to give you enough technical specifics to understand how Django works, but this isn’t
intended to be a tutorial or reference – but we’ve got both! When you’re ready to start a project, you can start with the
tutorial or dive right into more detailed documentation.

2.1.1 Design your model

Although you can use Django without a database, it comes with an object-relational mapper in which you describe
your database layout in Python code.

The data-model syntax offers many rich ways of representing your models – so far, it’s been solving two years’ worth of
database-schema problems. Here’s a quick example, which might be saved in the file mysite/news/models.py:

class Reporter(models.Model):
full_name = models.CharField(max_length=70)

def __unicode__(self):
return self.full_name

class Article(models.Model):
pub_date = models.DateTimeField()
headline = models.CharField(max_length=200)
content = models.TextField()
reporter = models.ForeignKey(Reporter)

def __unicode__(self):
return self.headline

2.1.2 Install it

Next, run the Django command-line utility to create the database tables automatically:

5

Django Documentation, Release 1.2.7

manage.py syncdb

The syncdb command looks at all your available models and creates tables in your database for whichever tables
don’t already exist.

2.1.3 Enjoy the free API

With that, you’ve got a free, and rich, Python API to access your data. The API is created on the fly, no code generation
necessary:

Import the models we created from our "news" app
>>> from news.models import Reporter, Article

No reporters are in the system yet.
>>> Reporter.objects.all()
[]

Create a new Reporter.
>>> r = Reporter(full_name=’John Smith’)

Save the object into the database. You have to call save() explicitly.
>>> r.save()

Now it has an ID.
>>> r.id
1

Now the new reporter is in the database.
>>> Reporter.objects.all()
[<Reporter: John Smith>]

Fields are represented as attributes on the Python object.
>>> r.full_name
’John Smith’

Django provides a rich database lookup API.
>>> Reporter.objects.get(id=1)
<Reporter: John Smith>
>>> Reporter.objects.get(full_name__startswith=’John’)
<Reporter: John Smith>
>>> Reporter.objects.get(full_name__contains=’mith’)
<Reporter: John Smith>
>>> Reporter.objects.get(id=2)
Traceback (most recent call last):

...
DoesNotExist: Reporter matching query does not exist.

Create an article.
>>> from datetime import datetime
>>> a = Article(pub_date=datetime.now(), headline=’Django is cool’,
... content=’Yeah.’, reporter=r)
>>> a.save()

Now the article is in the database.
>>> Article.objects.all()
[<Article: Django is cool>]

6 Chapter 2. Getting started

Django Documentation, Release 1.2.7

Article objects get API access to related Reporter objects.
>>> r = a.reporter
>>> r.full_name
’John Smith’

And vice versa: Reporter objects get API access to Article objects.
>>> r.article_set.all()
[<Article: Django is cool>]

The API follows relationships as far as you need, performing efficient
JOINs for you behind the scenes.
This finds all articles by a reporter whose name starts with "John".
>>> Article.objects.filter(reporter__full_name__startswith="John")
[<Article: Django is cool>]

Change an object by altering its attributes and calling save().
>>> r.full_name = ’Billy Goat’
>>> r.save()

Delete an object with delete().
>>> r.delete()

2.1.4 A dynamic admin interface: it’s not just scaffolding – it’s the whole house

Once your models are defined, Django can automatically create a professional, production ready administrative inter-
face – a Web site that lets authenticated users add, change and delete objects. It’s as easy as registering your model in
the admin site:

In models.py...

from django.db import models

class Article(models.Model):
pub_date = models.DateTimeField()
headline = models.CharField(max_length=200)
content = models.TextField()
reporter = models.ForeignKey(Reporter)

In admin.py in the same directory...

import models
from django.contrib import admin

admin.site.register(models.Article)

The philosophy here is that your site is edited by a staff, or a client, or maybe just you – and you don’t want to have to
deal with creating backend interfaces just to manage content.

One typical workflow in creating Django apps is to create models and get the admin sites up and running as fast as
possible, so your staff (or clients) can start populating data. Then, develop the way data is presented to the public.

2.1.5 Design your URLs

A clean, elegant URL scheme is an important detail in a high-quality Web application. Django encourages beautiful
URL design and doesn’t put any cruft in URLs, like .php or .asp.

2.1. Django at a glance 7

Django Documentation, Release 1.2.7

To design URLs for an app, you create a Python module called a URLconf . A table of contents for your app, it contains
a simple mapping between URL patterns and Python callback functions. URLconfs also serve to decouple URLs from
Python code.

Here’s what a URLconf might look like for the Reporter/Article example above:

from django.conf.urls.defaults import *

urlpatterns = patterns(’’,
(r’^articles/(\d{4})/$’, ’news.views.year_archive’),
(r’^articles/(\d{4})/(\d{2})/$’, ’news.views.month_archive’),
(r’^articles/(\d{4})/(\d{2})/(\d+)/$’, ’news.views.article_detail’),

)

The code above maps URLs, as simple regular expressions, to the location of Python callback functions (“views”).
The regular expressions use parenthesis to “capture” values from the URLs. When a user requests a page, Django runs
through each pattern, in order, and stops at the first one that matches the requested URL. (If none of them matches,
Django calls a special-case 404 view.) This is blazingly fast, because the regular expressions are compiled at load
time.

Once one of the regexes matches, Django imports and calls the given view, which is a simple Python function. Each
view gets passed a request object – which contains request metadata – and the values captured in the regex.

For example, if a user requested the URL “/articles/2005/05/39323/”, Django would call the function
news.views.article_detail(request, ’2005’, ’05’, ’39323’).

2.1.6 Write your views

Each view is responsible for doing one of two things: Returning an HttpResponse object containing the content
for the requested page, or raising an exception such as Http404. The rest is up to you.

Generally, a view retrieves data according to the parameters, loads a template and renders the template with the
retrieved data. Here’s an example view for year_archive from above:

def year_archive(request, year):
a_list = Article.objects.filter(pub_date__year=year)
return render_to_response(’news/year_archive.html’, {’year’: year, ’article_list’: a_list})

This example uses Django’s template system, which has several powerful features but strives to stay simple enough
for non-programmers to use.

2.1.7 Design your templates

The code above loads the news/year_archive.html template.

Django has a template search path, which allows you to minimize redundancy among templates. In your Django
settings, you specify a list of directories to check for templates. If a template doesn’t exist in the first directory, it
checks the second, and so on.

Let’s say the news/article_detail.html template was found. Here’s what that might look like:

{% extends "base.html" %}

{% block title %}Articles for {{ year }}{% endblock %}

{% block content %}
<h1>Articles for {{ year }}</h1>

8 Chapter 2. Getting started

Django Documentation, Release 1.2.7

{% for article in article_list %}
<p>{{ article.headline }}</p>
<p>By {{ article.reporter.full_name }}</p>
<p>Published {{ article.pub_date|date:"F j, Y" }}</p>

{% endfor %}
{% endblock %}

Variables are surrounded by double-curly braces. {{ article.headline }} means “Output the value of the
article’s headline attribute.” But dots aren’t used only for attribute lookup: They also can do dictionary-key lookup,
index lookup and function calls.

Note {{ article.pub_date|date:"F j, Y" }} uses a Unix-style “pipe” (the “|” character). This is called
a template filter, and it’s a way to filter the value of a variable. In this case, the date filter formats a Python datetime
object in the given format (as found in PHP’s date function; yes, there is one good idea in PHP).

You can chain together as many filters as you’d like. You can write custom filters. You can write custom template tags,
which run custom Python code behind the scenes.

Finally, Django uses the concept of “template inheritance”: That’s what the {% extends "base.html" %}
does. It means “First load the template called ‘base’, which has defined a bunch of blocks, and fill the blocks with
the following blocks.” In short, that lets you dramatically cut down on redundancy in templates: each template has to
define only what’s unique to that template.

Here’s what the “base.html” template might look like:

<html>
<head>

<title>{% block title %}{% endblock %}</title>
</head>
<body>

{% block content %}{% endblock %}

</body>
</html>

Simplistically, it defines the look-and-feel of the site (with the site’s logo), and provides “holes” for child templates to
fill. This makes a site redesign as easy as changing a single file – the base template.

It also lets you create multiple versions of a site, with different base templates, while reusing child templates. Django’s
creators have used this technique to create strikingly different cell-phone editions of sites – simply by creating a new
base template.

Note that you don’t have to use Django’s template system if you prefer another system. While Django’s template
system is particularly well-integrated with Django’s model layer, nothing forces you to use it. For that matter, you
don’t have to use Django’s database API, either. You can use another database abstraction layer, you can read XML
files, you can read files off disk, or anything you want. Each piece of Django – models, views, templates – is decoupled
from the next.

2.1.8 This is just the surface

This has been only a quick overview of Django’s functionality. Some more useful features:

• A caching framework that integrates with memcached or other backends.

• A syndication framework that makes creating RSS and Atom feeds as easy as writing a small Python class.

• More sexy automatically-generated admin features – this overview barely scratched the surface.

The next obvious steps are for you to download Django, read the tutorial and join the community. Thanks for your
interest!

2.1. Django at a glance 9

http://www.djangoproject.com/download/
http://www.djangoproject.com/community/

Django Documentation, Release 1.2.7

2.2 Quick install guide

Before you can use Django, you’ll need to get it installed. We have a complete installation guide that covers all
the possibilities; this guide will guide you to a simple, minimal installation that’ll work while you walk through the
introduction.

2.2.1 Install Python

Being a Python Web framework, Django requires Python. It works with any Python version from 2.4 to 2.7 (due to
backwards incompatibilities in Python 3.0, Django does not currently work with Python 3.0; see the Django FAQ for
more information on supported Python versions and the 3.0 transition), but we recommend installing Python 2.5 or
later. If you do so, you won’t need to set up a database just yet: Python 2.5 or later includes a lightweight database
called SQLite.

Get Python at http://www.python.org. If you’re running Linux or Mac OS X, you probably already have it installed.

Django on Jython

If you use Jython (a Python implementation for the Java platform), you’ll need to follow a few additional steps. See
Running Django on Jython for details.

You can verify that Python’s installed by typing python from your shell; you should see something like:

Python 2.5.1 (r251:54863, Jan 17 2008, 19:35:17)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

2.2.2 Set up a database

If you installed Python 2.5 or later, you can skip this step for now.

If not, or if you’d like to work with a “large” database engine like PostgreSQL, MySQL, or Oracle, consult the database
installation information.

2.2.3 Remove any old versions of Django

If you are upgrading your installation of Django from a previous version, you will need to uninstall the old Django
version before installing the new version.

2.2.4 Install Django

You’ve got three easy options to install Django:

• Install a version of Django provided by your operating system distribution. This is the quickest option for those
who have operating systems that distribute Django.

• Install an official release. This is the best approach for users who want a stable version number and aren’t
concerned about running a slightly older version of Django.

• Install the latest development version. This is best for users who want the latest-and-greatest features and aren’t
afraid of running brand-new code.

10 Chapter 2. Getting started

http://sqlite.org/
http://www.python.org
http://www.jython.org/

Django Documentation, Release 1.2.7

Always refer to the documentation that corresponds to the version of Django you’re using!

If you do either of the first two steps, keep an eye out for parts of the documentation marked new in development
version. That phrase flags features that are only available in development versions of Django, and they likely won’t
work with an official release.

2.2.5 That’s it!

That’s it – you can now move onto the tutorial.

2.3 Writing your first Django app, part 1

Let’s learn by example.

Throughout this tutorial, we’ll walk you through the creation of a basic poll application.

It’ll consist of two parts:

• A public site that lets people view polls and vote in them.

• An admin site that lets you add, change and delete polls.

We’ll assume you have Django installed already. You can tell Django is installed by running the Python interactive
interpreter and typing import django. If that command runs successfully, with no errors, Django is installed.

Where to get help:

If you’re having trouble going through this tutorial, please post a message to django-users or drop by #django on
irc.freenode.net to chat with other Django users who might be able to help.

2.3.1 Creating a project

If this is your first time using Django, you’ll have to take care of some initial setup. Namely, you’ll need to auto-
generate some code that establishes a Django project – a collection of settings for an instance of Django, including
database configuration, Django-specific options and application-specific settings.

From the command line, cd into a directory where you’d like to store your code, then run the command
django-admin.py startproject mysite. This will create a mysite directory in your current directory.

Script name may differ in distribution packages

If you installed Django using a Linux distribution’s package manager (e.g. apt-get or yum) django-admin.py
may have been renamed to django-admin. You may continue through this documentation by omitting .py from
each command.

Mac OS X permissions

If you’re using Mac OS X, you may see the message “permission denied” when you try to run django-admin.py
startproject. This is because, on Unix-based systems like OS X, a file must be marked as “executable” before it
can be run as a program. To do this, open Terminal.app and navigate (using the cd command) to the directory where
django-admin.py is installed, then run the command chmod +x django-admin.py.

2.3. Writing your first Django app, part 1 11

http://groups.google.com/group/django-users

Django Documentation, Release 1.2.7

Note: You’ll need to avoid naming projects after built-in Python or Django components. In particular, this means
you should avoid using names like django (which will conflict with Django itself) or test (which conflicts with a
built-in Python package).

django-admin.py should be on your system path if you installed Django via python setup.py. If it’s not
on your path, you can find it in site-packages/django/bin, where ‘site-packages‘ is a directory
within your Python installation. Consider symlinking to django-admin.py from some place on your path, such as
/usr/local/bin.

Where should this code live?

If your background is in PHP, you’re probably used to putting code under the Web server’s document root (in a place
such as /var/www). With Django, you don’t do that. It’s not a good idea to put any of this Python code within your
Web server’s document root, because it risks the possibility that people may be able to view your code over the Web.
That’s not good for security.

Put your code in some directory outside of the document root, such as /home/mycode.

Let’s look at what startproject created:

mysite/
__init__.py
manage.py
settings.py
urls.py

These files are:

• __init__.py: An empty file that tells Python that this directory should be considered a Python package.
(Read more about packages in the official Python docs if you’re a Python beginner.)

• manage.py: A command-line utility that lets you interact with this Django project in various ways. You can
read all the details about manage.py in django-admin.py and manage.py.

• settings.py: Settings/configuration for this Django project. Django settings will tell you all about how
settings work.

• urls.py: The URL declarations for this Django project; a “table of contents” of your Django-powered site.
You can read more about URLs in URL dispatcher.

The development server

Let’s verify this worked. Change into the mysite directory, if you haven’t already, and run the command python
manage.py runserver. You’ll see the following output on the command line:

Validating models...
0 errors found.

Django version 1.0, using settings ’mysite.settings’
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

You’ve started the Django development server, a lightweight Web server written purely in Python. We’ve included this
with Django so you can develop things rapidly, without having to deal with configuring a production server – such as
Apache – until you’re ready for production.

12 Chapter 2. Getting started

http://docs.python.org/tutorial/modules.html#packages

Django Documentation, Release 1.2.7

Now’s a good time to note: DON’T use this server in anything resembling a production environment. It’s intended
only for use while developing. (We’re in the business of making Web frameworks, not Web servers.)

Now that the server’s running, visit http://127.0.0.1:8000/ with your Web browser. You’ll see a “Welcome to Django”
page, in pleasant, light-blue pastel. It worked!

Changing the port

By default, the runserver command starts the development server on the internal IP at port 8000.

If you want to change the server’s port, pass it as a command-line argument. For instance, this command starts the
server on port 8080:

python manage.py runserver 8080

If you want to change the server’s IP, pass it along with the port. So to listen on all public IPs (useful if you want to
show off your work on other computers), use:

python manage.py runserver 0.0.0.0:8000

Full docs for the development server can be found in the runserver reference.

Database setup

Now, edit settings.py. It’s a normal Python module with module-level variables representing Django settings.
Change the following keys in the DATABASES ’default’ item to match your databases connection settings.

• ENGINE – Either ’django.db.backends.postgresql_psycopg2’,
’django.db.backends.mysql’ or ’django.db.backends.sqlite3’. Other backends are
also available.

• NAME – The name of your database. If you’re using SQLite, the database will be a file on your computer; in
that case, NAME should be the full absolute path, including filename, of that file. If the file doesn’t exist, it will
automatically be created when you synchronize the database for the first time (see below).

When specifying the path, always use forward slashes, even on Windows (e.g.
C:/homes/user/mysite/sqlite3.db).

• USER – Your database username (not used for SQLite).

• PASSWORD – Your database password (not used for SQLite).

• HOST – The host your database is on. Leave this as an empty string if your database server is on the same
physical machine (not used for SQLite).

If you’re new to databases, we recommend simply using SQLite (by setting ENGINE to
’django.db.backends.sqlite3’). SQLite is included as part of Python 2.5 and later, so you won’t
need to install anything else.

Note: If you’re using PostgreSQL or MySQL, make sure you’ve created a database by this point. Do that with
“CREATE DATABASE database_name;” within your database’s interactive prompt.

If you’re using SQLite, you don’t need to create anything beforehand - the database file will be created automatically
when it is needed.

While you’re editing settings.py, take note of the INSTALLED_APPS setting towards the bottom of the file.
That variable holds the names of all Django applications that are activated in this Django instance. Apps can be used
in multiple projects, and you can package and distribute them for use by others in their projects.

2.3. Writing your first Django app, part 1 13

http://127.0.0.1:8000/

Django Documentation, Release 1.2.7

By default, INSTALLED_APPS contains the following apps, all of which come with Django:

• django.contrib.auth – An authentication system.

• django.contrib.contenttypes – A framework for content types.

• django.contrib.sessions – A session framework.

• django.contrib.sites – A framework for managing multiple sites with one Django installation.

• django.contrib.messages – A messaging framework.

These applications are included by default as a convenience for the common case.

Each of these applications makes use of at least one database table, though, so we need to create the tables in the
database before we can use them. To do that, run the following command:

python manage.py syncdb

The syncdb command looks at the INSTALLED_APPS setting and creates any necessary database tables according
to the database settings in your settings.py file. You’ll see a message for each database table it creates, and you’ll
get a prompt asking you if you’d like to create a superuser account for the authentication system. Go ahead and do
that.

If you’re interested, run the command-line client for your database and type \dt (PostgreSQL), SHOW TABLES;
(MySQL), or .schema (SQLite) to display the tables Django created.

For the minimalists

Like we said above, the default applications are included for the common case, but not everybody needs them. If you
don’t need any or all of them, feel free to comment-out or delete the appropriate line(s) from INSTALLED_APPS
before running syncdb. The syncdb command will only create tables for apps in INSTALLED_APPS.

2.3.2 Creating models

Now that your environment – a “project” – is set up, you’re set to start doing work.

Each application you write in Django consists of a Python package, somewhere on your Python path, that follows a
certain convention. Django comes with a utility that automatically generates the basic directory structure of an app, so
you can focus on writing code rather than creating directories.

Projects vs. apps

What’s the difference between a project and an app? An app is a Web application that does something – e.g., a Weblog
system, a database of public records or a simple poll app. A project is a collection of configuration and apps for a
particular Web site. A project can contain multiple apps. An app can be in multiple projects.

Your apps can live anywhere on your Python path. In this tutorial, we’ll create our poll app in the mysite directory
for simplicity.

To create your app, make sure you’re in the mysite directory and type this command:

python manage.py startapp polls

That’ll create a directory polls, which is laid out like this:

polls/
__init__.py
models.py

14 Chapter 2. Getting started

http://docs.python.org/tutorial/modules.html#the-module-search-path
http://docs.python.org/tutorial/modules.html#the-module-search-path

Django Documentation, Release 1.2.7

tests.py
views.py

This directory structure will house the poll application.

The first step in writing a database Web app in Django is to define your models – essentially, your database layout,
with additional metadata.

Philosophy

A model is the single, definitive source of data about your data. It contains the essential fields and behaviors of the data
you’re storing. Django follows the DRY Principle. The goal is to define your data model in one place and automatically
derive things from it.

In our simple poll app, we’ll create two models: polls and choices. A poll has a question and a publication date. A
choice has two fields: the text of the choice and a vote tally. Each choice is associated with a poll.

These concepts are represented by simple Python classes. Edit the polls/models.py file so it looks like this:

from django.db import models

class Poll(models.Model):
question = models.CharField(max_length=200)
pub_date = models.DateTimeField(’date published’)

class Choice(models.Model):
poll = models.ForeignKey(Poll)
choice = models.CharField(max_length=200)
votes = models.IntegerField()

The code is straightforward. Each model is represented by a class that subclasses django.db.models.Model.
Each model has a number of class variables, each of which represents a database field in the model.

Each field is represented by an instance of a Field class – e.g., CharField for character fields and
DateTimeField for datetimes. This tells Django what type of data each field holds.

The name of each Field instance (e.g. question or pub_date) is the field’s name, in machine-friendly format.
You’ll use this value in your Python code, and your database will use it as the column name.

You can use an optional first positional argument to a Field to designate a human-readable name. That’s used in a
couple of introspective parts of Django, and it doubles as documentation. If this field isn’t provided, Django will use
the machine-readable name. In this example, we’ve only defined a human-readable name for Poll.pub_date. For
all other fields in this model, the field’s machine-readable name will suffice as its human-readable name.

Some Field classes have required elements. CharField, for example, requires that you give it a max_length.
That’s used not only in the database schema, but in validation, as we’ll soon see.

Finally, note a relationship is defined, using ForeignKey. That tells Django each Choice is related to a single Poll.
Django supports all the common database relationships: many-to-ones, many-to-manys and one-to-ones.

2.3.3 Activating models

That small bit of model code gives Django a lot of information. With it, Django is able to:

• Create a database schema (CREATE TABLE statements) for this app.

• Create a Python database-access API for accessing Poll and Choice objects.

2.3. Writing your first Django app, part 1 15

Django Documentation, Release 1.2.7

But first we need to tell our project that the polls app is installed.

Philosophy

Django apps are “pluggable”: You can use an app in multiple projects, and you can distribute apps, because they don’t
have to be tied to a given Django installation.

Edit the settings.py file again, and change the INSTALLED_APPS setting to include the string ’polls’. So
it’ll look like this:

INSTALLED_APPS = (
’django.contrib.auth’,
’django.contrib.contenttypes’,
’django.contrib.sessions’,
’django.contrib.sites’,
’polls’

)

Now Django knows to include the polls app. Let’s run another command:

python manage.py sql polls

You should see something similar to the following (the CREATE TABLE SQL statements for the polls app):

BEGIN;
CREATE TABLE "polls_poll" (

"id" serial NOT NULL PRIMARY KEY,
"question" varchar(200) NOT NULL,
"pub_date" timestamp with time zone NOT NULL

);
CREATE TABLE "polls_choice" (

"id" serial NOT NULL PRIMARY KEY,
"poll_id" integer NOT NULL REFERENCES "polls_poll" ("id"),
"choice" varchar(200) NOT NULL,
"votes" integer NOT NULL

);
COMMIT;

Note the following:

• The exact output will vary depending on the database you are using.

• Table names are automatically generated by combining the name of the app (polls) and the lowercase name
of the model – poll and choice. (You can override this behavior.)

• Primary keys (IDs) are added automatically. (You can override this, too.)

• By convention, Django appends "_id" to the foreign key field name. Yes, you can override this, as well.

• The foreign key relationship is made explicit by a REFERENCES statement.

• It’s tailored to the database you’re using, so database-specific field types such as auto_increment (MySQL),
serial (PostgreSQL), or integer primary key (SQLite) are handled for you automatically. Same goes
for quoting of field names – e.g., using double quotes or single quotes. The author of this tutorial runs Post-
greSQL, so the example output is in PostgreSQL syntax.

• The sql command doesn’t actually run the SQL in your database - it just prints it to the screen so that you
can see what SQL Django thinks is required. If you wanted to, you could copy and paste this SQL into your
database prompt. However, as we will see shortly, Django provides an easier way of committing the SQL to the
database.

16 Chapter 2. Getting started

Django Documentation, Release 1.2.7

If you’re interested, also run the following commands:

• python manage.py validate – Checks for any errors in the construction of your models.

• python manage.py sqlcustom polls – Outputs any custom SQL statements (such as table modifica-
tions or constraints) that are defined for the application.

• python manage.py sqlclear polls – Outputs the necessary DROP TABLE statements for this app,
according to which tables already exist in your database (if any).

• python manage.py sqlindexes polls – Outputs the CREATE INDEX statements for this app.

• python manage.py sqlall polls – A combination of all the SQL from the sql, sqlcustom, and
sqlindexes commands.

Looking at the output of those commands can help you understand what’s actually happening under the hood.

Now, run syncdb again to create those model tables in your database:

python manage.py syncdb

The syncdb command runs the sql from ‘sqlall’ on your database for all apps in INSTALLED_APPS that don’t
already exist in your database. This creates all the tables, initial data and indexes for any apps you have added to your
project since the last time you ran syncdb. syncdb can be called as often as you like, and it will only ever create the
tables that don’t exist.

Read the django-admin.py documentation for full information on what the manage.py utility can do.

2.3.4 Playing with the API

Now, let’s hop into the interactive Python shell and play around with the free API Django gives you. To invoke the
Python shell, use this command:

python manage.py shell

We’re using this instead of simply typing “python”, because manage.py sets up the project’s environment for you.
“Setting up the environment” involves two things:

• Putting polls on sys.path. For flexibility, several pieces of Django refer to projects in Python dotted-path
notation (e.g. ’polls.models’). In order for this to work, the polls package has to be on sys.path.

We’ve already seen one example of this: the INSTALLED_APPS setting is a list of packages in dotted-path
notation.

• Setting the DJANGO_SETTINGS_MODULE environment variable, which gives Django the path to your
settings.py file.

Bypassing manage.py

If you’d rather not use manage.py, no problem. Just make sure mysite and polls are at the root level on
the Python path (i.e., import mysite and import polls work) and set the DJANGO_SETTINGS_MODULE
environment variable to mysite.settings.

For more information on all of this, see the django-admin.py documentation.

Once you’re in the shell, explore the database API:

>>> from polls.models import Poll, Choice # Import the model classes we just wrote.

No polls are in the system yet.
>>> Poll.objects.all()

2.3. Writing your first Django app, part 1 17

Django Documentation, Release 1.2.7

[]

Create a new Poll.
>>> import datetime
>>> p = Poll(question="What’s up?", pub_date=datetime.datetime.now())

Save the object into the database. You have to call save() explicitly.
>>> p.save()

Now it has an ID. Note that this might say "1L" instead of "1", depending
on which database you’re using. That’s no biggie; it just means your
database backend prefers to return integers as Python long integer
objects.
>>> p.id
1

Access database columns via Python attributes.
>>> p.question
"What’s up?"
>>> p.pub_date
datetime.datetime(2007, 7, 15, 12, 00, 53)

Change values by changing the attributes, then calling save().
>>> p.pub_date = datetime.datetime(2007, 4, 1, 0, 0)
>>> p.save()

objects.all() displays all the polls in the database.
>>> Poll.objects.all()
[<Poll: Poll object>]

Wait a minute. <Poll: Poll object> is, utterly, an unhelpful representation of this object. Let’s fix that by
editing the polls model (in the polls/models.py file) and adding a __unicode__() method to both Poll and
Choice:

class Poll(models.Model):
...
def __unicode__(self):

return self.question

class Choice(models.Model):
...
def __unicode__(self):

return self.choice

It’s important to add __unicode__() methods to your models, not only for your own sanity when dealing with the
interactive prompt, but also because objects’ representations are used throughout Django’s automatically-generated
admin.

Why __unicode__() and not __str__()?

If you’re familiar with Python, you might be in the habit of adding __str__() methods to your classes, not
__unicode__() methods. We use __unicode__() here because Django models deal with Unicode by default.
All data stored in your database is converted to Unicode when it’s returned.

Django models have a default __str__() method that calls __unicode__() and converts the result to a UTF-8
bytestring. This means that unicode(p) will return a Unicode string, and str(p) will return a normal string, with
characters encoded as UTF-8.

If all of this is jibberish to you, just remember to add __unicode__() methods to your models. With any luck,

18 Chapter 2. Getting started

Django Documentation, Release 1.2.7

things should Just Work for you.

Note these are normal Python methods. Let’s add a custom method, just for demonstration:

import datetime
...
class Poll(models.Model):

...
def was_published_today(self):

return self.pub_date.date() == datetime.date.today()

Note the addition of import datetime to reference Python’s standard datetime module.

Save these changes and start a new Python interactive shell by running python manage.py shell again:

>>> from polls.models import Poll, Choice

Make sure our __unicode__() addition worked.
>>> Poll.objects.all()
[<Poll: What’s up?>]

Django provides a rich database lookup API that’s entirely driven by
keyword arguments.
>>> Poll.objects.filter(id=1)
[<Poll: What’s up?>]
>>> Poll.objects.filter(question__startswith=’What’)
[<Poll: What’s up?>]

Get the poll whose year is 2007.
>>> Poll.objects.get(pub_date__year=2007)
<Poll: What’s up?>

>>> Poll.objects.get(id=2)
Traceback (most recent call last):

...
DoesNotExist: Poll matching query does not exist.

Lookup by a primary key is the most common case, so Django provides a
shortcut for primary-key exact lookups.
The following is identical to Poll.objects.get(id=1).
>>> Poll.objects.get(pk=1)
<Poll: What’s up?>

Make sure our custom method worked.
>>> p = Poll.objects.get(pk=1)
>>> p.was_published_today()
False

Give the Poll a couple of Choices. The create call constructs a new
choice object, does the INSERT statement, adds the choice to the set
of available choices and returns the new Choice object. Django creates
a set to hold the "other side" of a ForeignKey relation
(e.g. a poll’s choices) which can be accessed via the API.
>>> p = Poll.objects.get(pk=1)

Display any choices from the related object set -- none so far.
>>> p.choice_set.all()
[]

2.3. Writing your first Django app, part 1 19

Django Documentation, Release 1.2.7

Create three choices.
>>> p.choice_set.create(choice=’Not much’, votes=0)
<Choice: Not much>
>>> p.choice_set.create(choice=’The sky’, votes=0)
<Choice: The sky>
>>> c = p.choice_set.create(choice=’Just hacking again’, votes=0)

Choice objects have API access to their related Poll objects.
>>> c.poll
<Poll: What’s up?>

And vice versa: Poll objects get access to Choice objects.
>>> p.choice_set.all()
[<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]
>>> p.choice_set.count()
3

The API automatically follows relationships as far as you need.
Use double underscores to separate relationships.
This works as many levels deep as you want; there’s no limit.
Find all Choices for any poll whose pub_date is in 2007.
>>> Choice.objects.filter(poll__pub_date__year=2007)
[<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]

Let’s delete one of the choices. Use delete() for that.
>>> c = p.choice_set.filter(choice__startswith=’Just hacking’)
>>> c.delete()

For more information on model relations, see Accessing related objects. For more on how to use double underscores
to perform field lookups via the API, see Field lookups. For full details on the database API, see our Database API
reference.

When you’re comfortable with the API, read part 2 of this tutorial to get Django’s automatic admin working.

2.4 Writing your first Django app, part 2

This tutorial begins where Tutorial 1 left off. We’re continuing the Web-poll application and will focus on Django’s
automatically-generated admin site.

Philosophy

Generating admin sites for your staff or clients to add, change and delete content is tedious work that doesn’t require
much creativity. For that reason, Django entirely automates creation of admin interfaces for models.

Django was written in a newsroom environment, with a very clear separation between “content publishers” and the
“public” site. Site managers use the system to add news stories, events, sports scores, etc., and that content is displayed
on the public site. Django solves the problem of creating a unified interface for site administrators to edit content.

The admin isn’t necessarily intended to be used by site visitors; it’s for site managers.

2.4.1 Activate the admin site

The Django admin site is not activated by default – it’s an opt-in thing. To activate the admin site for your installation,
do these three things:

20 Chapter 2. Getting started

http://docs.djangoproject.com/en/1.2/topics/db/queries/#field-lookups

Django Documentation, Release 1.2.7

• Add "django.contrib.admin" to your INSTALLED_APPS setting.

• Run python manage.py syncdb. Since you have added a new application to
INSTALLED_APPS, the database tables need to be updated.

• Edit your mysite/urls.py file and uncomment the lines that reference the admin – there are
three lines in total to uncomment. This file is a URLconf; we’ll dig into URLconfs in the next
tutorial. For now, all you need to know is that it maps URL roots to applications. In the end, you
should have a urls.py file that looks like this:

Changed in version 1.1: The method for adding admin urls has changed in Django 1.1.

from django.conf.urls.defaults import *

Uncomment the next two lines to enable the admin:
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns(’’,
Example:
(r’^mysite/’, include(’mysite.foo.urls’)),

Uncomment the admin/doc line below and add ’django.contrib.admindocs’
to INSTALLED_APPS to enable admin documentation:
(r’^admin/doc/’, include(’django.contrib.admindocs.urls’)),

Uncomment the next line to enable the admin:
(r’^admin/’, include(admin.site.urls)),

)

(The bold lines are the ones that needed to be uncommented.)

2.4.2 Start the development server

Let’s start the development server and explore the admin site.

Recall from Tutorial 1 that you start the development server like so:

python manage.py runserver

Now, open a Web browser and go to “/admin/” on your local domain – e.g., http://127.0.0.1:8000/admin/. You should
see the admin’s login screen:

2.4. Writing your first Django app, part 2 21

http://127.0.0.1:8000/admin/

Django Documentation, Release 1.2.7

2.4.3 Enter the admin site

Now, try logging in. (You created a superuser account in the first part of this tutorial, remember? If you didn’t create
one or forgot the password you can create another one.) You should see the Django admin index page:

You should see a few other types of editable content, including groups, users and sites. These are core features Django
ships with by default.

2.4.4 Make the poll app modifiable in the admin

But where’s our poll app? It’s not displayed on the admin index page.

Just one thing to do: We need to tell the admin that Poll objects have an admin interface. To do this, create a file
called admin.py in your polls directory, and edit it to look like this:

from polls.models import Poll
from django.contrib import admin

admin.site.register(Poll)

You’ll need to restart the development server to see your changes. Normally, the server auto-reloads code every time
you modify a file, but the action of creating a new file doesn’t trigger the auto-reloading logic.

2.4.5 Explore the free admin functionality

Now that we’ve registered Poll, Django knows that it should be displayed on the admin index page:

22 Chapter 2. Getting started

Django Documentation, Release 1.2.7

Click “Polls.” Now you’re at the “change list” page for polls. This page displays all the polls in the database and lets
you choose one to change it. There’s the “What’s up?” poll we created in the first tutorial:

Click the “What’s up?” poll to edit it:

Things to note here:

• The form is automatically generated from the Poll model.

• The different model field types (DateTimeField, CharField) correspond to the appropriate HTML input
widget. Each type of field knows how to display itself in the Django admin.

• Each DateTimeField gets free JavaScript shortcuts. Dates get a “Today” shortcut and calendar popup, and
times get a “Now” shortcut and a convenient popup that lists commonly entered times.

The bottom part of the page gives you a couple of options:

• Save – Saves changes and returns to the change-list page for this type of object.

• Save and continue editing – Saves changes and reloads the admin page for this object.

• Save and add another – Saves changes and loads a new, blank form for this type of object.

• Delete – Displays a delete confirmation page.

2.4. Writing your first Django app, part 2 23

Django Documentation, Release 1.2.7

Change the “Date published” by clicking the “Today” and “Now” shortcuts. Then click “Save and continue editing.”
Then click “History” in the upper right. You’ll see a page listing all changes made to this object via the Django admin,
with the timestamp and username of the person who made the change:

2.4.6 Customize the admin form

Take a few minutes to marvel at all the code you didn’t have to write. By registering the Poll model with
admin.site.register(Poll), Django was able to construct a default form representation. Often, you’ll want
to customize how the admin form looks and works. You’ll do this by telling Django the options you want when you
register the object.

Let’s see how this works by re-ordering the fields on the edit form. Replace the admin.site.register(Poll)
line with:

class PollAdmin(admin.ModelAdmin):
fields = [’pub_date’, ’question’]

admin.site.register(Poll, PollAdmin)

You’ll follow this pattern – create a model admin object, then pass it as the second argument to
admin.site.register() – any time you need to change the admin options for an object.

This particular change above makes the “Publication date” come before the “Question” field:

This isn’t impressive with only two fields, but for admin forms with dozens of fields, choosing an intuitive order is an
important usability detail.

24 Chapter 2. Getting started

Django Documentation, Release 1.2.7

And speaking of forms with dozens of fields, you might want to split the form up into fieldsets:

class PollAdmin(admin.ModelAdmin):
fieldsets = [

(None, {’fields’: [’question’]}),
(’Date information’, {’fields’: [’pub_date’]}),

]

admin.site.register(Poll, PollAdmin)

The first element of each tuple in fieldsets is the title of the fieldset. Here’s what our form looks like now:

You can assign arbitrary HTML classes to each fieldset. Django provides a "collapse" class that displays a
particular fieldset initially collapsed. This is useful when you have a long form that contains a number of fields that
aren’t commonly used:

class PollAdmin(admin.ModelAdmin):
fieldsets = [

(None, {’fields’: [’question’]}),
(’Date information’, {’fields’: [’pub_date’], ’classes’: [’collapse’]}),

]

2.4. Writing your first Django app, part 2 25

Django Documentation, Release 1.2.7

2.4.7 Adding related objects

OK, we have our Poll admin page. But a Poll has multiple Choices, and the admin page doesn’t display choices.

Yet.

There are two ways to solve this problem. The first is to register Choice with the admin just as we did with Poll.
That’s easy:

from polls.models import Choice

admin.site.register(Choice)

Now “Choices” is an available option in the Django admin. The “Add choice” form looks like this:

In that form, the “Poll” field is a select box containing every poll in the database. Django knows that a ForeignKey
should be represented in the admin as a <select> box. In our case, only one poll exists at this point.

Also note the “Add Another” link next to “Poll.” Every object with a ForeignKey relationship to another gets this
for free. When you click “Add Another,” you’ll get a popup window with the “Add poll” form. If you add a poll in
that window and click “Save,” Django will save the poll to the database and dynamically add it as the selected choice
on the “Add choice” form you’re looking at.

But, really, this is an inefficient way of adding Choice objects to the system. It’d be better if you could add a bunch of
Choices directly when you create the Poll object. Let’s make that happen.

Remove the register() call for the Choice model. Then, edit the Poll registration code to read:

class ChoiceInline(admin.StackedInline):
model = Choice
extra = 3

class PollAdmin(admin.ModelAdmin):
fieldsets = [

(None, {’fields’: [’question’]}),

26 Chapter 2. Getting started

Django Documentation, Release 1.2.7

(’Date information’, {’fields’: [’pub_date’], ’classes’: [’collapse’]}),
]
inlines = [ChoiceInline]

admin.site.register(Poll, PollAdmin)

This tells Django: “Choice objects are edited on the Poll admin page. By default, provide enough fields for 3 choices.”

Load the “Add poll” page to see how that looks, you may need to restart your development server:

It works like this: There are three slots for related Choices – as specified by extra – and each time you come back
to the “Change” page for an already-created object, you get another three extra slots.

One small problem, though. It takes a lot of screen space to display all the fields for entering related Choice ob-
jects. For that reason, Django offers a tabular way of displaying inline related objects; you just need to change the
ChoiceInline declaration to read:

class ChoiceInline(admin.TabularInline):
#...

With that TabularInline (instead of StackedInline), the related objects are displayed in a more compact,
table-based format:

2.4. Writing your first Django app, part 2 27

Django Documentation, Release 1.2.7

2.4.8 Customize the admin change list

Now that the Poll admin page is looking good, let’s make some tweaks to the “change list” page – the one that displays
all the polls in the system.

Here’s what it looks like at this point:

By default, Django displays the str() of each object. But sometimes it’d be more helpful if we could display
individual fields. To do that, use the list_display admin option, which is a tuple of field names to display, as
columns, on the change list page for the object:

class PollAdmin(admin.ModelAdmin):
...
list_display = (’question’, ’pub_date’)

Just for good measure, let’s also include the was_published_today custom method from Tutorial 1:

class PollAdmin(admin.ModelAdmin):
...

28 Chapter 2. Getting started

Django Documentation, Release 1.2.7

list_display = (’question’, ’pub_date’, ’was_published_today’)

Now the poll change list page looks like this:

You can click on the column headers to sort by those values – except in the case of the was_published_today
header, because sorting by the output of an arbitrary method is not supported. Also note that the column header for
was_published_today is, by default, the name of the method (with underscores replaced with spaces). But you
can change that by giving that method (in models.py) a short_description attribute:

def was_published_today(self):
return self.pub_date.date() == datetime.date.today()

was_published_today.short_description = ’Published today?’

Edit your admin.py file again and add an improvement to the Poll change list page: Filters. Add the following line to
PollAdmin:

list_filter = [’pub_date’]

That adds a “Filter” sidebar that lets people filter the change list by the pub_date field:

The type of filter displayed depends on the type of field you’re filtering on. Because pub_date is a DateTimeField,
Django knows to give the default filter options for DateTimeFields: “Any date,” “Today,” “Past 7 days,” “This month,”
“This year.”

This is shaping up well. Let’s add some search capability:

search_fields = [’question’]

That adds a search box at the top of the change list. When somebody enters search terms, Django will search the
question field. You can use as many fields as you’d like – although because it uses a LIKE query behind the
scenes, keep it reasonable, to keep your database happy.

Finally, because Poll objects have dates, it’d be convenient to be able to drill down by date. Add this line:

date_hierarchy = ’pub_date’

2.4. Writing your first Django app, part 2 29

Django Documentation, Release 1.2.7

That adds hierarchical navigation, by date, to the top of the change list page. At top level, it displays all available
years. Then it drills down to months and, ultimately, days.

Now’s also a good time to note that change lists give you free pagination. The default is to display 50 items per page.
Change-list pagination, search boxes, filters, date-hierarchies and column-header-ordering all work together like you
think they should.

2.4.9 Customize the admin look and feel

Clearly, having “Django administration” at the top of each admin page is ridiculous. It’s just placeholder text.

That’s easy to change, though, using Django’s template system. The Django admin is powered by Django itself, and
its interfaces use Django’s own template system.

Open your settings file (mysite/settings.py, remember) and look at the TEMPLATE_DIRS setting.
TEMPLATE_DIRS is a tuple of filesystem directories to check when loading Django templates. It’s a search path.

By default, TEMPLATE_DIRS is empty. So, let’s add a line to it, to tell Django where our templates live:

TEMPLATE_DIRS = (
"/home/my_username/mytemplates", # Change this to your own directory.

)

Now copy the template admin/base_site.html from within the default Django admin tem-
plate directory in the source code of Django itself (django/contrib/admin/templates)
into an admin subdirectory of whichever directory you’re using in TEMPLATE_DIRS. For
example, if your TEMPLATE_DIRS includes "/home/my_username/mytemplates", as
above, then copy django/contrib/admin/templates/admin/base_site.html to
/home/my_username/mytemplates/admin/base_site.html. Don’t forget that admin subdirec-
tory.

Then, just edit the file and replace the generic Django text with your own site’s name as you see fit.

This template file contains lots of text like {% block branding %} and {{ title }}. The {% and {{ tags
are part of Django’s template language. When Django renders admin/base_site.html, this template language
will be evaluated to produce the final HTML page. Don’t worry if you can’t make any sense of the template right now
– we’ll delve into Django’s templating language in Tutorial 3.

Note that any of Django’s default admin templates can be overridden. To override a template, just do the same thing
you did with base_site.html – copy it from the default directory into your custom directory, and make changes.

Astute readers will ask: But if TEMPLATE_DIRS was empty by default, how was Django finding the default admin
templates? The answer is that, by default, Django automatically looks for a templates/ subdirectory within each
app package, for use as a fallback. See the template loader documentation for full information.

2.4.10 Customize the admin index page

On a similar note, you might want to customize the look and feel of the Django admin index page.

By default, it displays all the apps in INSTALLED_APPS that have been registered with the admin application, in
alphabetical order. You may want to make significant changes to the layout. After all, the index is probably the most
important page of the admin, and it should be easy to use.

The template to customize is admin/index.html. (Do the same as with admin/base_site.html in the
previous section – copy it from the default directory to your custom template directory.) Edit the file, and you’ll see it
uses a template variable called app_list. That variable contains every installed Django app. Instead of using that,
you can hard-code links to object-specific admin pages in whatever way you think is best. Again, don’t worry if you
can’t understand the template language – we’ll cover that in more detail in Tutorial 3.

30 Chapter 2. Getting started

Django Documentation, Release 1.2.7

When you’re comfortable with the admin site, read part 3 of this tutorial to start working on public poll views.

2.5 Writing your first Django app, part 3

This tutorial begins where Tutorial 2 left off. We’re continuing the Web-poll application and will focus on creating the
public interface – “views.”

2.5.1 Philosophy

A view is a “type” of Web page in your Django application that generally serves a specific function and has a specific
template. For example, in a Weblog application, you might have the following views:

• Blog homepage – displays the latest few entries.

• Entry “detail” page – permalink page for a single entry.

• Year-based archive page – displays all months with entries in the given year.

• Month-based archive page – displays all days with entries in the given month.

• Day-based archive page – displays all entries in the given day.

• Comment action – handles posting comments to a given entry.

In our poll application, we’ll have the following four views:

• Poll “index” page – displays the latest few polls.

• Poll “detail” page – displays a poll question, with no results but with a form to vote.

• Poll “results” page – displays results for a particular poll.

• Vote action – handles voting for a particular choice in a particular poll.

In Django, each view is represented by a simple Python function.

2.5.2 Design your URLs

The first step of writing views is to design your URL structure. You do this by creating a Python module, called a
URLconf. URLconfs are how Django associates a given URL with given Python code.

When a user requests a Django-powered page, the system looks at the ROOT_URLCONF setting, which contains a
string in Python dotted syntax. Django loads that module and looks for a module-level variable called urlpatterns,
which is a sequence of tuples in the following format:

(regular expression, Python callback function [, optional dictionary])

Django starts at the first regular expression and makes its way down the list, comparing the requested URL against
each regular expression until it finds one that matches.

When it finds a match, Django calls the Python callback function, with an HttpRequest object as the first argument,
any “captured” values from the regular expression as keyword arguments, and, optionally, arbitrary keyword arguments
from the dictionary (an optional third item in the tuple).

For more on HttpRequest objects, see the Request and response objects. For more details on URLconfs, see the
URL dispatcher.

2.5. Writing your first Django app, part 3 31

Django Documentation, Release 1.2.7

When you ran django-admin.py startproject mysite at the beginning of Tutorial 1, it created a default
URLconf in mysite/urls.py. It also automatically set your ROOT_URLCONF setting (in settings.py) to
point at that file:

ROOT_URLCONF = ’mysite.urls’

Time for an example. Edit mysite/urls.py so it looks like this:

from django.conf.urls.defaults import *

from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns(’’,
(r’^polls/$’, ’polls.views.index’),
(r’^polls/(?P<poll_id>\d+)/$’, ’polls.views.detail’),
(r’^polls/(?P<poll_id>\d+)/results/$’, ’polls.views.results’),
(r’^polls/(?P<poll_id>\d+)/vote/$’, ’polls.views.vote’),
(r’^admin/’, include(admin.site.urls)),

)

This is worth a review. When somebody requests a page from your Web site – say, “/polls/23/”, Django will
load this Python module, because it’s pointed to by the ROOT_URLCONF setting. It finds the variable named
urlpatterns and traverses the regular expressions in order. When it finds a regular expression that matches –
r’^polls/(?P<poll_id>\d+)/$’ – it loads the function detail() from polls/views.py. Finally, it
calls that detail() function like so:

detail(request=<HttpRequest object>, poll_id=’23’)

The poll_id=’23’ part comes from (?P<poll_id>\d+). Using parentheses around a pattern “captures” the
text matched by that pattern and sends it as an argument to the view function; the ?P<poll_id> defines the name
that will be used to identify the matched pattern; and \d+ is a regular expression to match a sequence of digits (i.e., a
number).

Because the URL patterns are regular expressions, there really is no limit on what you can do with them. And there’s
no need to add URL cruft such as .php – unless you have a sick sense of humor, in which case you can do something
like this:

(r’^polls/latest\.php$’, ’polls.views.index’),

But, don’t do that. It’s silly.

Note that these regular expressions do not search GET and POST parameters, or the domain name. For example,
in a request to http://www.example.com/myapp/, the URLconf will look for myapp/. In a request to
http://www.example.com/myapp/?page=3, the URLconf will look for myapp/.

If you need help with regular expressions, see Wikipedia’s entry and the Python documentation. Also, the O’Reilly
book “Mastering Regular Expressions” by Jeffrey Friedl is fantastic.

Finally, a performance note: these regular expressions are compiled the first time the URLconf module is loaded.
They’re super fast.

2.5.3 Write your first view

Well, we haven’t created any views yet – we just have the URLconf. But let’s make sure Django is following the
URLconf properly.

Fire up the Django development Web server:

32 Chapter 2. Getting started

http://en.wikipedia.org/wiki/Regular_expression
http://docs.python.org/library/re.html

Django Documentation, Release 1.2.7

python manage.py runserver

Now go to “http://localhost:8000/polls/” on your domain in your Web browser. You should get a pleasantly-colored
error page with the following message:

ViewDoesNotExist at /polls/

Tried index in module polls.views. Error was: ’module’
object has no attribute ’index’

This error happened because you haven’t written a function index() in the module polls/views.py.

Try “/polls/23/”, “/polls/23/results/” and “/polls/23/vote/”. The error messages tell you which view Django tried (and
failed to find, because you haven’t written any views yet).

Time to write the first view. Open the file polls/views.py and put the following Python code in it:

from django.http import HttpResponse

def index(request):
return HttpResponse("Hello, world. You’re at the poll index.")

This is the simplest view possible. Go to “/polls/” in your browser, and you should see your text.

Now lets add a few more views. These views are slightly different, because they take an argument (which, remember,
is passed in from whatever was captured by the regular expression in the URLconf):

def detail(request, poll_id):
return HttpResponse("You’re looking at poll %s." % poll_id)

def results(request, poll_id):
return HttpResponse("You’re looking at the results of poll %s." % poll_id)

def vote(request, poll_id):
return HttpResponse("You’re voting on poll %s." % poll_id)

Take a look in your browser, at “/polls/34/”. It’ll run the detail() method and display whatever ID you provide in the
URL. Try “/polls/34/results/” and “/polls/34/vote/” too – these will display the placeholder results and voting pages.

2.5.4 Write views that actually do something

Each view is responsible for doing one of two things: Returning an HttpResponse object containing the content
for the requested page, or raising an exception such as Http404. The rest is up to you.

Your view can read records from a database, or not. It can use a template system such as Django’s – or a third-party
Python template system – or not. It can generate a PDF file, output XML, create a ZIP file on the fly, anything you
want, using whatever Python libraries you want.

All Django wants is that HttpResponse. Or an exception.

Because it’s convenient, let’s use Django’s own database API, which we covered in Tutorial 1. Here’s one stab at
the index() view, which displays the latest 5 poll questions in the system, separated by commas, according to
publication date:

from polls.models import Poll
from django.http import HttpResponse

def index(request):
latest_poll_list = Poll.objects.all().order_by(’-pub_date’)[:5]

2.5. Writing your first Django app, part 3 33

http://localhost:8000/polls/

Django Documentation, Release 1.2.7

output = ’, ’.join([p.question for p in latest_poll_list])
return HttpResponse(output)

There’s a problem here, though: The page’s design is hard-coded in the view. If you want to change the way the page
looks, you’ll have to edit this Python code. So let’s use Django’s template system to separate the design from Python:

from django.template import Context, loader
from polls.models import Poll
from django.http import HttpResponse

def index(request):
latest_poll_list = Poll.objects.all().order_by(’-pub_date’)[:5]
t = loader.get_template(’polls/index.html’)
c = Context({

’latest_poll_list’: latest_poll_list,
})
return HttpResponse(t.render(c))

That code loads the template called “polls/index.html” and passes it a context. The context is a dictionary mapping
template variable names to Python objects.

Reload the page. Now you’ll see an error:

TemplateDoesNotExist at /polls/
polls/index.html

Ah. There’s no template yet. First, create a directory, somewhere on your filesystem, whose contents Django can
access. (Django runs as whatever user your server runs.) Don’t put them under your document root, though. You
probably shouldn’t make them public, just for security’s sake. Then edit TEMPLATE_DIRS in your settings.py
to tell Django where it can find templates – just as you did in the “Customize the admin look and feel” section of
Tutorial 2.

When you’ve done that, create a directory polls in your template directory. Within that, create a file called
index.html. Note that our loader.get_template(’polls/index.html’) code from above maps to
“[template_directory]/polls/index.html” on the filesystem.

Put the following code in that template:

{% if latest_poll_list %}

{% for poll in latest_poll_list %}

{{ poll.question }}
{% endfor %}

{% else %}
<p>No polls are available.</p>

{% endif %}

Load the page in your Web browser, and you should see a bulleted-list containing the “What’s up” poll from Tutorial
1. The link points to the poll’s detail page.

A shortcut: render_to_response()

It’s a very common idiom to load a template, fill a context and return an HttpResponse object with the result of the
rendered template. Django provides a shortcut. Here’s the full index() view, rewritten:

from django.shortcuts import render_to_response
from polls.models import Poll

34 Chapter 2. Getting started

Django Documentation, Release 1.2.7

def index(request):
latest_poll_list = Poll.objects.all().order_by(’-pub_date’)[:5]
return render_to_response(’polls/index.html’, {’latest_poll_list’: latest_poll_list})

Note that once we’ve done this in all these views, we no longer need to import loader, Context and
HttpResponse.

The render_to_response() function takes a template name as its first argument and a dictionary as its optional
second argument. It returns an HttpResponse object of the given template rendered with the given context.

2.5.5 Raising 404

Now, let’s tackle the poll detail view – the page that displays the question for a given poll. Here’s the view:

from django.http import Http404
...
def detail(request, poll_id):

try:
p = Poll.objects.get(pk=poll_id)

except Poll.DoesNotExist:
raise Http404

return render_to_response(’polls/detail.html’, {’poll’: p})

The new concept here: The view raises the Http404 exception if a poll with the requested ID doesn’t exist.

We’ll discuss what you could put in that polls/detail.html template a bit later, but if you’d like to quickly get
the above example working, just:

{{ poll }}

will get you started for now.

A shortcut: get_object_or_404()

It’s a very common idiom to use get() and raise Http404 if the object doesn’t exist. Django provides a shortcut.
Here’s the detail() view, rewritten:

from django.shortcuts import render_to_response, get_object_or_404
...
def detail(request, poll_id):

p = get_object_or_404(Poll, pk=poll_id)
return render_to_response(’polls/detail.html’, {’poll’: p})

The get_object_or_404() function takes a Django model as its first argument and an arbitrary number of
keyword arguments, which it passes to the module’s get() function. It raises Http404 if the object doesn’t exist.

Philosophy

Why do we use a helper function get_object_or_404() instead of automatically catching the
ObjectDoesNotExist exceptions at a higher level, or having the model API raise Http404 instead of
ObjectDoesNotExist?

Because that would couple the model layer to the view layer. One of the foremost design goals of Django is to maintain
loose coupling.

2.5. Writing your first Django app, part 3 35

Django Documentation, Release 1.2.7

There’s also a get_list_or_404() function, which works just as get_object_or_404() – except using
filter() instead of get(). It raises Http404 if the list is empty.

2.5.6 Write a 404 (page not found) view

When you raise Http404 from within a view, Django will load a special view devoted to handling 404 errors. It finds
it by looking for the variable handler404, which is a string in Python dotted syntax – the same format the normal
URLconf callbacks use. A 404 view itself has nothing special: It’s just a normal view.

You normally won’t have to bother with writing 404 views. By default, URLconfs have the following line up top:

from django.conf.urls.defaults import *

That takes care of setting handler404 in the current module. As you
can see in django/conf/urls/defaults.py, handler404 is set to
django.views.defaults.page_not_found() by default.

Four more things to note about 404 views:

• If DEBUG is set to True (in your settings module) then your 404 view will never be used (and thus the
404.html template will never be rendered) because the traceback will be displayed instead.

• The 404 view is also called if Django doesn’t find a match after checking every regular expression in the
URLconf.

• If you don’t define your own 404 view – and simply use the default, which is recommended – you still have one
obligation: To create a 404.html template in the root of your template directory. The default 404 view will
use that template for all 404 errors.

• If DEBUG is set to False (in your settings module) and if you didn’t create a 404.html file, an Http500 is
raised instead. So remember to create a 404.html.

2.5.7 Write a 500 (server error) view

Similarly, URLconfs may define a handler500, which points to a view to call in case of server errors. Server errors
happen when you have runtime errors in view code.

2.5.8 Use the template system

Back to the detail() view for our poll application. Given the context variable poll, here’s what the
“polls/detail.html” template might look like:

<h1>{{ poll.question }}</h1>

{% for choice in poll.choice_set.all %}

{{ choice.choice }}
{% endfor %}

The template system uses dot-lookup syntax to access variable attributes. In the example of {{ poll.question
}}, first Django does a dictionary lookup on the object poll. Failing that, it tries attribute lookup – which works, in
this case. If attribute lookup had failed, it would’ve tried calling the method question() on the poll object.

Method-calling happens in the {% for %} loop: poll.choice_set.all is interpreted as the Python code
poll.choice_set.all(), which returns an iterable of Choice objects and is suitable for use in the {% for %}
tag.

36 Chapter 2. Getting started

Django Documentation, Release 1.2.7

See the template guide for more about templates.

2.5.9 Simplifying the URLconfs

Take some time to play around with the views and template system. As you edit the URLconf, you may notice there’s
a fair bit of redundancy in it:

urlpatterns = patterns(’’,
(r’^polls/$’, ’polls.views.index’),
(r’^polls/(?P<poll_id>\d+)/$’, ’polls.views.detail’),
(r’^polls/(?P<poll_id>\d+)/results/$’, ’polls.views.results’),
(r’^polls/(?P<poll_id>\d+)/vote/$’, ’polls.views.vote’),

)

Namely, polls.views is in every callback.

Because this is a common case, the URLconf framework provides a shortcut for common prefixes. You can factor out
the common prefixes and add them as the first argument to patterns(), like so:

urlpatterns = patterns(’polls.views’,
(r’^polls/$’, ’index’),
(r’^polls/(?P<poll_id>\d+)/$’, ’detail’),
(r’^polls/(?P<poll_id>\d+)/results/$’, ’results’),
(r’^polls/(?P<poll_id>\d+)/vote/$’, ’vote’),

)

This is functionally identical to the previous formatting. It’s just a bit tidier.

Since you generally don’t want the prefix for one app to be applied to every callback in your URLconf, you can
concatenate multiple patterns(). Your full mysite/urls.py might now look like this:

from django.conf.urls.defaults import *

from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns(’polls.views’,
(r’^polls/$’, ’index’),
(r’^polls/(?P<poll_id>\d+)/$’, ’detail’),
(r’^polls/(?P<poll_id>\d+)/results/$’, ’results’),
(r’^polls/(?P<poll_id>\d+)/vote/$’, ’vote’),

)

urlpatterns += patterns(’’,
(r’^admin/’, include(admin.site.urls)),

)

2.5.10 Decoupling the URLconfs

While we’re at it, we should take the time to decouple our poll-app URLs from our Django project configuration.
Django apps are meant to be pluggable – that is, each particular app should be transferable to another Django installa-
tion with minimal fuss.

Our poll app is pretty decoupled at this point, thanks to the strict directory structure that python manage.py
startapp created, but one part of it is coupled to the Django settings: The URLconf.

We’ve been editing the URLs in mysite/urls.py, but the URL design of an app is specific to the app, not to the
Django installation – so let’s move the URLs within the app directory.

2.5. Writing your first Django app, part 3 37

Django Documentation, Release 1.2.7

Copy the file mysite/urls.py to polls/urls.py. Then, change mysite/urls.py to remove the poll-
specific URLs and insert an include(), leaving you with:

This also imports the include function
from django.conf.urls.defaults import *

from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns(’’,
(r’^polls/’, include(’polls.urls’)),
(r’^admin/’, include(admin.site.urls)),

)

include() simply references another URLconf. Note that the regular expression doesn’t have a $ (end-of-string
match character) but has the trailing slash. Whenever Django encounters include(), it chops off whatever part of
the URL matched up to that point and sends the remaining string to the included URLconf for further processing.

Here’s what happens if a user goes to “/polls/34/” in this system:

• Django will find the match at ’^polls/’

• Then, Django will strip off the matching text ("polls/") and send the remaining text – "34/" – to the
‘polls.urls’ URLconf for further processing.

Now that we’ve decoupled that, we need to decouple the polls.urls URLconf by removing the leading “polls/”
from each line, and removing the lines registering the admin site. Your polls.urls file should now look like this:

from django.conf.urls.defaults import *

urlpatterns = patterns(’polls.views’,
(r’^$’, ’index’),
(r’^(?P<poll_id>\d+)/$’, ’detail’),
(r’^(?P<poll_id>\d+)/results/$’, ’results’),
(r’^(?P<poll_id>\d+)/vote/$’, ’vote’),

)

The idea behind include() and URLconf decoupling is to make it easy to plug-and-play URLs. Now that polls are
in their own URLconf, they can be placed under “/polls/”, or under “/fun_polls/”, or under “/content/polls/”, or any
other path root, and the app will still work.

All the poll app cares about is its relative path, not its absolute path.

When you’re comfortable with writing views, read part 4 of this tutorial to learn about simple form processing and
generic views.

2.6 Writing your first Django app, part 4

This tutorial begins where Tutorial 3 left off. We’re continuing the Web-poll application and will focus on simple form
processing and cutting down our code.

2.6.1 Write a simple form

Let’s update our poll detail template (“polls/detail.html”) from the last tutorial, so that the template contains an HTML
<form> element:

38 Chapter 2. Getting started

Django Documentation, Release 1.2.7

<h1>{{ poll.question }}</h1>

{% if error_message %}<p>{{ error_message }}</p>{% endif %}

<form action="/polls/{{ poll.id }}/vote/" method="post">
{% csrf_token %}
{% for choice in poll.choice_set.all %}

<input type="radio" name="choice" id="choice{{ forloop.counter }}" value="{{ choice.id }}" />
<label for="choice{{ forloop.counter }}">{{ choice.choice }}</label>

{% endfor %}
<input type="submit" value="Vote" />
</form>

A quick rundown:

• The above template displays a radio button for each poll choice. The value of each radio button is the associ-
ated poll choice’s ID. The name of each radio button is "choice". That means, when somebody selects one
of the radio buttons and submits the form, it’ll send the POST data choice=3. This is HTML Forms 101.

• We set the form’s action to /polls/{{ poll.id }}/vote/, and we set method="post". Using
method="post" (as opposed to method="get") is very important, because the act of submitting this form
will alter data server-side. Whenever you create a form that alters data server-side, use method="post". This
tip isn’t specific to Django; it’s just good Web development practice.

• forloop.counter indicates how many times the for tag has gone through its loop

• Since we’re creating a POST form (which can have the effect of modifying data), we need to worry about Cross
Site Request Forgeries. Thankfully, you don’t have to worry too hard, because Django comes with a very easy-
to-use system for protecting against it. In short, all POST forms that are targeted at internal URLs should use
the {% csrf_token %} template tag.

The {% csrf_token %} tag requires information from the request object, which is not normally accessible from
within the template context. To fix this, a small adjustment needs to be made to the detail view, so that it looks like
the following:

from django.template import RequestContext
...
def detail(request, poll_id):

p = get_object_or_404(Poll, pk=poll_id)
return render_to_response(’polls/detail.html’, {’poll’: p},

context_instance=RequestContext(request))

The details of how this works are explained in the documentation for RequestContext.

Now, let’s create a Django view that handles the submitted data and does something with it. Remember, in Tutorial 3,
we created a URLconf for the polls application that includes this line:

(r’^(?P<poll_id>\d+)/vote/$’, ’vote’),

We also created a dummy implementation of the vote() function. Let’s create a real version. Add the following to
polls/views.py:

from django.shortcuts import get_object_or_404, render_to_response
from django.http import HttpResponseRedirect, HttpResponse
from django.core.urlresolvers import reverse
from django.template import RequestContext
from polls.models import Choice, Poll
...
def vote(request, poll_id):

p = get_object_or_404(Poll, pk=poll_id)

2.6. Writing your first Django app, part 4 39

Django Documentation, Release 1.2.7

try:
selected_choice = p.choice_set.get(pk=request.POST[’choice’])

except (KeyError, Choice.DoesNotExist):
Redisplay the poll voting form.
return render_to_response(’polls/detail.html’, {

’poll’: p,
’error_message’: "You didn’t select a choice.",

}, context_instance=RequestContext(request))
else:

selected_choice.votes += 1
selected_choice.save()
Always return an HttpResponseRedirect after successfully dealing
with POST data. This prevents data from being posted twice if a
user hits the Back button.
return HttpResponseRedirect(reverse(’polls.views.results’, args=(p.id,)))

This code includes a few things we haven’t covered yet in this tutorial:

• request.POST is a dictionary-like object that lets you access submitted data by key name. In this case,
request.POST[’choice’] returns the ID of the selected choice, as a string. request.POST values are
always strings.

Note that Django also provides request.GET for accessing GET data in the same way – but we’re explicitly
using request.POST in our code, to ensure that data is only altered via a POST call.

• request.POST[’choice’] will raise KeyError if choice wasn’t provided in POST data. The above
code checks for KeyError and redisplays the poll form with an error message if choice isn’t given.

• After incrementing the choice count, the code returns an HttpResponseRedirect rather than a normal
HttpResponse. HttpResponseRedirect takes a single argument: the URL to which the user will be
redirected (see the following point for how we construct the URL in this case).

As the Python comment above points out, you should always return an HttpResponseRedirect after
successfully dealing with POST data. This tip isn’t specific to Django; it’s just good Web development practice.

• We are using the reverse() function in the HttpResponseRedirect constructor in this example. This
function helps avoid having to hardcode a URL in the view function. It is given the name of the view that we
want to pass control to and the variable portion of the URL pattern that points to that view. In this case, using
the URLconf we set up in Tutorial 3, this reverse() call will return a string like

’/polls/3/results/’

... where the 3 is the value of p.id. This redirected URL will then call the ’results’ view to display the
final page. Note that you need to use the full name of the view here (including the prefix).

As mentioned in Tutorial 3, request is a HttpRequest object. For more on HttpRequest objects, see the
request and response documentation.

After somebody votes in a poll, the vote() view redirects to the results page for the poll. Let’s write that view:

def results(request, poll_id):
p = get_object_or_404(Poll, pk=poll_id)
return render_to_response(’polls/results.html’, {’poll’: p})

This is almost exactly the same as the detail() view from Tutorial 3. The only difference is the template name.
We’ll fix this redundancy later.

Now, create a results.html template:

<h1>{{ poll.question }}</h1>

40 Chapter 2. Getting started

Django Documentation, Release 1.2.7

{% for choice in poll.choice_set.all %}

{{ choice.choice }} -- {{ choice.votes }} vote{{ choice.votes|pluralize }}
{% endfor %}

Vote again?

Now, go to /polls/1/ in your browser and vote in the poll. You should see a results page that gets updated each
time you vote. If you submit the form without having chosen a choice, you should see the error message.

2.6.2 Use generic views: Less code is better

The detail() (from Tutorial 3) and results() views are stupidly simple – and, as mentioned above, redundant.
The index() view (also from Tutorial 3), which displays a list of polls, is similar.

These views represent a common case of basic Web development: getting data from the database according to a
parameter passed in the URL, loading a template and returning the rendered template. Because this is so common,
Django provides a shortcut, called the “generic views” system.

Generic views abstract common patterns to the point where you don’t even need to write Python code to write an app.

Let’s convert our poll app to use the generic views system, so we can delete a bunch of our own code. We’ll just have
to take a few steps to make the conversion. We will:

1. Convert the URLconf.

2. Rename a few templates.

3. Delete some of the old, unneeded views.

4. Fix up URL handling for the new views.

Read on for details.

Why the code-shuffle?

Generally, when writing a Django app, you’ll evaluate whether generic views are a good fit for your problem, and
you’ll use them from the beginning, rather than refactoring your code halfway through. But this tutorial intentionally
has focused on writing the views “the hard way” until now, to focus on core concepts.

You should know basic math before you start using a calculator.

First, open the polls/urls.py URLconf. It looks like this, according to the tutorial so far:

from django.conf.urls.defaults import *

urlpatterns = patterns(’polls.views’,
(r’^$’, ’index’),
(r’^(?P<poll_id>\d+)/$’, ’detail’),
(r’^(?P<poll_id>\d+)/results/$’, ’results’),
(r’^(?P<poll_id>\d+)/vote/$’, ’vote’),

)

Change it like so:

from django.conf.urls.defaults import *
from polls.models import Poll

2.6. Writing your first Django app, part 4 41

Django Documentation, Release 1.2.7

info_dict = {
’queryset’: Poll.objects.all(),

}

urlpatterns = patterns(’’,
(r’^$’, ’django.views.generic.list_detail.object_list’, info_dict),
(r’^(?P<object_id>\d+)/$’, ’django.views.generic.list_detail.object_detail’, info_dict),
url(r’^(?P<object_id>\d+)/results/$’, ’django.views.generic.list_detail.object_detail’, dict(info_dict, template_name=’polls/results.html’), ’poll_results’),
(r’^(?P<poll_id>\d+)/vote/$’, ’polls.views.vote’),

)

We’re using two generic views here: object_list() and object_detail(). Respectively, those two views
abstract the concepts of “display a list of objects” and “display a detail page for a particular type of object.”

• Each generic view needs to know what data it will be acting upon. This data is provided in a dictionary. The
queryset key in this dictionary points to the list of objects to be manipulated by the generic view.

• The object_detail() generic view expects the ID value captured from the URL to be called
"object_id", so we’ve changed poll_id to object_id for the generic views.

• We’ve added a name, poll_results, to the results view so that we have a way to refer to its URL later on
(see the documentation about naming URL patterns for information). We’re also using the url() function from
django.conf.urls.defaults here. It’s a good habit to use url() when you are providing a pattern
name like this.

By default, the object_detail() generic view uses a template called <app name>/<model
name>_detail.html. In our case, it’ll use the template "polls/poll_detail.html". Thus, rename your
polls/detail.html template to polls/poll_detail.html, and change the render_to_response()
line in vote().

Similarly, the object_list() generic view uses a template called <app name>/<model
name>_list.html. Thus, rename polls/index.html to polls/poll_list.html.

Because we have more than one entry in the URLconf that uses object_detail() for the polls app, we manually
specify a template name for the results view: template_name=’polls/results.html’. Otherwise, both
views would use the same template. Note that we use dict() to return an altered dictionary in place.

Note: django.db.models.QuerySet.all() is lazy

It might look a little frightening to see Poll.objects.all() being used in a detail view which only needs one
Poll object, but don’t worry; Poll.objects.all() is actually a special object called a QuerySet, which
is “lazy” and doesn’t hit your database until it absolutely has to. By the time the database query happens, the
object_detail() generic view will have narrowed its scope down to a single object, so the eventual query will
only select one row from the database.

If you’d like to know more about how that works, The Django database API documentation explains the lazy nature
of QuerySet objects.

In previous parts of the tutorial, the templates have been provided with a context that contains the poll
and latest_poll_list context variables. However, the generic views provide the variables object and
object_list as context. Therefore, you need to change your templates to match the new context variables. Go
through your templates, and modify any reference to latest_poll_list to object_list, and change any
reference to poll to object.

You can now delete the index(), detail() and results() views from polls/views.py. We don’t need
them anymore – they have been replaced by generic views.

The vote() view is still required. However, it must be modified to match the new context variables. In the
render_to_response() call, rename the poll context variable to object.

42 Chapter 2. Getting started

Django Documentation, Release 1.2.7

The last thing to do is fix the URL handling to account for the use of generic views. In the vote view above, we used
the reverse() function to avoid hard-coding our URLs. Now that we’ve switched to a generic view, we’ll need to
change the reverse() call to point back to our new generic view. We can’t simply use the view function anymore
– generic views can be (and are) used multiple times – but we can use the name we’ve given:

return HttpResponseRedirect(reverse(’poll_results’, args=(p.id,)))

Run the server, and use your new polling app based on generic views.

For full details on generic views, see the generic views documentation.

2.6.3 Coming soon

The tutorial ends here for the time being. Future installments of the tutorial will cover:

• Advanced form processing

• Using the RSS framework

• Using the cache framework

• Using the comments framework

• Advanced admin features: Permissions

• Advanced admin features: Custom JavaScript

In the meantime, you might want to check out some pointers on where to go from here

2.7 What to read next

So you’ve read all the introductory material and have decided you’d like to keep using Django. We’ve only just
scratched the surface with this intro (in fact, if you’ve read every single word you’ve still read less than 10% of the
overall documentation).

So what’s next?

Well, we’ve always been big fans of learning by doing. At this point you should know enough to start a project of your
own and start fooling around. As you need to learn new tricks, come back to the documentation.

We’ve put a lot of effort into making Django’s documentation useful, easy to read and as complete as possible. The
rest of this document explains more about how the documentation works so that you can get the most out of it.

(Yes, this is documentation about documentation. Rest assured we have no plans to write a document about how to
read the document about documentation.)

2.7.1 Finding documentation

Django’s got a lot of documentation – almost 200,000 words – so finding what you need can sometimes be tricky. A
few good places to start are the search and the genindex.

Or you can just browse around!

2.7. What to read next 43

Django Documentation, Release 1.2.7

2.7.2 How the documentation is organized

Django’s main documentation is broken up into “chunks” designed to fill different needs:

• The introductory material is designed for people new to Django – or to Web development in general. It doesn’t
cover anything in depth, but instead gives a high-level overview of how developing in Django “feels”.

• The topic guides, on the other hand, dive deep into individual parts of Django. There are complete guides to
Django’s model system, template engine, forms framework, and much more.

This is probably where you’ll want to spend most of your time; if you work your way through these guides you
should come out knowing pretty much everything there is to know about Django.

• Web development is often broad, not deep – problems span many domains. We’ve written a set of how-to guides
that answer common “How do I ...?” questions. Here you’ll find information about generating PDFs with
Django, writing custom template tags, and more.

Answers to really common questions can also be found in the FAQ.

• The guides and how-to’s don’t cover every single class, function, and method available in Django – that would
be overwhelming when you’re trying to learn. Instead, details about individual classes, functions, methods,
and modules are kept in the reference. This is where you’ll turn to find the details of a particular function or
whathaveyou.

• Finally, there’s some “specialized” documentation not usually relevant to most developers. This includes the
release notes, documentation of obsolete features, internals documentation for those who want to add code to
Django itself, and a few other things that simply don’t fit elsewhere.

2.7.3 How documentation is updated

Just as the Django code base is developed and improved on a daily basis, our documentation is consistently improving.
We improve documentation for several reasons:

• To make content fixes, such as grammar/typo corrections.

• To add information and/or examples to existing sections that need to be expanded.

• To document Django features that aren’t yet documented. (The list of such features is shrinking but exists
nonetheless.)

• To add documentation for new features as new features get added, or as Django APIs or behaviors change.

Django’s documentation is kept in the same source control system as its code. It lives in the django/trunk/docs directory
of our Subversion repository. Each document online is a separate text file in the repository.

2.7.4 Where to get it

You can read Django documentation in several ways. They are, in order of preference:

On the Web

The most recent version of the Django documentation lives at http://docs.djangoproject.com/en/dev/. These HTML
pages are generated automatically from the text files in source control. That means they reflect the “latest and greatest”
in Django – they include the very latest corrections and additions, and they discuss the latest Django features, which
may only be available to users of the Django development version. (See “Differences between versions” below.)

44 Chapter 2. Getting started

http://code.djangoproject.com/browser/django/trunk/docs
http://docs.djangoproject.com/en/dev/

Django Documentation, Release 1.2.7

We encourage you to help improve the docs by submitting changes, corrections and suggestions in the ticket system.
The Django developers actively monitor the ticket system and use your feedback to improve the documentation for
everybody.

Note, however, that tickets should explicitly relate to the documentation, rather than asking broad tech-support ques-
tions. If you need help with your particular Django setup, try the django-users mailing list or the #django IRC channel
instead.

In plain text

For offline reading, or just for convenience, you can read the Django documentation in plain text.

If you’re using an official release of Django, note that the zipped package (tarball) of the code includes a docs/
directory, which contains all the documentation for that release.

If you’re using the development version of Django (aka the Subversion “trunk”), note that the docs/ directory con-
tains all of the documentation. You can svn update it, just as you svn update the Python code, in order to get
the latest changes.

You can check out the latest Django documentation from Subversion using this shell command:

$ svn co http://code.djangoproject.com/svn/django/trunk/docs/ django_docs

One low-tech way of taking advantage of the text documentation is by using the Unix grep utility to search for a
phrase in all of the documentation. For example, this will show you each mention of the phrase “max_length” in any
Django document:

$ grep -r max_length /path/to/django/docs/

As HTML, locally

You can get a local copy of the HTML documentation following a few easy steps:

• Django’s documentation uses a system called Sphinx to convert from plain text to HTML. You’ll need to
install Sphinx by either downloading and installing the package from the Sphinx Web site, or by Python’s
easy_install:

$ easy_install Sphinx

• Then, just use the included Makefile to turn the documentation into HTML:

$ cd path/to/django/docs
$ make html

You’ll need GNU Make installed for this.

• The HTML documentation will be placed in docs/_build/html.

Note: Generation of the Django documentation will work with Sphinx version 0.6 or newer, but we recommend going
straight to Sphinx 1.0.2 or newer.

2.7.5 Differences between versions

As previously mentioned, the text documentation in our Subversion repository contains the “latest and greatest”
changes and additions. These changes often include documentation of new features added in the Django develop-

2.7. What to read next 45

http://code.djangoproject.com/simpleticket?component=Documentation
http://groups.google.com/group/django-users
http://sphinx.pocoo.org/
http://www.gnu.org/software/make/

Django Documentation, Release 1.2.7

ment version – the Subversion (“trunk”) version of Django. For that reason, it’s worth pointing out our policy on
keeping straight the documentation for various versions of the framework.

We follow this policy:

• The primary documentation on djangoproject.com is an HTML version of the latest docs in Subversion. These
docs always correspond to the latest official Django release, plus whatever features we’ve added/changed in the
framework since the latest release.

• As we add features to Django’s development version, we try to update the documentation in the same Subversion
commit transaction.

• To distinguish feature changes/additions in the docs, we use the phrase: “New in version X.Y”, being X.Y the
next release version (hence, the one being developed).

• Documentation for a particular Django release is frozen once the version has been released officially. It remains
a snapshot of the docs as of the moment of the release. We will make exceptions to this rule in the case of
retroactive security updates or other such retroactive changes. Once documentation is frozen, we add a note to
the top of each frozen document that says “These docs are frozen for Django version XXX” and links to the
current version of that document.

• The main documentation Web page includes links to documentation for all previous versions.

See Also:

If you’re new to Python, you might want to start by getting an idea of what the language is like. Django is 100%
Python, so if you’ve got minimal comfort with Python you’ll probably get a lot more out of Django.

If you’re new to programming entirely, you might want to start with this list of Python resources for non-programmers

If you already know a few other languages and want to get up to speed with Python quickly, we recommend Dive Into
Python (also available in a dead-tree version). If that’s not quite your style, there are quite a few other books about
Python.

46 Chapter 2. Getting started

http://docs.djangoproject.com/en/dev/
http://python.org/
http://wiki.python.org/moin/BeginnersGuide/NonProgrammers
http://diveintopython.org/
http://diveintopython.org/
http://www.amazon.com/exec/obidos/ASIN/1590593561/ref=nosim/jacobian20
http://wiki.python.org/moin/PythonBooks
http://wiki.python.org/moin/PythonBooks

CHAPTER

THREE

USING DJANGO

Introductions to all the key parts of Django you’ll need to know:

3.1 How to install Django

This document will get you up and running with Django.

3.1.1 Install Python

Being a Python Web framework, Django requires Python.

It works with any Python version from 2.4 to 2.7 (due to backwards incompatibilities in Python 3.0, Django does not
currently work with Python 3.0; see the Django FAQ for more information on supported Python versions and the 3.0
transition).

Get Python at http://www.python.org. If you’re running Linux or Mac OS X, you probably already have it installed.

Django on Jython

If you use Jython (a Python implementation for the Java platform), you’ll need to follow a few additional steps. See
Running Django on Jython for details.

3.1.2 Install Apache and mod_wsgi

If you just want to experiment with Django, skip ahead to the next section; Django includes a lightweight Web server
you can use for testing, so you won’t need to set up Apache until you’re ready to deploy Django in production.

If you want to use Django on a production site, use Apache with mod_wsgi. mod_wsgi is similar to mod_perl –
it embeds Python within Apache and loads Python code into memory when the server starts. Code stays in memory
throughout the life of an Apache process, which leads to significant performance gains over other server arrangements.
Make sure you have Apache installed, with the mod_wsgi module activated. Django will work with any version of
Apache that supports mod_wsgi.

See How to use Django with mod_wsgi for information on how to configure mod_wsgi once you have it installed.

If you can’t use mod_wsgi for some reason, fear not: Django supports many other deployment options. A great second
choice is mod_python, the predecessor to mod_wsgi. Additionally, Django follows the WSGI spec, which allows it
to run on a variety of server platforms. See the server-arrangements wiki page for specific installation instructions for
each platform.

47

http://www.python.org
http://jython.org/
http://code.google.com/p/modwsgi/
http://www.python.org/dev/peps/pep-0333/
http://code.djangoproject.com/wiki/ServerArrangements

Django Documentation, Release 1.2.7

3.1.3 Get your database running

If you plan to use Django’s database API functionality, you’ll need to make sure a database server is running. Django
supports many different database servers and is officially supported with PostgreSQL, MySQL, Oracle and SQLite
(although SQLite doesn’t require a separate server to be running).

In addition to the officially supported databases, there are backends provided by 3rd parties that allow you to use other
databases with Django:

• Sybase SQL Anywhere

• IBM DB2

• Microsoft SQL Server 2005

• Firebird

• ODBC

The Django versions and ORM features supported by these unofficial backends vary considerably. Queries regarding
the specific capabilities of these unofficial backends, along with any support queries, should be directed to the support
channels provided by each 3rd party project.

In addition to a database backend, you’ll need to make sure your Python database bindings are installed.

• If you’re using PostgreSQL, you’ll need the psycopg package. Django supports both version 1 and 2. (When you
configure Django’s database layer, specify either postgresql [for version 1] or postgresql_psycopg2
[for version 2].) You might want to refer to our PostgreSQL notes for further technical details specific to this
database.

If you’re on Windows, check out the unofficial compiled Windows version.

• If you’re using MySQL, you’ll need MySQLdb, version 1.2.1p2 or higher. You will also want to read the
database-specific notes for the MySQL backend.

• If you’re using SQLite and Python 2.4, you’ll need pysqlite. Use version 2.0.3 or higher. Python 2.5 ships with
an SQLite wrapper in the standard library, so you don’t need to install anything extra in that case. Please read
the SQLite backend notes.

• If you’re using Oracle, you’ll need a copy of cx_Oracle, but please read the database-specific notes for the
Oracle backend for important information regarding supported versions of both Oracle and cx_Oracle.

• If you’re using an unofficial 3rd party backend, please consult the documentation provided for any additional
requirements.

If you plan to use Django’s manage.py syncdb command to automatically create database tables for your models,
you’ll need to ensure that Django has permission to create and alter tables in the database you’re using; if you plan
to manually create the tables, you can simply grant Django SELECT, INSERT, UPDATE and DELETE permissions.
On some databases, Django will need ALTER TABLE privileges during syncdb but won’t issue ALTER TABLE
statements on a table once syncdb has created it.

If you’re using Django’s testing framework to test database queries, Django will need permission to create a test
database.

3.1.4 Remove any old versions of Django

If you are upgrading your installation of Django from a previous version, you will need to uninstall the old Django
version before installing the new version.

If you installed Django using setup.py install, uninstalling is as simple as deleting the django directory from
your Python site-packages.

48 Chapter 3. Using Django

http://www.postgresql.org/
http://www.mysql.com/
http://www.oracle.com/
http://www.sqlite.org/
http://code.google.com/p/sqlany-django/
http://code.google.com/p/ibm-db/
http://code.google.com/p/django-mssql/
http://code.google.com/p/django-firebird/
http://code.google.com/p/django-pyodbc/
http://initd.org/pub/software/psycopg/
http://stickpeople.com/projects/python/win-psycopg/
http://sourceforge.net/projects/mysql-python
http://trac.edgewall.org/wiki/PySqlite
http://cx-oracle.sourceforge.net/

Django Documentation, Release 1.2.7

If you installed Django from a Python egg, remove the Django .egg file, and remove the reference to the egg in the
file named easy-install.pth. This file should also be located in your site-packages directory.

Where are my site-packages stored?

The location of the site-packages directory depends on the operating system, and the location in which Python
was installed. To find out your system’s site-packages location, execute the following:

python -c "from distutils.sysconfig import get_python_lib; print get_python_lib()"

(Note that this should be run from a shell prompt, not a Python interactive prompt.)

3.1.5 Install the Django code

Installation instructions are slightly different depending on whether you’re installing a distribution-specific package,
downloading the latest official release, or fetching the latest development version.

It’s easy, no matter which way you choose.

Installing a distribution-specific package

Check the distribution specific notes to see if your platform/distribution provides official Django packages/installers.
Distribution-provided packages will typically allow for automatic installation of dependencies and easy upgrade paths.

Installing an official release

1. Download the latest release from our download page.

2. Untar the downloaded file (e.g. tar xzvf Django-NNN.tar.gz, where NNN is the version number of the
latest release). If you’re using Windows, you can download the command-line tool bsdtar to do this, or you can
use a GUI-based tool such as 7-zip.

3. Change into the directory created in step 2 (e.g. cd Django-NNN).

4. If you’re using Linux, Mac OS X or some other flavor of Unix, enter the command sudo python setup.py
install at the shell prompt. If you’re using Windows, start up a command shell with administrator privileges
and run the command setup.py install.

These commands will install Django in your Python installation’s site-packages directory.

Installing the development version

Tracking Django development

If you decide to use the latest development version of Django, you’ll want to pay close attention to the development
timeline, and you’ll want to keep an eye on the list of backwards-incompatible changes. This will help you stay on top
of any new features you might want to use, as well as any changes you’ll need to make to your code when updating
your copy of Django. (For stable releases, any necessary changes are documented in the release notes.)

If you’d like to be able to update your Django code occasionally with the latest bug fixes and improvements, follow
these instructions:

3.1. How to install Django 49

http://www.djangoproject.com/download/
http://gnuwin32.sourceforge.net/packages/bsdtar.htm
http://www.7-zip.org/
http://code.djangoproject.com/timeline
http://code.djangoproject.com/timeline
http://code.djangoproject.com/wiki/BackwardsIncompatibleChanges

Django Documentation, Release 1.2.7

1. Make sure that you have Subversion installed, and that you can run its commands from a shell. (Enter svn
help at a shell prompt to test this.)

2. Check out Django’s main development branch (the ‘trunk’) like so:

svn co http://code.djangoproject.com/svn/django/trunk/ django-trunk

3. Next, make sure that the Python interpreter can load Django’s code. There are various ways of accomplishing
this. One of the most convenient, on Linux, Mac OSX or other Unix-like systems, is to use a symbolic link:

ln -s WORKING-DIR/django-trunk/django SITE-PACKAGES-DIR/django

(In the above line, change SITE-PACKAGES-DIR to match the location of your system’s site-packages
directory, as explained in the “Where are my site-packages stored?” section above. Change WORKING-
DIR to match the full path to your new django-trunk directory.)

Alternatively, you can define your PYTHONPATH environment variable so that it includes the django-trunk
directory. This is perhaps the most convenient solution on Windows systems, which don’t support symbolic
links. (Environment variables can be defined on Windows systems from the Control Panel.)

What about Apache and mod_python?

If you take the approach of setting PYTHONPATH, you’ll need to remember to do the same thing in your
Apache configuration once you deploy your production site. Do this by setting PythonPath in your Apache
configuration file.

More information about deployment is available, of course, in our How to use Django with mod_python docu-
mentation.

4. On Unix-like systems, create a symbolic link to the file django-trunk/django/bin/django-admin.py
in a directory on your system path, such as /usr/local/bin. For example:

ln -s WORKING-DIR/django-trunk/django/bin/django-admin.py /usr/local/bin

(In the above line, change WORKING-DIR to match the full path to your new django-trunk directory.)

This simply lets you type django-admin.py from within any directory, rather than having to qualify the
command with the full path to the file.

On Windows systems, the same result can be achieved by copying the file
django-trunk/django/bin/django-admin.py to somewhere on your system path, for exam-
ple C:\Python24\Scripts.

You don’t have to run python setup.py install, because you’ve already carried out the equivalent actions in
steps 3 and 4.

When you want to update your copy of the Django source code, just run the command svn update from within the
django-trunk directory. When you do this, Subversion will automatically download any changes.

3.2 Models and databases

A model is the single, definitive source of data about your data. It contains the essential fields and behaviors of the
data you’re storing. Generally, each model maps to a single database table.

50 Chapter 3. Using Django

http://subversion.tigris.org/
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/sysdm_advancd_environmnt_addchange_variable.mspx

Django Documentation, Release 1.2.7

3.2.1 Models

A model is the single, definitive source of data about your data. It contains the essential fields and behaviors of the
data you’re storing. Generally, each model maps to a single database table.

The basics:

• Each model is a Python class that subclasses django.db.models.Model.

• Each attribute of the model represents a database field.

• With all of this, Django gives you an automatically-generated database-access API; see Making queries.

See Also:

A companion to this document is the official repository of model examples. (In the Django source distribution, these
examples are in the tests/modeltests directory.)

Quick example

This example model defines a Person, which has a first_name and last_name:

from django.db import models

class Person(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)

first_name and last_name are fields of the model. Each field is specified as a class attribute, and each attribute
maps to a database column.

The above Person model would create a database table like this:

CREATE TABLE myapp_person (
"id" serial NOT NULL PRIMARY KEY,
"first_name" varchar(30) NOT NULL,
"last_name" varchar(30) NOT NULL

);

Some technical notes:

• The name of the table, myapp_person, is automatically derived from some model metadata but can be over-
ridden. See Table names for more details..

• An id field is added automatically, but this behavior can be overridden. See Automatic primary key fields.

• The CREATE TABLE SQL in this example is formatted using PostgreSQL syntax, but it’s worth noting Django
uses SQL tailored to the database backend specified in your settings file.

Using models

Once you have defined your models, you need to tell Django you’re going to use those models. Do this by editing
your settings file and changing the INSTALLED_APPS setting to add the name of the module that contains your
models.py.

For example, if the models for your application live in the module mysite.myapp.models (the package structure
that is created for an application by the manage.py startapp script), INSTALLED_APPS should read, in part:

3.2. Models and databases 51

http://code.djangoproject.com/browser/django/trunk/tests/modeltests

Django Documentation, Release 1.2.7

INSTALLED_APPS = (
#...
’mysite.myapp’,
#...

)

When you add new apps to INSTALLED_APPS, be sure to run manage.py syncdb.

Fields

The most important part of a model – and the only required part of a model – is the list of database fields it defines.
Fields are specified by class attributes.

Example:

class Musician(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
instrument = models.CharField(max_length=100)

class Album(models.Model):
artist = models.ForeignKey(Musician)
name = models.CharField(max_length=100)
release_date = models.DateField()
num_stars = models.IntegerField()

Field types

Each field in your model should be an instance of the appropriate Field class. Django uses the field class types to
determine a few things:

• The database column type (e.g. INTEGER, VARCHAR).

• The widget to use in Django’s admin interface, if you care to use it (e.g. <input type="text">,
<select>).

• The minimal validation requirements, used in Django’s admin and in automatically-generated forms.

Django ships with dozens of built-in field types; you can find the complete list in the model field reference. You can
easily write your own fields if Django’s built-in ones don’t do the trick; see Writing custom model fields.

Field options

Each field takes a certain set of field-specific arguments (documented in the model field reference). For example,
CharField (and its subclasses) require a max_length argument which specifies the size of the VARCHAR database
field used to store the data.

There’s also a set of common arguments available to all field types. All are optional. They’re fully explained in the
reference, but here’s a quick summary of the most often-used ones:

null If True, Django will store empty values as NULL in the database. Default is False.

blank If True, the field is allowed to be blank. Default is False.

Note that this is different than null. null is purely database-related, whereas blank is validation-related. If
a field has blank=True, validation on Django’s admin site will allow entry of an empty value. If a field has
blank=False, the field will be required.

52 Chapter 3. Using Django

Django Documentation, Release 1.2.7

choices An iterable (e.g., a list or tuple) of 2-tuples to use as choices for this field. If this is given, Django’s admin
will use a select box instead of the standard text field and will limit choices to the choices given.

A choices list looks like this:

YEAR_IN_SCHOOL_CHOICES = (
(u’FR’, u’Freshman’),
(u’SO’, u’Sophomore’),
(u’JR’, u’Junior’),
(u’SR’, u’Senior’),
(u’GR’, u’Graduate’),

)

The first element in each tuple is the value that will be stored in the database, the second element will be
displayed by the admin interface, or in a ModelChoiceField. Given an instance of a model object, the display
value for a choices field can be accessed using the get_FOO_display method. For example:

from django.db import models

class Person(models.Model):
GENDER_CHOICES = (

(u’M’, u’Male’),
(u’F’, u’Female’),

)
name = models.CharField(max_length=60)
gender = models.CharField(max_length=2, choices=GENDER_CHOICES)

>>> p = Person(name="Fred Flinstone", gender="M")
>>> p.save()
>>> p.gender
u’M’
>>> p.get_gender_display()
u’Male’

default The default value for the field. This can be a value or a callable object. If callable it will be called every
time a new object is created.

help_text Extra “help” text to be displayed under the field on the object’s admin form. It’s useful for documenta-
tion even if your object doesn’t have an admin form.

primary_key If True, this field is the primary key for the model.

If you don’t specify primary_key=True for any fields in your model, Django will automatically add an
IntegerField to hold the primary key, so you don’t need to set primary_key=True on any of your
fields unless you want to override the default primary-key behavior. For more, see Automatic primary key fields.

unique If True, this field must be unique throughout the table.

Again, these are just short descriptions of the most common field options. Full details can be found in the common
model field option reference.

Automatic primary key fields

By default, Django gives each model the following field:

id = models.AutoField(primary_key=True)

This is an auto-incrementing primary key.

3.2. Models and databases 53

Django Documentation, Release 1.2.7

If you’d like to specify a custom primary key, just specify primary_key=True on one of your fields. If Django
sees you’ve explicitly set Field.primary_key, it won’t add the automatic id column.

Each model requires exactly one field to have primary_key=True.

Verbose field names

Each field type, except for ForeignKey, ManyToManyField and OneToOneField, takes an optional first
positional argument – a verbose name. If the verbose name isn’t given, Django will automatically create it using the
field’s attribute name, converting underscores to spaces.

In this example, the verbose name is "person’s first name":

first_name = models.CharField("person’s first name", max_length=30)

In this example, the verbose name is "first name":

first_name = models.CharField(max_length=30)

ForeignKey, ManyToManyField and OneToOneField require the first argument to be a model class, so use
the verbose_name keyword argument:

poll = models.ForeignKey(Poll, verbose_name="the related poll")
sites = models.ManyToManyField(Site, verbose_name="list of sites")
place = models.OneToOneField(Place, verbose_name="related place")

The convention is not to capitalize the first letter of the verbose_name. Django will automatically capitalize the
first letter where it needs to.

Relationships

Clearly, the power of relational databases lies in relating tables to each other. Django offers ways to define the three
most common types of database relationships: many-to-one, many-to-many and one-to-one.

Many-to-one relationships To define a many-to-one relationship, use django.db.models.ForeignKey.
You use it just like any other Field type: by including it as a class attribute of your model.

ForeignKey requires a positional argument: the class to which the model is related.

For example, if a Car model has a Manufacturer – that is, a Manufacturer makes multiple cars but each Car
only has one Manufacturer – use the following definitions:

class Manufacturer(models.Model):
...

class Car(models.Model):
manufacturer = models.ForeignKey(Manufacturer)
...

You can also create recursive relationships (an object with a many-to-one relationship to itself) and relationships to
models not yet defined; see the model field reference for details.

It’s suggested, but not required, that the name of a ForeignKey field (manufacturer in the example above) be
the name of the model, lowercase. You can, of course, call the field whatever you want. For example:

class Car(models.Model):
company_that_makes_it = models.ForeignKey(Manufacturer)
...

54 Chapter 3. Using Django

Django Documentation, Release 1.2.7

See Also:

ForeignKey fields accept a number of extra arguments which are explained in the model field reference. These
options help define how the relationship should work; all are optional.

For details on accessing backwards-related objects, see the Following relationships backward example.

For sample code, see the Many-to-one relationship model tests.

Many-to-many relationships To define a many-to-many relationship, use ManyToManyField. You use it just
like any other Field type: by including it as a class attribute of your model.

ManyToManyField requires a positional argument: the class to which the model is related.

For example, if a Pizza has multiple Topping objects – that is, a Topping can be on multiple pizzas and each
Pizza has multiple toppings – here’s how you’d represent that:

class Topping(models.Model):
...

class Pizza(models.Model):
...
toppings = models.ManyToManyField(Topping)

As with ForeignKey, you can also create recursive relationships (an object with a many-to-many relationship to
itself) and relationships to models not yet defined; see the model field reference for details.

It’s suggested, but not required, that the name of a ManyToManyField (toppings in the example above) be a
plural describing the set of related model objects.

It doesn’t matter which model gets the ManyToManyField, but you only need it in one of the models – not in both.

Generally, ManyToManyField instances should go in the object that’s going to be edited in the admin interface,
if you’re using Django’s admin. In the above example, toppings is in Pizza (rather than Topping having a
pizzas ManyToManyField) because it’s more natural to think about a pizza having toppings than a topping
being on multiple pizzas. The way it’s set up above, the Pizza admin form would let users select the toppings.

See Also:

See the Many-to-many relationship model example for a full example.

ManyToManyField fields also accept a number of extra arguments which are explained in the model field reference.
These options help define how the relationship should work; all are optional.

Extra fields on many-to-many relationships When you’re only dealing with simple many-to-many relationships
such as mixing and matching pizzas and toppings, a standard ManyToManyField is all you need. However, some-
times you may need to associate data with the relationship between two models.

For example, consider the case of an application tracking the musical groups which musicians belong to. There
is a many-to-many relationship between a person and the groups of which they are a member, so you could use a
ManyToManyField to represent this relationship. However, there is a lot of detail about the membership that you
might want to collect, such as the date at which the person joined the group.

For these situations, Django allows you to specify the model that will be used to govern the many-to-many rela-
tionship. You can then put extra fields on the intermediate model. The intermediate model is associated with the
ManyToManyField using the through argument to point to the model that will act as an intermediary. For our
musician example, the code would look something like this:

3.2. Models and databases 55

http://docs.djangoproject.com/en/dev/topics/db/queries/#backwards-related-objects
http://code.djangoproject.com/browser/django/trunk/tests/modeltests/many_to_one
http://code.djangoproject.com/browser/django/trunk/tests/modeltests/many_to_many/models.py

Django Documentation, Release 1.2.7

class Person(models.Model):
name = models.CharField(max_length=128)

def __unicode__(self):
return self.name

class Group(models.Model):
name = models.CharField(max_length=128)
members = models.ManyToManyField(Person, through=’Membership’)

def __unicode__(self):
return self.name

class Membership(models.Model):
person = models.ForeignKey(Person)
group = models.ForeignKey(Group)
date_joined = models.DateField()
invite_reason = models.CharField(max_length=64)

When you set up the intermediary model, you explicitly specify foreign keys to the models that are involved in the
ManyToMany relation. This explicit declaration defines how the two models are related.

There are a few restrictions on the intermediate model:

• Your intermediate model must contain one - and only one - foreign key to the target model (this would be
Person in our example). If you have more than one foreign key, a validation error will be raised.

• Your intermediate model must contain one - and only one - foreign key to the source model (this would be
Group in our example). If you have more than one foreign key, a validation error will be raised.

• The only exception to this is a model which has a many-to-many relationship to itself, through an intermediary
model. In this case, two foreign keys to the same model are permitted, but they will be treated as the two
(different) sides of the many-to-many relation.

• When defining a many-to-many relationship from a model to itself, using an intermediary model, you must use
symmetrical=False (see the model field reference).

Now that you have set up your ManyToManyField to use your intermediary model (Membership, in this case),
you’re ready to start creating some many-to-many relationships. You do this by creating instances of the intermediate
model:

>>> ringo = Person.objects.create(name="Ringo Starr")
>>> paul = Person.objects.create(name="Paul McCartney")
>>> beatles = Group.objects.create(name="The Beatles")
>>> m1 = Membership(person=ringo, group=beatles,
... date_joined=date(1962, 8, 16),
... invite_reason= "Needed a new drummer.")
>>> m1.save()
>>> beatles.members.all()
[<Person: Ringo Starr>]
>>> ringo.group_set.all()
[<Group: The Beatles>]
>>> m2 = Membership.objects.create(person=paul, group=beatles,
... date_joined=date(1960, 8, 1),
... invite_reason= "Wanted to form a band.")
>>> beatles.members.all()
[<Person: Ringo Starr>, <Person: Paul McCartney>]

Unlike normal many-to-many fields, you can’t use add, create, or assignment (i.e., beatles.members =
[...]) to create relationships:

56 Chapter 3. Using Django

Django Documentation, Release 1.2.7

THIS WILL NOT WORK
>>> beatles.members.add(john)
NEITHER WILL THIS
>>> beatles.members.create(name="George Harrison")
AND NEITHER WILL THIS
>>> beatles.members = [john, paul, ringo, george]

Why? You can’t just create a relationship between a Person and a Group - you need to specify all the detail for the
relationship required by the Membership model. The simple add, create and assignment calls don’t provide a
way to specify this extra detail. As a result, they are disabled for many-to-many relationships that use an intermediate
model. The only way to create this type of relationship is to create instances of the intermediate model.

The remove() method is disabled for similar reasons. However, the clear() method can be used to remove all
many-to-many relationships for an instance:

Beatles have broken up
>>> beatles.members.clear()

Once you have established the many-to-many relationships by creating instances of your intermediate model, you can
issue queries. Just as with normal many-to-many relationships, you can query using the attributes of the many-to-
many-related model:

Find all the groups with a member whose name starts with ’Paul’
>>> Group.objects.filter(members__name__startswith=’Paul’)
[<Group: The Beatles>]

As you are using an intermediate model, you can also query on its attributes:

Find all the members of the Beatles that joined after 1 Jan 1961
>>> Person.objects.filter(
... group__name=’The Beatles’,
... membership__date_joined__gt=date(1961,1,1))
[<Person: Ringo Starr]

One-to-one relationships To define a one-to-one relationship, use OneToOneField. You use it just like any other
Field type: by including it as a class attribute of your model.

This is most useful on the primary key of an object when that object “extends” another object in some way.

OneToOneField requires a positional argument: the class to which the model is related.

For example, if you were building a database of “places”, you would build pretty standard stuff such as address, phone
number, etc. in the database. Then, if you wanted to build a database of restaurants on top of the places, instead of
repeating yourself and replicating those fields in the Restaurant model, you could make Restaurant have a
OneToOneField to Place (because a restaurant “is a” place; in fact, to handle this you’d typically use inheritance,
which involves an implicit one-to-one relation).

As with ForeignKey, a recursive relationship can be defined and references to as-yet undefined models can be
made; see the model field reference for details.

See Also:

See the One-to-one relationship model example for a full example.

OneToOneField fields also accept one optional argument described in the model field reference.

OneToOneField classes used to automatically become the primary key on a model. This is no longer true (although
you can manually pass in the primary_key argument if you like). Thus, it’s now possible to have multiple fields of
type OneToOneField on a single model.

3.2. Models and databases 57

http://code.djangoproject.com/browser/django/trunk/tests/modeltests/one_to_one/models.py

Django Documentation, Release 1.2.7

Models across files

It’s perfectly OK to relate a model to one from another app. To do this, import the related model at the top of the
model that holds your model. Then, just refer to the other model class wherever needed. For example:

from geography.models import ZipCode

class Restaurant(models.Model):
...
zip_code = models.ForeignKey(ZipCode)

Field name restrictions

Django places only two restrictions on model field names:

1. A field name cannot be a Python reserved word, because that would result in a Python syntax error. For example:

class Example(models.Model):
pass = models.IntegerField() # ’pass’ is a reserved word!

2. A field name cannot contain more than one underscore in a row, due to the way Django’s query lookup syntax
works. For example:

class Example(models.Model):
foo__bar = models.IntegerField() # ’foo__bar’ has two underscores!

These limitations can be worked around, though, because your field name doesn’t necessarily have to match your
database column name. See the db_column option.

SQL reserved words, such as join, where or select, are allowed as model field names, because Django escapes all
database table names and column names in every underlying SQL query. It uses the quoting syntax of your particular
database engine.

Custom field types

If one of the existing model fields cannot be used to fit your purposes, or if you wish to take advantage of some less
common database column types, you can create your own field class. Full coverage of creating your own fields is
provided in Writing custom model fields.

Meta options

Give your model metadata by using an inner class Meta, like so:

class Ox(models.Model):
horn_length = models.IntegerField()

class Meta:
ordering = ["horn_length"]
verbose_name_plural = "oxen"

Model metadata is “anything that’s not a field”, such as ordering options (ordering), database table name
(db_table), or human-readable singular and plural names (verbose_name and verbose_name_plural).
None are required, and adding class Meta to a model is completely optional.

A complete list of all possible Meta options can be found in the model option reference.

58 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Model methods

Define custom methods on a model to add custom “row-level” functionality to your objects. Whereas Manager
methods are intended to do “table-wide” things, model methods should act on a particular model instance.

This is a valuable technique for keeping business logic in one place – the model.

For example, this model has a few custom methods:

from django.contrib.localflavor.us.models import USStateField

class Person(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
birth_date = models.DateField()
address = models.CharField(max_length=100)
city = models.CharField(max_length=50)
state = USStateField() # Yes, this is America-centric...

def baby_boomer_status(self):
"Returns the person’s baby-boomer status."
import datetime
if datetime.date(1945, 8, 1) <= self.birth_date <= datetime.date(1964, 12, 31):

return "Baby boomer"
if self.birth_date < datetime.date(1945, 8, 1):

return "Pre-boomer"
return "Post-boomer"

def is_midwestern(self):
"Returns True if this person is from the Midwest."
return self.state in (’IL’, ’WI’, ’MI’, ’IN’, ’OH’, ’IA’, ’MO’)

def _get_full_name(self):
"Returns the person’s full name."
return ’%s %s’ % (self.first_name, self.last_name)

full_name = property(_get_full_name)

The last method in this example is a property. Read more about properties.

The model instance reference has a complete list of methods automatically given to each model. You can override
most of these – see overriding predefined model methods, below – but there are a couple that you’ll almost always
want to define:

__unicode__() A Python “magic method” that returns a unicode “representation” of any object. This is what
Python and Django will use whenever a model instance needs to be coerced and displayed as a plain string.
Most notably, this happens when you display an object in an interactive console or in the admin.

You’ll always want to define this method; the default isn’t very helpful at all.

get_absolute_url() This tells Django how to calculate the URL for an object. Django uses this in its admin
interface, and any time it needs to figure out a URL for an object.

Any object that has a URL that uniquely identifies it should define this method.

Overriding predefined model methods

There’s another set of model methods that encapsulate a bunch of database behavior that you’ll want to customize. In
particular you’ll often want to change the way save() and delete() work.

You’re free to override these methods (and any other model method) to alter behavior.

3.2. Models and databases 59

http://www.python.org/download/releases/2.2/descrintro/#property

Django Documentation, Release 1.2.7

A classic use-case for overriding the built-in methods is if you want something to happen whenever you save an object.
For example (see save() for documentation of the parameters it accepts):

class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField()

def save(self, *args, **kwargs):
do_something()
super(Blog, self).save(*args, **kwargs) # Call the "real" save() method.
do_something_else()

You can also prevent saving:

class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField()

def save(self, *args, **kwargs):
if self.name == "Yoko Ono’s blog":

return # Yoko shall never have her own blog!
else:

super(Blog, self).save(*args, **kwargs) # Call the "real" save() method.

It’s important to remember to call the superclass method – that’s that super(Blog, self).save(*args,

**kwargs) business – to ensure that the object still gets saved into the database. If you forget to call the super-
class method, the default behavior won’t happen and the database won’t get touched.

It’s also important that you pass through the arguments that can be passed to the model method – that’s what the
*args, **kwargs bit does. Django will, from time to time, extend the capabilities of built-in model methods,
adding new arguments. If you use *args, **kwargs in your method definitions, you are guaranteed that your
code will automatically support those arguments when they are added.

Overriding Delete

Note that the delete()method for an object is not necessarily called when deleting objects in bulk using a QuerySet.
To ensure customized delete logic gets executed, you can use pre_delete and/or post_delete signals.

Executing custom SQL

Another common pattern is writing custom SQL statements in model methods and module-level methods. For more
details on using raw SQL, see the documentation on using raw SQL.

Model inheritance

Model inheritance in Django works almost identically to the way normal class inheritance works in Python. The only
decision you have to make is whether you want the parent models to be models in their own right (with their own
database tables), or if the parents are just holders of common information that will only be visible through the child
models.

There are three styles of inheritance that are possible in Django.

1. Often, you will just want to use the parent class to hold information that you don’t want to have to type out for
each child model. This class isn’t going to ever be used in isolation, so Abstract base classes are what you’re
after.

60 Chapter 3. Using Django

Django Documentation, Release 1.2.7

2. If you’re subclassing an existing model (perhaps something from another application entirely) and want each
model to have its own database table, Multi-table inheritance is the way to go.

3. Finally, if you only want to modify the Python-level behaviour of a model, without changing the models fields
in any way, you can use Proxy models.

Abstract base classes

Abstract base classes are useful when you want to put some common information into a number of other models. You
write your base class and put abstract=True in the Meta class. This model will then not be used to create any
database table. Instead, when it is used as a base class for other models, its fields will be added to those of the child
class. It is an error to have fields in the abstract base class with the same name as those in the child (and Django will
raise an exception).

An example:

class CommonInfo(models.Model):
name = models.CharField(max_length=100)
age = models.PositiveIntegerField()

class Meta:
abstract = True

class Student(CommonInfo):
home_group = models.CharField(max_length=5)

The Student model will have three fields: name, age and home_group. The CommonInfo model cannot be
used as a normal Django model, since it is an abstract base class. It does not generate a database table or have a
manager, and cannot be instantiated or saved directly.

For many uses, this type of model inheritance will be exactly what you want. It provides a way to factor out common
information at the Python level, whilst still only creating one database table per child model at the database level.

Meta inheritance When an abstract base class is created, Django makes any Meta inner class you declared in the
base class available as an attribute. If a child class does not declare its own Meta class, it will inherit the parent’s Meta.
If the child wants to extend the parent’s Meta class, it can subclass it. For example:

class CommonInfo(models.Model):
...
class Meta:

abstract = True
ordering = [’name’]

class Student(CommonInfo):
...
class Meta(CommonInfo.Meta):

db_table = ’student_info’

Django does make one adjustment to the Meta class of an abstract base class: before installing the Meta attribute,
it sets abstract=False. This means that children of abstract base classes don’t automatically become abstract
classes themselves. Of course, you can make an abstract base class that inherits from another abstract base class. You
just need to remember to explicitly set abstract=True each time.

Some attributes won’t make sense to include in the Meta class of an abstract base class. For example, including
db_table would mean that all the child classes (the ones that don’t specify their own Meta) would use the same
database table, which is almost certainly not what you want.

3.2. Models and databases 61

Django Documentation, Release 1.2.7

Be careful with related_name If you are using the related_name attribute on a ForeignKey or
ManyToManyField, you must always specify a unique reverse name for the field. This would normally cause a
problem in abstract base classes, since the fields on this class are included into each of the child classes, with exactly
the same values for the attributes (including related_name) each time. Changed in version 1.2: Please, see the
release notes To work around this problem, when you are using related_name in an abstract base class (only), part
of the name should contain ’%(app_label)s’ and ’%(class)s’.

• ’%(class)s’ is replaced by the lower-cased name of the child class that the field is used in.

• ’%(app_label)s’ is replaced by the lower-cased name of the app the child class is contained within. Each
installed application name must be unique and the model class names within each app must also be unique,
therefore the resulting name will end up being different.

For example, given an app common/models.py:

class Base(models.Model):
m2m = models.ManyToManyField(OtherModel, related_name="%(app_label)s_%(class)s_related")

class Meta:
abstract = True

class ChildA(Base):
pass

class ChildB(Base):
pass

Along with another app rare/models.py:

from common.models import Base

class ChildB(Base):
pass

The reverse name of the commmon.ChildA.m2m field will be common_childa_related, whilst the reverse
name of the common.ChildB.m2m field will be common_childb_related, and finally the reverse name of the
rare.ChildB.m2m field will be rare_childb_related. It is up to you how you use the ’%(class)s’ and
’%(app_label)s portion to construct your related name, but if you forget to use it, Django will raise errors when
you validate your models (or run syncdb).

If you don’t specify a related_name attribute for a field in an abstract base class, the default reverse name will be
the name of the child class followed by ’_set’, just as it normally would be if you’d declared the field directly on
the child class. For example, in the above code, if the related_name attribute was omitted, the reverse name for
the m2m field would be childa_set in the ChildA case and childb_set for the ChildB field.

Multi-table inheritance

The second type of model inheritance supported by Django is when each model in the hierarchy is a model all by
itself. Each model corresponds to its own database table and can be queried and created individually. The inher-
itance relationship introduces links between the child model and each of its parents (via an automatically-created
OneToOneField). For example:

class Place(models.Model):
name = models.CharField(max_length=50)
address = models.CharField(max_length=80)

class Restaurant(Place):

62 Chapter 3. Using Django

Django Documentation, Release 1.2.7

serves_hot_dogs = models.BooleanField()
serves_pizza = models.BooleanField()

All of the fields of Place will also be available in Restaurant, although the data will reside in a different database
table. So these are both possible:

>>> Place.objects.filter(name="Bob’s Cafe")
>>> Restaurant.objects.filter(name="Bob’s Cafe")

If you have a Place that is also a Restaurant, you can get from the Place object to the Restaurant object
by using the lower-case version of the model name:

>>> p = Place.objects.get(id=12)
If p is a Restaurant object, this will give the child class:
>>> p.restaurant
<Restaurant: ...>

However, if p in the above example was not a Restaurant (it had been created directly as a Place object or was
the parent of some other class), referring to p.restaurant would raise a Restaurant.DoesNotExist exception.

Meta and multi-table inheritance In the multi-table inheritance situation, it doesn’t make sense for a child class to
inherit from its parent’s Meta class. All the Meta options have already been applied to the parent class and applying
them again would normally only lead to contradictory behavior (this is in contrast with the abstract base class case,
where the base class doesn’t exist in its own right).

So a child model does not have access to its parent’s Meta class. However, there are a few limited cases where the
child inherits behavior from the parent: if the child does not specify an ordering attribute or a get_latest_by
attribute, it will inherit these from its parent.

If the parent has an ordering and you don’t want the child to have any natural ordering, you can explicitly disable it:

class ChildModel(ParentModel):
...
class Meta:

Remove parent’s ordering effect
ordering = []

Inheritance and reverse relations Because multi-table inheritance uses an implicit OneToOneField to link the
child and the parent, it’s possible to move from the parent down to the child, as in the above example. However, this
uses up the name that is the default related_name value for ForeignKey and ManyToManyField relations.
If you are putting those types of relations on a subclass of another model, you must specify the related_name
attribute on each such field. If you forget, Django will raise an error when you run validate or syncdb.

For example, using the above Place class again, let’s create another subclass with a ManyToManyField:

class Supplier(Place):
Must specify related_name on all relations.
customers = models.ManyToManyField(Restaurant, related_name=’provider’)

Specifying the parent link field As mentioned, Django will automatically create a OneToOneField linking your
child class back any non-abstract parent models. If you want to control the name of the attribute linking back to the
parent, you can create your own OneToOneField and set parent_link=True to indicate that your field is the
link back to the parent class.

3.2. Models and databases 63

Django Documentation, Release 1.2.7

Proxy models

New in version 1.1: Please, see the release notes When using multi-table inheritance, a new database table is created
for each subclass of a model. This is usually the desired behavior, since the subclass needs a place to store any
additional data fields that are not present on the base class. Sometimes, however, you only want to change the Python
behavior of a model – perhaps to change the default manager, or add a new method.

This is what proxy model inheritance is for: creating a proxy for the original model. You can create, delete and update
instances of the proxy model and all the data will be saved as if you were using the original (non-proxied) model. The
difference is that you can change things like the default model ordering or the default manager in the proxy, without
having to alter the original.

Proxy models are declared like normal models. You tell Django that it’s a proxy model by setting the proxy attribute
of the Meta class to True.

For example, suppose you want to add a method to the standard User model that will be used in your templates. You
can do it like this:

from django.contrib.auth.models import User

class MyUser(User):
class Meta:

proxy = True

def do_something(self):
...

The MyUser class operates on the same database table as its parent User class. In particular, any new instances of
User will also be accessible through MyUser, and vice-versa:

>>> u = User.objects.create(username="foobar")
>>> MyUser.objects.get(username="foobar")
<MyUser: foobar>

You could also use a proxy model to define a different default ordering on a model. The standard User model has no
ordering defined on it (intentionally; sorting is expensive and we don’t want to do it all the time when we fetch users).
You might want to regularly order by the username attribute when you use the proxy. This is easy:

class OrderedUser(User):
class Meta:

ordering = ["username"]
proxy = True

Now normal User queries will be unordered and OrderedUser queries will be ordered by username.

QuerySets still return the model that was requested There is no way to have Django return, say, a MyUser
object whenever you query for User objects. A queryset for User objects will return those types of objects. The
whole point of proxy objects is that code relying on the original User will use those and your own code can use the
extensions you included (that no other code is relying on anyway). It is not a way to replace the User (or any other)
model everywhere with something of your own creation.

Base class restrictions A proxy model must inherit from exactly one non-abstract model class. You can’t inherit
from multiple non-abstract models as the proxy model doesn’t provide any connection between the rows in the different
database tables. A proxy model can inherit from any number of abstract model classes, providing they do not define
any model fields.

64 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Proxy models inherit any Meta options that they don’t define from their non-abstract model parent (the model they
are proxying for).

Proxy model managers If you don’t specify any model managers on a proxy model, it inherits the managers from
its model parents. If you define a manager on the proxy model, it will become the default, although any managers
defined on the parent classes will still be available.

Continuing our example from above, you could change the default manager used when you query the User model
like this:

class NewManager(models.Manager):
...

class MyUser(User):
objects = NewManager()

class Meta:
proxy = True

If you wanted to add a new manager to the Proxy, without replacing the existing default, you can use the techniques
described in the custom manager documentation: create a base class containing the new managers and inherit that
after the primary base class:

Create an abstract class for the new manager.
class ExtraManagers(models.Model):

secondary = NewManager()

class Meta:
abstract = True

class MyUser(User, ExtraManagers):
class Meta:

proxy = True

You probably won’t need to do this very often, but, when you do, it’s possible.

Differences between proxy inheritance and unmanaged models Proxy model inheritance might look fairly similar
to creating an unmanaged model, using the managed attribute on a model’s Meta class. The two alternatives are not
quite the same and it’s worth considering which one you should use.

One difference is that you can (and, in fact, must unless you want an empty model) specify model fields on models
with Meta.managed=False. You could, with careful setting of Meta.db_table create an unmanaged model
that shadowed an existing model and add Python methods to it. However, that would be very repetitive and fragile as
you need to keep both copies synchronized if you make any changes.

The other difference that is more important for proxy models, is how model managers are handled. Proxy models are
intended to behave exactly like the model they are proxying for. So they inherit the parent model’s managers, including
the default manager. In the normal multi-table model inheritance case, children do not inherit managers from their
parents as the custom managers aren’t always appropriate when extra fields are involved. The manager documentation
has more details about this latter case.

When these two features were implemented, attempts were made to squash them into a single option. It turned out that
interactions with inheritance, in general, and managers, in particular, made the API very complicated and potentially
difficult to understand and use. It turned out that two options were needed in any case, so the current separation arose.

So, the general rules are:

3.2. Models and databases 65

Django Documentation, Release 1.2.7

1. If you are mirroring an existing model or database table and don’t want all the original database table columns,
use Meta.managed=False. That option is normally useful for modeling database views and tables not under
the control of Django.

2. If you are wanting to change the Python-only behavior of a model, but keep all the same fields as in the original,
use Meta.proxy=True. This sets things up so that the proxy model is an exact copy of the storage structure
of the original model when data is saved.

Multiple inheritance

Just as with Python’s subclassing, it’s possible for a Django model to inherit from multiple parent models. Keep in
mind that normal Python name resolution rules apply. The first base class that a particular name (e.g. Meta) appears
in will be the one that is used; for example, this means that if multiple parents contain a Meta class, only the first one
is going to be used, and all others will be ignored.

Generally, you won’t need to inherit from multiple parents. The main use-case where this is useful is for “mix-in”
classes: adding a particular extra field or method to every class that inherits the mix-in. Try to keep your inheritance
hierarchies as simple and straightforward as possible so that you won’t have to struggle to work out where a particular
piece of information is coming from.

Field name “hiding” is not permitted

In normal Python class inheritance, it is permissible for a child class to override any attribute from the parent class. In
Django, this is not permitted for attributes that are Field instances (at least, not at the moment). If a base class has
a field called author, you cannot create another model field called author in any class that inherits from that base
class.

Overriding fields in a parent model leads to difficulties in areas such as initialising new instances (specifying which
field is being initialized in Model.__init__) and serialization. These are features which normal Python class
inheritance doesn’t have to deal with in quite the same way, so the difference between Django model inheritance and
Python class inheritance isn’t arbitrary.

This restriction only applies to attributes which are Field instances. Normal Python attributes can be overridden if
you wish. It also only applies to the name of the attribute as Python sees it: if you are manually specifying the database
column name, you can have the same column name appearing in both a child and an ancestor model for multi-table
inheritance (they are columns in two different database tables).

Django will raise a FieldError if you override any model field in any ancestor model.

3.2.2 Making queries

Once you’ve created your data models, Django automatically gives you a database-abstraction API that lets you create,
retrieve, update and delete objects. This document explains how to use this API. Refer to the data model reference for
full details of all the various model lookup options.

Throughout this guide (and in the reference), we’ll refer to the following models, which comprise a Weblog applica-
tion:

class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField()

def __unicode__(self):
return self.name

66 Chapter 3. Using Django

Django Documentation, Release 1.2.7

class Author(models.Model):
name = models.CharField(max_length=50)
email = models.EmailField()

def __unicode__(self):
return self.name

class Entry(models.Model):
blog = models.ForeignKey(Blog)
headline = models.CharField(max_length=255)
body_text = models.TextField()
pub_date = models.DateTimeField()
authors = models.ManyToManyField(Author)
n_comments = models.IntegerField()
n_pingbacks = models.IntegerField()
rating = models.IntegerField()

def __unicode__(self):
return self.headline

Creating objects

To represent database-table data in Python objects, Django uses an intuitive system: A model class represents a
database table, and an instance of that class represents a particular record in the database table.

To create an object, instantiate it using keyword arguments to the model class, then call save() to save it to the
database.

You import the model class from wherever it lives on the Python path, as you may expect. (We point this out here
because previous Django versions required funky model importing.)

Assuming models live in a file mysite/blog/models.py, here’s an example:

>>> from blog.models import Blog
>>> b = Blog(name=’Beatles Blog’, tagline=’All the latest Beatles news.’)
>>> b.save()

This performs an INSERT SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call
save().

The save() method has no return value.

See Also:

save() takes a number of advanced options not described here. See the documentation for save() for complete
details.

To create an object and save it all in one step see the ‘create()‘ method.

Saving changes to objects

To save changes to an object that’s already in the database, use save().

Given a Blog instance b5 that has already been saved to the database, this example changes its name and updates its
record in the database:

>> b5.name = ’New name’
>> b5.save()

3.2. Models and databases 67

Django Documentation, Release 1.2.7

This performs an UPDATE SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call
save().

Saving ForeignKey and ManyToManyField fields

Updating a ForeignKey field works exactly the same way as saving a normal field; simply assign an object of the
right type to the field in question. This example updates the blog attribute of an Entry instance entry:

>>> from blog.models import Entry
>>> entry = Entry.objects.get(pk=1)
>>> cheese_blog = Blog.objects.get(name="Cheddar Talk")
>>> entry.blog = cheese_blog
>>> entry.save()

Updating a ManyToManyField works a little differently; use the add() method on the field to add a record to the
relation. This example adds the Author instance joe to the entry object:

>>> from blog.models import Author
>>> joe = Author.objects.create(name="Joe")
>>> entry.authors.add(joe)

Django will complain if you try to assign or add an object of the wrong type.

Retrieving objects

To retrieve objects from your database, you construct a QuerySet via a Manager on your model class.

A QuerySet represents a collection of objects from your database. It can have zero, one or many filters – criteria that
narrow down the collection based on given parameters. In SQL terms, a QuerySet equates to a SELECT statement,
and a filter is a limiting clause such as WHERE or LIMIT.

You get a QuerySet by using your model’s Manager. Each model has at least one Manager, and it’s called
objects by default. Access it directly via the model class, like so:

>>> Blog.objects
<django.db.models.manager.Manager object at ...>
>>> b = Blog(name=’Foo’, tagline=’Bar’)
>>> b.objects
Traceback:

...
AttributeError: "Manager isn’t accessible via Blog instances."

Note: Managers are accessible only via model classes, rather than from model instances, to enforce a separation
between “table-level” operations and “record-level” operations.

The Manager is the main source of QuerySets for a model. It acts as a “root” QuerySet that describes all objects
in the model’s database table. For example, Blog.objects is the initial QuerySet that contains all Blog objects
in the database.

Retrieving all objects

The simplest way to retrieve objects from a table is to get all of them. To do this, use the all() method on a
Manager:

68 Chapter 3. Using Django

Django Documentation, Release 1.2.7

>>> all_entries = Entry.objects.all()

The all() method returns a QuerySet of all the objects in the database.

(If Entry.objects is a QuerySet, why can’t we just do Entry.objects? That’s because Entry.objects,
the root QuerySet, is a special case that cannot be evaluated. The all() method returns a QuerySet that can be
evaluated.)

Retrieving specific objects with filters

The root QuerySet provided by the Manager describes all objects in the database table. Usually, though, you’ll
need to select only a subset of the complete set of objects.

To create such a subset, you refine the initial QuerySet, adding filter conditions. The two most common ways to
refine a QuerySet are:

filter(**kwargs) Returns a new QuerySet containing objects that match the given lookup parameters.

exclude(**kwargs) Returns a new QuerySet containing objects that do not match the given lookup parame-
ters.

The lookup parameters (**kwargs in the above function definitions) should be in the format described in Field
lookups below.

For example, to get a QuerySet of blog entries from the year 2006, use filter() like so:

Entry.objects.filter(pub_date__year=2006)

We don’t have to add an all() – Entry.objects.all().filter(...). That would still work, but you only
need all() when you want all objects from the root QuerySet.

Chaining filters The result of refining a QuerySet is itself a QuerySet, so it’s possible to chain refinements
together. For example:

>>> Entry.objects.filter(
... headline__startswith=’What’
...).exclude(
... pub_date__gte=datetime.now()
...).filter(
... pub_date__gte=datetime(2005, 1, 1)
...)

This takes the initial QuerySet of all entries in the database, adds a filter, then an exclusion, then another filter. The
final result is a QuerySet containing all entries with a headline that starts with “What”, that were published between
January 1, 2005, and the current day.

Filtered QuerySets are unique Each time you refine a QuerySet, you get a brand-new QuerySet that is in no
way bound to the previous QuerySet. Each refinement creates a separate and distinct QuerySet that can be stored,
used and reused.

Example:

>> q1 = Entry.objects.filter(headline__startswith="What")
>> q2 = q1.exclude(pub_date__gte=datetime.now())
>> q3 = q1.filter(pub_date__gte=datetime.now())

3.2. Models and databases 69

Django Documentation, Release 1.2.7

These three QuerySets are separate. The first is a base QuerySet containing all entries that contain a headline
starting with “What”. The second is a subset of the first, with an additional criteria that excludes records whose
pub_date is greater than now. The third is a subset of the first, with an additional criteria that selects only the
records whose pub_date is greater than now. The initial QuerySet (q1) is unaffected by the refinement process.

QuerySets are lazy QuerySets are lazy – the act of creating a QuerySet doesn’t involve any database activity.
You can stack filters together all day long, and Django won’t actually run the query until the QuerySet is evaluated.
Take a look at this example:

>>> q = Entry.objects.filter(headline__startswith="What")
>>> q = q.filter(pub_date__lte=datetime.now())
>>> q = q.exclude(body_text__icontains="food")
>>> print q

Though this looks like three database hits, in fact it hits the database only once, at the last line (print q). In general,
the results of a QuerySet aren’t fetched from the database until you “ask” for them. When you do, the QuerySet
is evaluated by accessing the database. For more details on exactly when evaluation takes place, see When QuerySets
are evaluated.

Retrieving a single object with get

.filter() will always give you a QuerySet, even if only a single object matches the query - in this case, it will
be a QuerySet containing a single element.

If you know there is only one object that matches your query, you can use the get() method on a Manager which
returns the object directly:

>>> one_entry = Entry.objects.get(pk=1)

You can use any query expression with get(), just like with filter() - again, see Field lookups below.

Note that there is a difference between using .get(), and using .filter() with a slice of [0]. If there are no
results that match the query, .get() will raise a DoesNotExist exception. This exception is an attribute of the
model class that the query is being performed on - so in the code above, if there is no Entry object with a primary
key of 1, Django will raise Entry.DoesNotExist.

Similarly, Django will complain if more than one item matches the get() query. In this case, it will raise
MultipleObjectsReturned, which again is an attribute of the model class itself.

Other QuerySet methods

Most of the time you’ll use all(), get(), filter() and exclude() when you need to look up objects from
the database. However, that’s far from all there is; see the QuerySet API Reference for a complete list of all the various
QuerySet methods.

Limiting QuerySets

Use a subset of Python’s array-slicing syntax to limit your QuerySet to a certain number of results. This is the
equivalent of SQL’s LIMIT and OFFSET clauses.

For example, this returns the first 5 objects (LIMIT 5):

>>> Entry.objects.all()[:5]

70 Chapter 3. Using Django

Django Documentation, Release 1.2.7

This returns the sixth through tenth objects (OFFSET 5 LIMIT 5):

>>> Entry.objects.all()[5:10]

Negative indexing (i.e. Entry.objects.all()[-1]) is not supported.

Generally, slicing a QuerySet returns a new QuerySet – it doesn’t evaluate the query. An exception is if you use
the “step” parameter of Python slice syntax. For example, this would actually execute the query in order to return a
list of every second object of the first 10:

>>> Entry.objects.all()[:10:2]

To retrieve a single object rather than a list (e.g. SELECT foo FROM bar LIMIT 1), use a simple index instead
of a slice. For example, this returns the first Entry in the database, after ordering entries alphabetically by headline:

>>> Entry.objects.order_by(’headline’)[0]

This is roughly equivalent to:

>>> Entry.objects.order_by(’headline’)[0:1].get()

Note, however, that the first of these will raise IndexError while the second will raise DoesNotExist if no
objects match the given criteria. See get() for more details.

Field lookups

Field lookups are how you specify the meat of an SQL WHERE clause. They’re specified as keyword arguments to the
QuerySet methods filter(), exclude() and get().

Basic lookups keyword arguments take the form field__lookuptype=value. (That’s a double-underscore).
For example:

>>> Entry.objects.filter(pub_date__lte=’2006-01-01’)

translates (roughly) into the following SQL:

SELECT * FROM blog_entry WHERE pub_date <= ’2006-01-01’;

How this is possible

Python has the ability to define functions that accept arbitrary name-value arguments whose names and values are
evaluated at runtime. For more information, see Keyword Arguments in the official Python tutorial.

If you pass an invalid keyword argument, a lookup function will raise TypeError.

The database API supports about two dozen lookup types; a complete reference can be found in the field lookup
reference. To give you a taste of what’s available, here’s some of the more common lookups you’ll probably use:

exact An “exact” match. For example:

>>> Entry.objects.get(headline__exact="Man bites dog")

Would generate SQL along these lines:

SELECT ... WHERE headline = ’Man bites dog’;

If you don’t provide a lookup type – that is, if your keyword argument doesn’t contain a double underscore –
the lookup type is assumed to be exact.

For example, the following two statements are equivalent:

3.2. Models and databases 71

http://docs.python.org/tutorial/controlflow.html#keyword-arguments

Django Documentation, Release 1.2.7

>>> Blog.objects.get(id__exact=14) # Explicit form
>>> Blog.objects.get(id=14) # __exact is implied

This is for convenience, because exact lookups are the common case.

iexact A case-insensitive match. So, the query:

>>> Blog.objects.get(name__iexact="beatles blog")

Would match a Blog titled “Beatles Blog”, “beatles blog”, or even “BeAtlES blOG”.

contains Case-sensitive containment test. For example:

Entry.objects.get(headline__contains=’Lennon’)

Roughly translates to this SQL:

SELECT ... WHERE headline LIKE ’%Lennon%’;

Note this will match the headline ’Today Lennon honored’ but not ’today lennon honored’.

There’s also a case-insensitive version, icontains.

startswith, endswith Starts-with and ends-with search, respectively. There are also case-insensitive versions
called istartswith and iendswith.

Again, this only scratches the surface. A complete reference can be found in the field lookup reference.

Lookups that span relationships

Django offers a powerful and intuitive way to “follow” relationships in lookups, taking care of the SQL JOINs for
you automatically, behind the scenes. To span a relationship, just use the field name of related fields across models,
separated by double underscores, until you get to the field you want.

This example retrieves all Entry objects with a Blog whose name is ’Beatles Blog’:

>>> Entry.objects.filter(blog__name__exact=’Beatles Blog’)

This spanning can be as deep as you’d like.

It works backwards, too. To refer to a “reverse” relationship, just use the lowercase name of the model.

This example retrieves all Blog objects which have at least one Entry whose headline contains ’Lennon’:

>>> Blog.objects.filter(entry__headline__contains=’Lennon’)

If you are filtering across multiple relationships and one of the intermediate models doesn’t have a value that meets
the filter condition, Django will treat it as if there is an empty (all values are NULL), but valid, object there. All this
means is that no error will be raised. For example, in this filter:

Blog.objects.filter(entry__authors__name=’Lennon’)

(if there was a related Author model), if there was no author associated with an entry, it would be treated as if
there was also no name attached, rather than raising an error because of the missing author. Usually this is exactly
what you want to have happen. The only case where it might be confusing is if you are using isnull. Thus:

Blog.objects.filter(entry__authors__name__isnull=True)

will return Blog objects that have an empty name on the author and also those which have an empty author on
the entry. If you don’t want those latter objects, you could write:

72 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Blog.objects.filter(entry__authors__isnull=False,
entry__authors__name__isnull=True)

Spanning multi-valued relationships When you are filtering an object based on a ManyToManyField or a re-
verse ForeignKey, there are two different sorts of filter you may be interested in. Consider the Blog/Entry
relationship (Blog to Entry is a one-to-many relation). We might be interested in finding blogs that have an entry
which has both “Lennon” in the headline and was published in 2008. Or we might want to find blogs that have an
entry with “Lennon” in the headline as well as an entry that was published in 2008. Since there are multiple entries
associated with a single Blog, both of these queries are possible and make sense in some situations.

The same type of situation arises with a ManyToManyField. For example, if an Entry has a ManyToManyField
called tags, we might want to find entries linked to tags called “music” and “bands” or we might want an entry that
contains a tag with a name of “music” and a status of “public”.

To handle both of these situations, Django has a consistent way of processing filter() and exclude() calls. Ev-
erything inside a single filter() call is applied simultaneously to filter out items matching all those requirements.
Successive filter() calls further restrict the set of objects, but for multi-valued relations, they apply to any object
linked to the primary model, not necessarily those objects that were selected by an earlier filter() call.

That may sound a bit confusing, so hopefully an example will clarify. To select all blogs that contain entries with
both “Lennon” in the headline and that were published in 2008 (the same entry satisfying both conditions), we would
write:

Blog.objects.filter(entry__headline__contains=’Lennon’,
entry__pub_date__year=2008)

To select all blogs that contain an entry with “Lennon” in the headline as well as an entry that was published in 2008,
we would write:

Blog.objects.filter(entry__headline__contains=’Lennon’).filter(
entry__pub_date__year=2008)

In this second example, the first filter restricted the queryset to all those blogs linked to that particular type of entry.
The second filter restricted the set of blogs further to those that are also linked to the second type of entry. The entries
select by the second filter may or may not be the same as the entries in the first filter. We are filtering the Blog items
with each filter statement, not the Entry items.

All of this behavior also applies to exclude(): all the conditions in a single exclude() statement apply to a single
instance (if those conditions are talking about the same multi-valued relation). Conditions in subsequent filter()
or exclude() calls that refer to the same relation may end up filtering on different linked objects.

Filters can reference fields on the model

New in version 1.1: Please, see the release notes In the examples given so far, we have constructed filters that compare
the value of a model field with a constant. But what if you want to compare the value of a model field with another
field on the same model?

Django provides the F() object to allow such comparisons. Instances of F() act as a reference to a model field within
a query. These references can then be used in query filters to compare the values of two different fields on the same
model instance.

For example, to find a list of all blog entries that have had more comments than pingbacks, we construct an F() object
to reference the comment count, and use that F() object in the query:

>>> from django.db.models import F
>>> Entry.objects.filter(n_comments__gt=F(’n_pingbacks’))

3.2. Models and databases 73

Django Documentation, Release 1.2.7

Django supports the use of addition, subtraction, multiplication, division and modulo arithmetic with F() objects,
both with constants and with other F() objects. To find all the blog entries with more than twice as many comments
as pingbacks, we modify the query:

>>> Entry.objects.filter(n_comments__gt=F(’n_pingbacks’) * 2)

To find all the entries where the rating of the entry is less than the sum of the pingback count and comment count, we
would issue the query:

>>> Entry.objects.filter(rating__lt=F(’n_comments’) + F(’n_pingbacks’))

You can also use the double underscore notation to span relationships in an F() object. An F() object with a double
underscore will introduce any joins needed to access the related object. For example, to retrieve all the entries where
the author’s name is the same as the blog name, we could issue the query:

>>> Entry.objects.filter(authors__name=F(’blog__name’))

The pk lookup shortcut

For convenience, Django provides a pk lookup shortcut, which stands for “primary key”.

In the example Blog model, the primary key is the id field, so these three statements are equivalent:

>>> Blog.objects.get(id__exact=14) # Explicit form
>>> Blog.objects.get(id=14) # __exact is implied
>>> Blog.objects.get(pk=14) # pk implies id__exact

The use of pk isn’t limited to __exact queries – any query term can be combined with pk to perform a query on the
primary key of a model:

Get blogs entries with id 1, 4 and 7
>>> Blog.objects.filter(pk__in=[1,4,7])

Get all blog entries with id > 14
>>> Blog.objects.filter(pk__gt=14)

pk lookups also work across joins. For example, these three statements are equivalent:

>>> Entry.objects.filter(blog__id__exact=3) # Explicit form
>>> Entry.objects.filter(blog__id=3) # __exact is implied
>>> Entry.objects.filter(blog__pk=3) # __pk implies __id__exact

Escaping percent signs and underscores in LIKE statements

The field lookups that equate to LIKE SQL statements (iexact, contains, icontains, startswith,
istartswith, endswith and iendswith) will automatically escape the two special characters used in LIKE
statements – the percent sign and the underscore. (In a LIKE statement, the percent sign signifies a multiple-character
wildcard and the underscore signifies a single-character wildcard.)

This means things should work intuitively, so the abstraction doesn’t leak. For example, to retrieve all the entries that
contain a percent sign, just use the percent sign as any other character:

>>> Entry.objects.filter(headline__contains=’%’)

Django takes care of the quoting for you; the resulting SQL will look something like this:

74 Chapter 3. Using Django

Django Documentation, Release 1.2.7

SELECT ... WHERE headline LIKE ’%\%%’;

Same goes for underscores. Both percentage signs and underscores are handled for you transparently.

Caching and QuerySets

Each QuerySet contains a cache, to minimize database access. It’s important to understand how it works, in order
to write the most efficient code.

In a newly created QuerySet, the cache is empty. The first time a QuerySet is evaluated – and, hence, a database
query happens – Django saves the query results in the QuerySet‘s cache and returns the results that have been
explicitly requested (e.g., the next element, if the QuerySet is being iterated over). Subsequent evaluations of the
QuerySet reuse the cached results.

Keep this caching behavior in mind, because it may bite you if you don’t use your QuerySets correctly. For example,
the following will create two QuerySets, evaluate them, and throw them away:

>>> print [e.headline for e in Entry.objects.all()]
>>> print [e.pub_date for e in Entry.objects.all()]

That means the same database query will be executed twice, effectively doubling your database load. Also, there’s
a possibility the two lists may not include the same database records, because an Entry may have been added or
deleted in the split second between the two requests.

To avoid this problem, simply save the QuerySet and reuse it:

>>> queryset = Entry.objects.all()
>>> print [p.headline for p in queryset] # Evaluate the query set.
>>> print [p.pub_date for p in queryset] # Re-use the cache from the evaluation.

Complex lookups with Q objects

Keyword argument queries – in filter(), etc. – are “AND”ed together. If you need to execute more complex
queries (for example, queries with OR statements), you can use Q objects.

A Q object (django.db.models.Q) is an object used to encapsulate a collection of keyword arguments. These
keyword arguments are specified as in “Field lookups” above.

For example, this Q object encapsulates a single LIKE query:

Q(question__startswith=’What’)

Q objects can be combined using the & and | operators. When an operator is used on two Q objects, it yields a new Q
object.

For example, this statement yields a single Q object that represents the “OR” of two "question__startswith"
queries:

Q(question__startswith=’Who’) | Q(question__startswith=’What’)

This is equivalent to the following SQL WHERE clause:

WHERE question LIKE ’Who%’ OR question LIKE ’What%’

You can compose statements of arbitrary complexity by combining Q objects with the & and | operators and use
parenthetical grouping. Also, Q objects can be negated using the ~ operator, allowing for combined lookups that
combine both a normal query and a negated (NOT) query:

3.2. Models and databases 75

Django Documentation, Release 1.2.7

Q(question__startswith=’Who’) | ~Q(pub_date__year=2005)

Each lookup function that takes keyword-arguments (e.g. filter(), exclude(), get()) can also be passed
one or more Q objects as positional (not-named) arguments. If you provide multiple Q object arguments to a lookup
function, the arguments will be “AND”ed together. For example:

Poll.objects.get(
Q(question__startswith=’Who’),
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6))

)

... roughly translates into the SQL:

SELECT * from polls WHERE question LIKE ’Who%’
AND (pub_date = ’2005-05-02’ OR pub_date = ’2005-05-06’)

Lookup functions can mix the use of Q objects and keyword arguments. All arguments provided to a lookup function
(be they keyword arguments or Q objects) are “AND”ed together. However, if a Q object is provided, it must precede
the definition of any keyword arguments. For example:

Poll.objects.get(
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)),
question__startswith=’Who’)

... would be a valid query, equivalent to the previous example; but:

INVALID QUERY
Poll.objects.get(

question__startswith=’Who’,
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)))

... would not be valid.

See Also:

The OR lookups examples in the Django unit tests show some possible uses of Q.

Comparing objects

To compare two model instances, just use the standard Python comparison operator, the double equals sign: ==.
Behind the scenes, that compares the primary key values of two models.

Using the Entry example above, the following two statements are equivalent:

>>> some_entry == other_entry
>>> some_entry.id == other_entry.id

If a model’s primary key isn’t called id, no problem. Comparisons will always use the primary key, whatever it’s
called. For example, if a model’s primary key field is called name, these two statements are equivalent:

>>> some_obj == other_obj
>>> some_obj.name == other_obj.name

Deleting objects

The delete method, conveniently, is named delete(). This method immediately deletes the object and has no return
value. Example:

76 Chapter 3. Using Django

http://code.djangoproject.com/browser/django/trunk/tests/modeltests/or_lookups/tests.py

Django Documentation, Release 1.2.7

e.delete()

You can also delete objects in bulk. Every QuerySet has a delete() method, which deletes all members of that
QuerySet.

For example, this deletes all Entry objects with a pub_date year of 2005:

Entry.objects.filter(pub_date__year=2005).delete()

Keep in mind that this will, whenever possible, be executed purely in SQL, and so the delete() methods of in-
dividual object instances will not necessarily be called during the process. If you’ve provided a custom delete()
method on a model class and want to ensure that it is called, you will need to “manually” delete instances of that model
(e.g., by iterating over a QuerySet and calling delete() on each object individually) rather than using the bulk
delete() method of a QuerySet.

When Django deletes an object, it emulates the behavior of the SQL constraint ON DELETE CASCADE – in other
words, any objects which had foreign keys pointing at the object to be deleted will be deleted along with it. For
example:

b = Blog.objects.get(pk=1)
This will delete the Blog and all of its Entry objects.
b.delete()

Note that delete() is the only QuerySet method that is not exposed on a Manager itself. This is a safety
mechanism to prevent you from accidentally requesting Entry.objects.delete(), and deleting all the entries.
If you do want to delete all the objects, then you have to explicitly request a complete query set:

Entry.objects.all().delete()

Updating multiple objects at once

Sometimes you want to set a field to a particular value for all the objects in a QuerySet. You can do this with the
update() method. For example:

Update all the headlines with pub_date in 2007.
Entry.objects.filter(pub_date__year=2007).update(headline=’Everything is the same’)

You can only set non-relation fields and ForeignKey fields using this method. To update a non-relation field, provide
the new value as a constant. To update ForeignKey fields, set the new value to be the new model instance you want
to point to. For example:

>>> b = Blog.objects.get(pk=1)

Change every Entry so that it belongs to this Blog.
>>> Entry.objects.all().update(blog=b)

The update() method is applied instantly and returns the number of rows affected by the query. The only restriction
on the QuerySet that is updated is that it can only access one database table, the model’s main table. You can filter
based on related fields, but you can only update columns in the model’s main table. Example:

>>> b = Blog.objects.get(pk=1)

Update all the headlines belonging to this Blog.
>>> Entry.objects.select_related().filter(blog=b).update(headline=’Everything is the same’)

Be aware that the update() method is converted directly to an SQL statement. It is a bulk operation for direct
updates. It doesn’t run any save() methods on your models, or emit the pre_save or post_save signals (which
are a consequence of calling save()). If you want to save every item in a QuerySet and make sure that the save()

3.2. Models and databases 77

Django Documentation, Release 1.2.7

method is called on each instance, you don’t need any special function to handle that. Just loop over them and call
save():

for item in my_queryset:
item.save()

New in version 1.1: Please, see the release notes Calls to update can also use F() objects to update one field based on
the value of another field in the model. This is especially useful for incrementing counters based upon their current
value. For example, to increment the pingback count for every entry in the blog:

>>> Entry.objects.all().update(n_pingbacks=F(’n_pingbacks’) + 1)

However, unlike F() objects in filter and exclude clauses, you can’t introduce joins when you use F() objects in an
update – you can only reference fields local to the model being updated. If you attempt to introduce a join with an
F() object, a FieldError will be raised:

THIS WILL RAISE A FieldError
>>> Entry.objects.update(headline=F(’blog__name’))

Related objects

When you define a relationship in a model (i.e., a ForeignKey, OneToOneField, or ManyToManyField),
instances of that model will have a convenient API to access the related object(s).

Using the models at the top of this page, for example, an Entry object e can get its associated Blog object by
accessing the blog attribute: e.blog.

(Behind the scenes, this functionality is implemented by Python descriptors. This shouldn’t really matter to you, but
we point it out here for the curious.)

Django also creates API accessors for the “other” side of the relationship – the link from the related model to the
model that defines the relationship. For example, a Blog object b has access to a list of all related Entry objects via
the entry_set attribute: b.entry_set.all().

All examples in this section use the sample Blog, Author and Entry models defined at the top of this page.

One-to-many relationships

Forward If a model has a ForeignKey, instances of that model will have access to the related (foreign) object via
a simple attribute of the model.

Example:

>>> e = Entry.objects.get(id=2)
>>> e.blog # Returns the related Blog object.

You can get and set via a foreign-key attribute. As you may expect, changes to the foreign key aren’t saved to the
database until you call save(). Example:

>>> e = Entry.objects.get(id=2)
>>> e.blog = some_blog
>>> e.save()

If a ForeignKey field has null=True set (i.e., it allows NULL values), you can assign None to it. Example:

>>> e = Entry.objects.get(id=2)
>>> e.blog = None
>>> e.save() # "UPDATE blog_entry SET blog_id = NULL ...;"

78 Chapter 3. Using Django

http://users.rcn.com/python/download/Descriptor.htm

Django Documentation, Release 1.2.7

Forward access to one-to-many relationships is cached the first time the related object is accessed. Subsequent accesses
to the foreign key on the same object instance are cached. Example:

>>> e = Entry.objects.get(id=2)
>>> print e.blog # Hits the database to retrieve the associated Blog.
>>> print e.blog # Doesn’t hit the database; uses cached version.

Note that the select_related() QuerySet method recursively prepopulates the cache of all one-to-many rela-
tionships ahead of time. Example:

>>> e = Entry.objects.select_related().get(id=2)
>>> print e.blog # Doesn’t hit the database; uses cached version.
>>> print e.blog # Doesn’t hit the database; uses cached version.

Following relationships “backward” If a model has a ForeignKey, instances of the foreign-key model will have
access to a Manager that returns all instances of the first model. By default, this Manager is named FOO_set,
where FOO is the source model name, lowercased. This Manager returns QuerySets, which can be filtered and
manipulated as described in the “Retrieving objects” section above.

Example:

>>> b = Blog.objects.get(id=1)
>>> b.entry_set.all() # Returns all Entry objects related to Blog.

b.entry_set is a Manager that returns QuerySets.
>>> b.entry_set.filter(headline__contains=’Lennon’)
>>> b.entry_set.count()

You can override the FOO_set name by setting the related_name parameter in the ForeignKey()
definition. For example, if the Entry model was altered to blog = ForeignKey(Blog,
related_name=’entries’), the above example code would look like this:

>>> b = Blog.objects.get(id=1)
>>> b.entries.all() # Returns all Entry objects related to Blog.

b.entries is a Manager that returns QuerySets.
>>> b.entries.filter(headline__contains=’Lennon’)
>>> b.entries.count()

You cannot access a reverse ForeignKey Manager from the class; it must be accessed from an instance:

>>> Blog.entry_set
Traceback:

...
AttributeError: "Manager must be accessed via instance".

In addition to the QuerySet methods defined in “Retrieving objects” above, the ForeignKey Manager has ad-
ditional methods used to handle the set of related objects. A synopsis of each is below, and complete details can be
found in the related objects reference.

add(obj1, obj2, ...) Adds the specified model objects to the related object set.

create(**kwargs) Creates a new object, saves it and puts it in the related object set. Returns the newly created
object.

remove(obj1, obj2, ...) Removes the specified model objects from the related object set.

clear() Removes all objects from the related object set.

3.2. Models and databases 79

Django Documentation, Release 1.2.7

To assign the members of a related set in one fell swoop, just assign to it from any iterable object. The iterable can
contain object instances, or just a list of primary key values. For example:

b = Blog.objects.get(id=1)
b.entry_set = [e1, e2]

In this example, e1 and e2 can be full Entry instances, or integer primary key values.

If the clear() method is available, any pre-existing objects will be removed from the entry_set before all
objects in the iterable (in this case, a list) are added to the set. If the clear() method is not available, all objects in
the iterable will be added without removing any existing elements.

Each “reverse” operation described in this section has an immediate effect on the database. Every addition, creation
and deletion is immediately and automatically saved to the database.

Many-to-many relationships

Both ends of a many-to-many relationship get automatic API access to the other end. The API works just as a
“backward” one-to-many relationship, above.

The only difference is in the attribute naming: The model that defines the ManyToManyField uses the attribute
name of that field itself, whereas the “reverse” model uses the lowercased model name of the original model, plus
’_set’ (just like reverse one-to-many relationships).

An example makes this easier to understand:

e = Entry.objects.get(id=3)
e.authors.all() # Returns all Author objects for this Entry.
e.authors.count()
e.authors.filter(name__contains=’John’)

a = Author.objects.get(id=5)
a.entry_set.all() # Returns all Entry objects for this Author.

Like ForeignKey, ManyToManyField can specify related_name. In the above example, if the
ManyToManyField in Entry had specified related_name=’entries’, then each Author instance would
have an entries attribute instead of entry_set.

One-to-one relationships

One-to-one relationships are very similar to many-to-one relationships. If you define a OneToOneField on your
model, instances of that model will have access to the related object via a simple attribute of the model.

For example:

class EntryDetail(models.Model):
entry = models.OneToOneField(Entry)
details = models.TextField()

ed = EntryDetail.objects.get(id=2)
ed.entry # Returns the related Entry object.

The difference comes in “reverse” queries. The related model in a one-to-one relationship also has access to a
Manager object, but that Manager represents a single object, rather than a collection of objects:

e = Entry.objects.get(id=2)
e.entrydetail # returns the related EntryDetail object

80 Chapter 3. Using Django

Django Documentation, Release 1.2.7

If no object has been assigned to this relationship, Django will raise a DoesNotExist exception.

Instances can be assigned to the reverse relationship in the same way as you would assign the forward relationship:

e.entrydetail = ed

How are the backward relationships possible?

Other object-relational mappers require you to define relationships on both sides. The Django developers believe this
is a violation of the DRY (Don’t Repeat Yourself) principle, so Django only requires you to define the relationship on
one end.

But how is this possible, given that a model class doesn’t know which other model classes are related to it until those
other model classes are loaded?

The answer lies in the INSTALLED_APPS setting. The first time any model is loaded, Django iterates over every
model in INSTALLED_APPS and creates the backward relationships in memory as needed. Essentially, one of the
functions of INSTALLED_APPS is to tell Django the entire model domain.

Queries over related objects

Queries involving related objects follow the same rules as queries involving normal value fields. When specifying the
value for a query to match, you may use either an object instance itself, or the primary key value for the object.

For example, if you have a Blog object b with id=5, the following three queries would be identical:

Entry.objects.filter(blog=b) # Query using object instance
Entry.objects.filter(blog=b.id) # Query using id from instance
Entry.objects.filter(blog=5) # Query using id directly

Falling back to raw SQL

If you find yourself needing to write an SQL query that is too complex for Django’s database-mapper to handle, you
can fall back on writing SQL by hand. Django has a couple of options for writing raw SQL queries; see Performing
raw SQL queries.

Finally, it’s important to note that the Django database layer is merely an interface to your database. You can access
your database via other tools, programming languages or database frameworks; there’s nothing Django-specific about
your database.

3.2.3 Aggregation

New in version 1.1: Please, see the release notes The topic guide on Django’s database-abstraction API described the
way that you can use Django queries that create, retrieve, update and delete individual objects. However, sometimes
you will need to retrieve values that are derived by summarizing or aggregating a collection of objects. This topic
guide describes the ways that aggregate values can be generated and returned using Django queries.

Throughout this guide, we’ll refer to the following models. These models are used to track the inventory for a series
of online bookstores:

class Author(models.Model):
name = models.CharField(max_length=100)
age = models.IntegerField()
friends = models.ManyToManyField(’self’, blank=True)

3.2. Models and databases 81

Django Documentation, Release 1.2.7

class Publisher(models.Model):
name = models.CharField(max_length=300)
num_awards = models.IntegerField()

class Book(models.Model):
isbn = models.CharField(max_length=9)
name = models.CharField(max_length=300)
pages = models.IntegerField()
price = models.DecimalField(max_digits=10, decimal_places=2)
rating = models.FloatField()
authors = models.ManyToManyField(Author)
publisher = models.ForeignKey(Publisher)
pubdate = models.DateField()

class Store(models.Model):
name = models.CharField(max_length=300)
books = models.ManyToManyField(Book)

Generating aggregates over a QuerySet

Django provides two ways to generate aggregates. The first way is to generate summary values over an entire
QuerySet. For example, say you wanted to calculate the average price of all books available for sale. Django’s
query syntax provides a means for describing the set of all books:

>>> Book.objects.all()

What we need is a way to calculate summary values over the objects that belong to this QuerySet. This is done by
appending an aggregate() clause onto the QuerySet:

>>> from django.db.models import Avg
>>> Book.objects.all().aggregate(Avg(’price’))
{’price__avg’: 34.35}

The all() is redundant in this example, so this could be simplified to:

>>> Book.objects.aggregate(Avg(’price’))
{’price__avg’: 34.35}

The argument to the aggregate() clause describes the aggregate value that we want to compute - in this case, the
average of the price field on the Book model. A list of the aggregate functions that are available can be found in the
QuerySet reference.

aggregate() is a terminal clause for a QuerySet that, when invoked, returns a dictionary of name-value pairs.
The name is an identifier for the aggregate value; the value is the computed aggregate. The name is automatically
generated from the name of the field and the aggregate function. If you want to manually specify a name for the
aggregate value, you can do so by providing that name when you specify the aggregate clause:

>>> Book.objects.aggregate(average_price=Avg(’price’))
{’average_price’: 34.35}

If you want to generate more than one aggregate, you just add another argument to the aggregate() clause. So, if
we also wanted to know the maximum and minimum price of all books, we would issue the query:

>>> from django.db.models import Avg, Max, Min, Count
>>> Book.objects.aggregate(Avg(’price’), Max(’price’), Min(’price’))
{’price__avg’: 34.35, ’price__max’: Decimal(’81.20’), ’price__min’: Decimal(’12.99’)}

82 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Generating aggregates for each item in a QuerySet

The second way to generate summary values is to generate an independent summary for each object in a QuerySet.
For example, if you are retrieving a list of books, you may want to know how many authors contributed to each book.
Each Book has a many-to-many relationship with the Author; we want to summarize this relationship for each book
in the QuerySet.

Per-object summaries can be generated using the annotate() clause. When an annotate() clause is specified,
each object in the QuerySet will be annotated with the specified values.

The syntax for these annotations is identical to that used for the aggregate() clause. Each argument to
annotate() describes an aggregate that is to be calculated. For example, to annotate Books with the number
of authors:

Build an annotated queryset
>>> q = Book.objects.annotate(Count(’authors’))
Interrogate the first object in the queryset
>>> q[0]
<Book: The Definitive Guide to Django>
>>> q[0].authors__count
2
Interrogate the second object in the queryset
>>> q[1]
<Book: Practical Django Projects>
>>> q[1].authors__count
1

As with aggregate(), the name for the annotation is automatically derived from the name of the aggregate function
and the name of the field being aggregated. You can override this default name by providing an alias when you specify
the annotation:

>>> q = Book.objects.annotate(num_authors=Count(’authors’))
>>> q[0].num_authors
2
>>> q[1].num_authors
1

Unlike aggregate(), annotate() is not a terminal clause. The output of the annotate() clause is
a QuerySet; this QuerySet can be modified using any other QuerySet operation, including filter(),
order_by, or even additional calls to annotate().

Joins and aggregates

So far, we have dealt with aggregates over fields that belong to the model being queried. However, sometimes the
value you want to aggregate will belong to a model that is related to the model you are querying.

When specifying the field to be aggregated in an aggregate function, Django will allow you to use the same double
underscore notation that is used when referring to related fields in filters. Django will then handle any table joins that
are required to retrieve and aggregate the related value.

For example, to find the price range of books offered in each store, you could use the annotation:

>>> Store.objects.annotate(min_price=Min(’books__price’), max_price=Max(’books__price’))

This tells Django to retrieve the Store model, join (through the many-to-many relationship) with the Book model, and
aggregate on the price field of the book model to produce a minimum and maximum value.

The same rules apply to the aggregate() clause. If you wanted to know the lowest and highest price of any book
that is available for sale in a store, you could use the aggregate:

3.2. Models and databases 83

Django Documentation, Release 1.2.7

>>> Store.objects.aggregate(min_price=Min(’books__price’), max_price=Max(’books__price’))

Join chains can be as deep as you require. For example, to extract the age of the youngest author of any book available
for sale, you could issue the query:

>>> Store.objects.aggregate(youngest_age=Min(’books__authors__age’))

Aggregations and other QuerySet clauses

filter() and exclude()

Aggregates can also participate in filters. Any filter() (or exclude()) applied to normal model fields will have
the effect of constraining the objects that are considered for aggregation.

When used with an annotate() clause, a filter has the effect of constraining the objects for which an annotation is
calculated. For example, you can generate an annotated list of all books that have a title starting with “Django” using
the query:

>>> Book.objects.filter(name__startswith="Django").annotate(num_authors=Count(’authors’))

When used with an aggregate() clause, a filter has the effect of constraining the objects over which the aggregate
is calculated. For example, you can generate the average price of all books with a title that starts with “Django” using
the query:

>>> Book.objects.filter(name__startswith="Django").aggregate(Avg(’price’))

Filtering on annotations Annotated values can also be filtered. The alias for the annotation can be used in
filter() and exclude() clauses in the same way as any other model field.

For example, to generate a list of books that have more than one author, you can issue the query:

>>> Book.objects.annotate(num_authors=Count(’authors’)).filter(num_authors__gt=1)

This query generates an annotated result set, and then generates a filter based upon that annotation.

Order of annotate() and filter() clauses When developing a complex query that involves both
annotate() and filter() clauses, particular attention should be paid to the order in which the clauses are
applied to the QuerySet.

When an annotate() clause is applied to a query, the annotation is computed over the state of the query up to the
point where the annotation is requested. The practical implication of this is that filter() and annotate() are
not commutative operations – that is, there is a difference between the query:

>>> Publisher.objects.annotate(num_books=Count(’book’)).filter(book__rating__gt=3.0)

and the query:

>>> Publisher.objects.filter(book__rating__gt=3.0).annotate(num_books=Count(’book’))

Both queries will return a list of Publishers that have at least one good book (i.e., a book with a rating exceeding 3.0).
However, the annotation in the first query will provide the total number of all books published by the publisher; the
second query will only include good books in the annotated count. In the first query, the annotation precedes the filter,
so the filter has no effect on the annotation. In the second query, the filter preceeds the annotation, and as a result, the
filter constrains the objects considered when calculating the annotation.

84 Chapter 3. Using Django

Django Documentation, Release 1.2.7

order_by()

Annotations can be used as a basis for ordering. When you define an order_by() clause, the aggregates you provide
can reference any alias defined as part of an annotate() clause in the query.

For example, to order a QuerySet of books by the number of authors that have contributed to the book, you could
use the following query:

>>> Book.objects.annotate(num_authors=Count(’authors’)).order_by(’num_authors’)

values()

Ordinarily, annotations are generated on a per-object basis - an annotated QuerySet will return one result for each
object in the original QuerySet. However, when a values() clause is used to constrain the columns that are
returned in the result set, the method for evaluating annotations is slightly different. Instead of returning an annotated
result for each result in the original QuerySet, the original results are grouped according to the unique combinations
of the fields specified in the values() clause. An annotation is then provided for each unique group; the annotation
is computed over all members of the group.

For example, consider an author query that attempts to find out the average rating of books written by each author:

>>> Author.objects.annotate(average_rating=Avg(’book__rating’))

This will return one result for each author in the database, annotated with their average book rating.

However, the result will be slightly different if you use a values() clause:

>>> Author.objects.values(’name’).annotate(average_rating=Avg(’book__rating’))

In this example, the authors will be grouped by name, so you will only get an annotated result for each unique author
name. This means if you have two authors with the same name, their results will be merged into a single result in the
output of the query; the average will be computed as the average over the books written by both authors.

Order of annotate() and values() clauses As with the filter() clause, the order in which annotate()
and values() clauses are applied to a query is significant. If the values() clause precedes the annotate(),
the annotation will be computed using the grouping described by the values() clause.

However, if the annotate() clause precedes the values() clause, the annotations will be generated over the
entire query set. In this case, the values() clause only constrains the fields that are generated on output.

For example, if we reverse the order of the values() and annotate() clause from our previous example:

>>> Author.objects.annotate(average_rating=Avg(’book__rating’)).values(’name’, ’average_rating’)

This will now yield one unique result for each author; however, only the author’s name and the average_rating
annotation will be returned in the output data.

You should also note that average_rating has been explicitly included in the list of values to be returned. This is
required because of the ordering of the values() and annotate() clause.

If the values() clause precedes the annotate() clause, any annotations will be automatically added to the result
set. However, if the values() clause is applied after the annotate() clause, you need to explicitly include the
aggregate column.

3.2. Models and databases 85

Django Documentation, Release 1.2.7

Interaction with default ordering or order_by() Fields that are mentioned in the order_by() part of a
queryset (or which are used in the default ordering on a model) are used when selecting the output data, even if they
are not otherwise specified in the values() call. These extra fields are used to group “like” results together and they
can make otherwise identical result rows appear to be separate. This shows up, particularly, when counting things.

By way of example, suppose you have a model like this:

class Item(models.Model):
name = models.CharField(max_length=10)
data = models.IntegerField()

class Meta:
ordering = ["name"]

The important part here is the default ordering on the name field. If you want to count how many times each distinct
data value appears, you might try this:

Warning: not quite correct!
Item.objects.values("data").annotate(Count("id"))

...which will group the Item objects by their common data values and then count the number of id values in each
group. Except that it won’t quite work. The default ordering by name will also play a part in the grouping, so this
query will group by distinct (data, name) pairs, which isn’t what you want. Instead, you should construct this
queryset:

Item.objects.values("data").annotate(Count("id")).order_by()

...clearing any ordering in the query. You could also order by, say, data without any harmful effects, since that is
already playing a role in the query.

This behavior is the same as that noted in the queryset documentation for distinct() and the general rule is the
same: normally you won’t want extra columns playing a part in the result, so clear out the ordering, or at least make
sure it’s restricted only to those fields you also select in a values() call.

Note: You might reasonably ask why Django doesn’t remove the extraneous columns for you. The main reason is
consistency with distinct() and other places: Django never removes ordering constraints that you have specified
(and we can’t change those other methods’ behavior, as that would violate our API stability policy).

Aggregating annotations

You can also generate an aggregate on the result of an annotation. When you define an aggregate() clause, the
aggregates you provide can reference any alias defined as part of an annotate() clause in the query.

For example, if you wanted to calculate the average number of authors per book you first annotate the set of books
with the author count, then aggregate that author count, referencing the annotation field:

>>> Book.objects.annotate(num_authors=Count(’authors’)).aggregate(Avg(’num_authors’))
{’num_authors__avg’: 1.66}

3.2.4 Managers

class Manager

A Manager is the interface through which database query operations are provided to Django models. At least one
Manager exists for every model in a Django application.

86 Chapter 3. Using Django

Django Documentation, Release 1.2.7

The way Manager classes work is documented in Making queries; this document specifically touches on model
options that customize Manager behavior.

Manager names

By default, Django adds a Manager with the name objects to every Django model class. However, if you
want to use objects as a field name, or if you want to use a name other than objects for the Manager, you
can rename it on a per-model basis. To rename the Manager for a given class, define a class attribute of type
models.Manager() on that model. For example:

from django.db import models

class Person(models.Model):
#...
people = models.Manager()

Using this example model, Person.objects will generate an AttributeError exception, but
Person.people.all() will provide a list of all Person objects.

Custom Managers

You can use a custom Manager in a particular model by extending the base Manager class and instantiating your
custom Manager in your model.

There are two reasons you might want to customize a Manager: to add extra Manager methods, and/or to modify
the initial QuerySet the Manager returns.

Adding extra Manager methods

Adding extra Manager methods is the preferred way to add “table-level” functionality to your models. (For “row-
level” functionality – i.e., functions that act on a single instance of a model object – use Model methods, not custom
Manager methods.)

A custom Manager method can return anything you want. It doesn’t have to return a QuerySet.

For example, this custom Manager offers a method with_counts(), which returns a list of all OpinionPoll
objects, each with an extra num_responses attribute that is the result of an aggregate query:

class PollManager(models.Manager):
def with_counts(self):

from django.db import connection
cursor = connection.cursor()
cursor.execute("""

SELECT p.id, p.question, p.poll_date, COUNT(*)
FROM polls_opinionpoll p, polls_response r
WHERE p.id = r.poll_id
GROUP BY 1, 2, 3
ORDER BY 3 DESC""")

result_list = []
for row in cursor.fetchall():

p = self.model(id=row[0], question=row[1], poll_date=row[2])
p.num_responses = row[3]
result_list.append(p)

return result_list

class OpinionPoll(models.Model):

3.2. Models and databases 87

Django Documentation, Release 1.2.7

question = models.CharField(max_length=200)
poll_date = models.DateField()
objects = PollManager()

class Response(models.Model):
poll = models.ForeignKey(Poll)
person_name = models.CharField(max_length=50)
response = models.TextField()

With this example, you’d use OpinionPoll.objects.with_counts() to return that list of OpinionPoll
objects with num_responses attributes.

Another thing to note about this example is that Manager methods can access self.model to get the model class
to which they’re attached.

Modifying initial Manager QuerySets

A Manager‘s base QuerySet returns all objects in the system. For example, using this model:

class Book(models.Model):
title = models.CharField(max_length=100)
author = models.CharField(max_length=50)

...the statement Book.objects.all() will return all books in the database.

You can override a Manager‘s base QuerySet by overriding the Manager.get_query_set() method.
get_query_set() should return a QuerySet with the properties you require.

For example, the following model has two Managers – one that returns all objects, and one that returns only the
books by Roald Dahl:

First, define the Manager subclass.
class DahlBookManager(models.Manager):

def get_query_set(self):
return super(DahlBookManager, self).get_query_set().filter(author=’Roald Dahl’)

Then hook it into the Book model explicitly.
class Book(models.Model):

title = models.CharField(max_length=100)
author = models.CharField(max_length=50)

objects = models.Manager() # The default manager.
dahl_objects = DahlBookManager() # The Dahl-specific manager.

With this sample model, Book.objects.all() will return all books in the database, but
Book.dahl_objects.all() will only return the ones written by Roald Dahl.

Of course, because get_query_set() returns a QuerySet object, you can use filter(), exclude() and
all the other QuerySet methods on it. So these statements are all legal:

Book.dahl_objects.all()
Book.dahl_objects.filter(title=’Matilda’)
Book.dahl_objects.count()

This example also pointed out another interesting technique: using multiple managers on the same model. You can
attach as many Manager() instances to a model as you’d like. This is an easy way to define common “filters” for
your models.

For example:

88 Chapter 3. Using Django

Django Documentation, Release 1.2.7

class MaleManager(models.Manager):
def get_query_set(self):

return super(MaleManager, self).get_query_set().filter(sex=’M’)

class FemaleManager(models.Manager):
def get_query_set(self):

return super(FemaleManager, self).get_query_set().filter(sex=’F’)

class Person(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
sex = models.CharField(max_length=1, choices=((’M’, ’Male’), (’F’, ’Female’)))
people = models.Manager()
men = MaleManager()
women = FemaleManager()

This example allows you to request Person.men.all(), Person.women.all(), and
Person.people.all(), yielding predictable results.

If you use custom Manager objects, take note that the first Manager Django encounters (in the order in which
they’re defined in the model) has a special status. Django interprets the first Manager defined in a class as the
“default” Manager, and several parts of Django (including dumpdata) will use that Manager exclusively for that
model. As a result, it’s a good idea to be careful in your choice of default manager in order to avoid a situation where
overriding get_query_set() results in an inability to retrieve objects you’d like to work with.

Using managers for related object access By default, Django uses an instance of a “plain” manager class when
accessing related objects (i.e. choice.poll), not the default manager on the related object. This is because Django
needs to be able to retrieve the related object, even if it would otherwise be filtered out (and hence be inaccessible) by
the default manager.

If the normal plain manager class (django.db.models.Manager) is not appropriate for your circumstances, you
can force Django to use the same class as the default manager for your model by setting the use_for_related_fields
attribute on the manager class. This is documented fully below.

Custom managers and model inheritance

Class inheritance and model managers aren’t quite a perfect match for each other. Managers are often specific to the
classes they are defined on and inheriting them in subclasses isn’t necessarily a good idea. Also, because the first
manager declared is the default manager, it is important to allow that to be controlled. So here’s how Django handles
custom managers and model inheritance:

1. Managers defined on non-abstract base classes are not inherited by child classes. If you want to reuse a manager
from a non-abstract base, redeclare it explicitly on the child class. These sorts of managers are likely to be fairly
specific to the class they are defined on, so inheriting them can often lead to unexpected results (particularly as
far as the default manager goes). Therefore, they aren’t passed onto child classes.

2. Managers from abstract base classes are always inherited by the child class, using Python’s normal name reso-
lution order (names on the child class override all others; then come names on the first parent class, and so on).
Abstract base classes are designed to capture information and behavior that is common to their child classes.
Defining common managers is an appropriate part of this common information.

3. The default manager on a class is either the first manager declared on the class, if that exists, or the default
manager of the first abstract base class in the parent hierarchy, if that exists. If no default manager is explicitly
declared, Django’s normal default manager is used.

3.2. Models and databases 89

Django Documentation, Release 1.2.7

These rules provide the necessary flexibility if you want to install a collection of custom managers on a group of
models, via an abstract base class, but still customize the default manager. For example, suppose you have this base
class:

class AbstractBase(models.Model):
...
objects = CustomManager()

class Meta:
abstract = True

If you use this directly in a subclass, objects will be the default manager if you declare no managers in the base
class:

class ChildA(AbstractBase):
...
This class has CustomManager as the default manager.

If you want to inherit from AbstractBase, but provide a different default manager, you can provide the default
manager on the child class:

class ChildB(AbstractBase):
...
An explicit default manager.
default_manager = OtherManager()

Here, default_manager is the default. The objects manager is still available, since it’s inherited. It just isn’t
used as the default.

Finally for this example, suppose you want to add extra managers to the child class, but still use the default from
AbstractBase. You can’t add the new manager directly in the child class, as that would override the default and
you would have to also explicitly include all the managers from the abstract base class. The solution is to put the extra
managers in another base class and introduce it into the inheritance hierarchy after the defaults:

class ExtraManager(models.Model):
extra_manager = OtherManager()

class Meta:
abstract = True

class ChildC(AbstractBase, ExtraManager):
...
Default manager is CustomManager, but OtherManager is
also available via the "extra_manager" attribute.

Implementation concerns

Whatever features you add to your custom Manager, it must be possible to make a shallow copy of a Manager
instance; i.e., the following code must work:

>>> import copy
>>> manager = MyManager()
>>> my_copy = copy.copy(manager)

Django makes shallow copies of manager objects during certain queries; if your Manager cannot be copied, those
queries will fail.

This won’t be an issue for most custom managers. If you are just adding simple methods to your Manager, it is
unlikely that you will inadvertently make instances of your Manager uncopyable. However, if you’re overriding

90 Chapter 3. Using Django

Django Documentation, Release 1.2.7

__getattr__ or some other private method of your Manager object that controls object state, you should ensure
that you don’t affect the ability of your Manager to be copied.

Controlling automatic Manager types

This document has already mentioned a couple of places where Django creates a manager class for you: default
managers and the “plain” manager used to access related objects. There are other places in the implementation of
Django where temporary plain managers are needed. Those automatically created managers will normally be instances
of the django.db.models.Manager class. Throughout this section, we will use the term “automatic manager”
to mean a manager that Django creates for you – either as a default manager on a model with no managers, or to use
temporarily when accessing related objects.

Sometimes this default class won’t be the right choice. One example is in the django.contrib.gis application
that ships with Django itself. All gis models must use a special manager class (GeoManager) because they need a
special queryset (GeoQuerySet) to be used for interacting with the database. It turns out that models which require
a special manager like this need to use the same manager class wherever an automatic manager is created.

Django provides a way for custom manager developers to say that their manager class should be used for automatic
managers whenever it is the default manager on a model. This is done by setting the use_for_related_fields
attribute on the manager class:

class MyManager(models.Manager):
use_for_related_fields = True

...

If this attribute is set on the default manager for a model (only the default manager is considered in these situations),
Django will use that class whenever it needs to automatically create a manager for the class. Otherwise, it will use
django.db.models.Manager.

Historical Note

Given the purpose for which it’s used, the name of this attribute (use_for_related_fields) might seem a little
odd. Originally, the attribute only controlled the type of manager used for related field access, which is where the
name came from. As it became clear the concept was more broadly useful, the name hasn’t been changed. This is
primarily so that existing code will continue to work in future Django versions.

Writing correct Managers for use in automatic Manager instances

As already suggested by the django.contrib.gis example, above, the use_for_related_fields feature is pri-
marily for managers that need to return a custom QuerySet subclass. In providing this functionality in your manager,
there are a couple of things to remember.

Do not filter away any results in this type of manager subclass One reason an automatic manager is used is to
access objects that are related to from some other model. In those situations, Django has to be able to see all the
objects for the model it is fetching, so that anything which is referred to can be retrieved.

If you override the get_query_set() method and filter out any rows, Django will return incorrect results. Don’t
do that. A manager that filters results in get_query_set() is not appropriate for use as an automatic manager.

Set use_for_related_fieldswhen you define the class The use_for_related_fields attribute must
be set on the manager class, object not on an instance of the class. The earlier example shows the correct way to set
it, whereas the following will not work:

3.2. Models and databases 91

Django Documentation, Release 1.2.7

BAD: Incorrect code
class MyManager(models.Manager):

...

Sets the attribute on an instance of MyManager. Django will
ignore this setting.
mgr = MyManager()
mgr.use_for_related_fields = True

class MyModel(models.Model):
...
objects = mgr

End of incorrect code.

You also shouldn’t change the attribute on the class object after it has been used in a model, since the attribute’s value
is processed when the model class is created and not subsequently reread. Set the attribute on the manager class when
it is first defined, as in the initial example of this section and everything will work smoothly.

3.2.5 Performing raw SQL queries

When the model query APIs don’t go far enough, you can fall back to writing raw SQL. Django gives you two ways
of performing raw SQL queries: you can use Manager.raw() to perform raw queries and return model instances,
or you can avoid the model layer entirely and execute custom SQL directly.

Performing raw queries

New in version 1.2: Please, see the release notes The raw() manager method can be used to perform raw SQL
queries that return model instances:

Manager.raw(raw_query, params=None, translations=None)

This method method takes a raw SQL query, executes it, and returns a RawQuerySet instance. This RawQuerySet
instance can be iterated over just like an normal QuerySet to provide object instances.

This is best illustrated with an example. Suppose you’ve got the following model:

class Person(models.Model):
first_name = models.CharField(...)
last_name = models.CharField(...)
birth_date = models.DateField(...)

You could then execute custom SQL like so:

>>> for p in Person.objects.raw(’SELECT * FROM myapp_person’):
... print p
John Smith
Jane Jones

Model table names

Where’d the name of the Person table come from in that example?

By default, Django figures out a database table name by joining the model’s “app label” – the name you used in
manage.py startapp – to the model’s class name, with an underscore between them. In the example we’ve
assumed that the Person model lives in an app named myapp, so its table would be myapp_person.

92 Chapter 3. Using Django

Django Documentation, Release 1.2.7

For more details check out the documentation for the db_table option, which also lets you manually set the database
table name.

Of course, this example isn’t very exciting – it’s exactly the same as running Person.objects.all(). However,
raw() has a bunch of other options that make it very powerful.

Mapping query fields to model fields

raw() automatically maps fields in the query to fields on the model.

The order of fields in your query doesn’t matter. In other words, both of the following queries work identically:

>>> Person.objects.raw(’SELECT id, first_name, last_name, birth_date FROM myapp_person’)
...
>>> Person.objects.raw(’SELECT last_name, birth_date, first_name, id FROM myapp_person’)
...

Matching is done by name. This means that you can use SQL’s AS clauses to map fields in the query to model fields.
So if you had some other table that had Person data in it, you could easily map it into Person instances:

>>> Person.objects.raw(’’’SELECT first AS first_name,
... last AS last_name,
... bd AS birth_date,
... pk as id,
... FROM some_other_table’’’)

As long as the names match, the model instances will be created correctly.

Alternatively, you can map fields in the query to model fields using the translations argument to raw(). This
is a dictionary mapping names of fields in the query to names of fields on the model. For example, the above query
could also be written:

>>> name_map = {’first’: ’first_name’, ’last’: ’last_name’, ’bd’: ’birth_date’, ’pk’: ’id’}
>>> Person.objects.raw(’SELECT * FROM some_other_table’, translations=name_map)

Index lookups

raw() supports indexing, so if you need only the first result you can write:

>>> first_person = Person.objects.raw(’SELECT * from myapp_person’)[0]

However, the indexing and slicing are not performed at the database level. If you have a big amount of Person
objects in your database, it is more efficient to limit the query at the SQL level:

>>> first_person = Person.objects.raw(’SELECT * from myapp_person LIMIT 1’)[0]

Deferring model fields

Fields may also be left out:

>>> people = Person.objects.raw(’SELECT id, first_name FROM myapp_person’)

The Person objects returned by this query will be deferred model instances (see defer()). This means that the
fields that are omitted from the query will be loaded on demand. For example:

3.2. Models and databases 93

Django Documentation, Release 1.2.7

>>> for p in Person.objects.raw(’SELECT id, first_name FROM myapp_person’):
... print p.first_name, # This will be retrieved by the original query
... print p.last_name # This will be retrieved on demand
...
John Smith
Jane Jones

From outward appearances, this looks like the query has retrieved both the first name and last name. However, this
example actually issued 3 queries. Only the first names were retrieved by the raw() query – the last names were both
retrieved on demand when they were printed.

There is only one field that you can’t leave out - the primary key field. Django uses the primary key to identify model
instances, so it must always be included in a raw query. An InvalidQuery exception will be raised if you forget to
include the primary key.

Adding annotations

You can also execute queries containing fields that aren’t defined on the model. For example, we could use Post-
greSQL’s age() function to get a list of people with their ages calculated by the database:

>>> people = Person.objects.raw(’SELECT *, age(birth_date) AS age FROM myapp_person’)
>>> for p in people:
... print "%s is %s." % (p.first_name, p.age)
John is 37.
Jane is 42.
...

Passing parameters into raw()

If you need to perform parameterized queries, you can use the params argument to raw():

>>> lname = ’Doe’
>>> Person.objects.raw(’SELECT * FROM myapp_person WHERE last_name = %s’, [lname])

params is a list of parameters. You’ll use %s placeholders in the query string (regardless of your database engine);
they’ll be replaced with parameters from the params list.

Warning: Do not use string formatting on raw queries!
It’s tempting to write the above query as:

>>> query = ’SELECT * FROM myapp_person WHERE last_name = %s’ % lname
>>> Person.objects.raw(query)

Don’t.
Using the params list completely protects you from SQL injection attacks, a common exploit where attackers
inject arbitrary SQL into your database. If you use string interpolation, sooner or later you’ll fall victim to SQL
injection. As long as you remember to always use the params list you’ll be protected.

Executing custom SQL directly

Sometimes even Manager.raw() isn’t quite enough: you might need to perform queries that don’t map cleanly to
models, or directly execute UPDATE, INSERT, or DELETE queries.

In these cases, you can always access the database directly, routing around the model layer entirely.

94 Chapter 3. Using Django

http://www.postgresql.org/docs/8.4/static/functions-datetime.html
http://www.postgresql.org/docs/8.4/static/functions-datetime.html
http://en.wikipedia.org/wiki/SQL_injection

Django Documentation, Release 1.2.7

The object django.db.connection represents the default database connection, and
django.db.transaction represents the default database transaction. To use the database connection,
call connection.cursor() to get a cursor object. Then, call cursor.execute(sql, [params]) to
execute the SQL and cursor.fetchone() or cursor.fetchall() to return the resulting rows. After
performing a data changing operation, you should then call transaction.commit_unless_managed() to
ensure your changes are committed to the database. If your query is purely a data retrieval operation, no commit is
required. For example:

def my_custom_sql():
from django.db import connection, transaction
cursor = connection.cursor()

Data modifying operation - commit required
cursor.execute("UPDATE bar SET foo = 1 WHERE baz = %s", [self.baz])
transaction.commit_unless_managed()

Data retrieval operation - no commit required
cursor.execute("SELECT foo FROM bar WHERE baz = %s", [self.baz])
row = cursor.fetchone()

return row

If you are using more than one database you can use django.db.connections to obtain the connection (and
cursor) for a specific database. django.db.connections is a dictionary-like object that allows you to retrieve a
specific connection using it’s alias:

from django.db import connections
cursor = connections[’my_db_alias’].cursor()
Your code here...
transaction.commit_unless_managed(using=’my_db_alias’)

Transactions and raw SQL

If you are using transaction decorators (such as commit_on_success) to wrap your views and provide trans-
action control, you don’t have to make a manual call to transaction.commit_unless_managed() – you
can manually commit if you want to, but you aren’t required to, since the decorator will commit for you. How-
ever, if you don’t manually commit your changes, you will need to manually mark the transaction as dirty, using
transaction.set_dirty():

@commit_on_success
def my_custom_sql_view(request, value):

from django.db import connection, transaction
cursor = connection.cursor()

Data modifying operation
cursor.execute("UPDATE bar SET foo = 1 WHERE baz = %s", [value])

Since we modified data, mark the transaction as dirty
transaction.set_dirty()

Data retrieval operation. This doesn’t dirty the transaction,
so no call to set_dirty() is required.
cursor.execute("SELECT foo FROM bar WHERE baz = %s", [value])
row = cursor.fetchone()

return render_to_response(’template.html’, {’row’: row})

3.2. Models and databases 95

Django Documentation, Release 1.2.7

The call to set_dirty() is made automatically when you use the Django ORM to make data modifying database
calls. However, when you use raw SQL, Django has no way of knowing if your SQL modifies data or not. The manual
call to set_dirty() ensures that Django knows that there are modifications that must be committed.

Connections and cursors

connection and cursor mostly implement the standard Python DB-API (except when it comes to transaction
handling). If you’re not familiar with the Python DB-API, note that the SQL statement in cursor.execute() uses
placeholders, "%s", rather than adding parameters directly within the SQL. If you use this technique, the underlying
database library will automatically add quotes and escaping to your parameter(s) as necessary. (Also note that Django
expects the "%s" placeholder, not the "?" placeholder, which is used by the SQLite Python bindings. This is for the
sake of consistency and sanity.)

3.2.6 Managing database transactions

Django gives you a few ways to control how database transactions are managed, if you’re using a database that supports
transactions.

Django’s default transaction behavior

Django’s default behavior is to run with an open transaction which it commits automatically when any built-in, data-
altering model function is called. For example, if you call model.save() or model.delete(), the change will
be committed immediately.

This is much like the auto-commit setting for most databases. As soon as you perform an action that needs to write
to the database, Django produces the INSERT/UPDATE/DELETE statements and then does the COMMIT. There’s no
implicit ROLLBACK.

Tying transactions to HTTP requests

The recommended way to handle transactions in Web requests is to tie them to the request and response phases via
Django’s TransactionMiddleware.

It works like this: When a request starts, Django starts a transaction. If the response is produced without problems,
Django commits any pending transactions. If the view function produces an exception, Django rolls back any pending
transactions.

To activate this feature, just add the TransactionMiddleware middleware to your MIDDLEWARE_CLASSES
setting:

MIDDLEWARE_CLASSES = (
’django.middleware.cache.UpdateCacheMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.middleware.common.CommonMiddleware’,
’django.middleware.transaction.TransactionMiddleware’,
’django.middleware.cache.FetchFromCacheMiddleware’,

)

The order is quite important. The transaction middleware applies not only to view functions, but also for all middleware
modules that come after it. So if you use the session middleware after the transaction middleware, session creation
will be part of the transaction.

96 Chapter 3. Using Django

http://www.python.org/dev/peps/pep-0249/

Django Documentation, Release 1.2.7

The various cache middlewares are an exception: CacheMiddleware, UpdateCacheMiddleware, and
FetchFromCacheMiddleware are never affected. Even when using database caching, Django’s cache backend
uses its own database cursor (which is mapped to its own database connection internally).

Controlling transaction management in views

For most people, implicit request-based transactions work wonderfully. However, if you need more fine-grained
control over how transactions are managed, you can use Python decorators to change the way transactions are handled
by a particular view function. All of the decorators take an option using parameter which should be the alias for a
database connection for which the behavior applies to. If no alias is specified then the "default" database is used.

Note: Although the examples below use view functions as examples, these decorators can be applied to non-view
functions as well.

django.db.transaction.autocommit

Use the autocommit decorator to switch a view function to Django’s default commit behavior, regardless of the
global transaction setting.

Example:

from django.db import transaction

@transaction.autocommit
def viewfunc(request):

....

@transaction.autocommit(using="my_other_database")
def viewfunc2(request):

....

Within viewfunc(), transactions will be committed as soon as you call model.save(), model.delete(),
or any other function that writes to the database. viewfunc2() will have this same behavior, but for the
"my_other_database" connection.

django.db.transaction.commit_on_success

Use the commit_on_success decorator to use a single transaction for all the work done in a function:

from django.db import transaction

@transaction.commit_on_success
def viewfunc(request):

....

@transaction.commit_on_success(using="my_other_database")
def viewfunc2(request):

....

If the function returns successfully, then Django will commit all work done within the function at that point. If the
function raises an exception, though, Django will roll back the transaction.

3.2. Models and databases 97

Django Documentation, Release 1.2.7

django.db.transaction.commit_manually

Use the commit_manually decorator if you need full control over transactions. It tells Django you’ll be managing
the transaction on your own.

If your view changes data and doesn’t commit() or rollback(), Django will raise a
TransactionManagementError exception.

Manual transaction management looks like this:

from django.db import transaction

@transaction.commit_manually
def viewfunc(request):

...
You can commit/rollback however and whenever you want
transaction.commit()
...

But you’ve got to remember to do it yourself!
try:

...
except:

transaction.rollback()
else:

transaction.commit()

@transaction.commit_manually(using="my_other_database")
def viewfunc2(request):

....

An important note to users of earlier Django releases:

The database connection.commit() and connection.rollback() methods (called db.commit() and
db.rollback() in 0.91 and earlier) no longer exist. They’ve been replaced by transaction.commit() and
transaction.rollback().

How to globally deactivate transaction management

Control freaks can totally disable all transaction management by setting DISABLE_TRANSACTION_MANAGEMENT
to True in the Django settings file.

If you do this, Django won’t provide any automatic transaction management whatsoever. Middleware will no longer
implicitly commit transactions, and you’ll need to roll management yourself. This even requires you to commit
changes done by middleware somewhere else.

Thus, this is best used in situations where you want to run your own transaction-controlling middleware or do some-
thing really strange. In almost all situations, you’ll be better off using the default behavior, or the transaction middle-
ware, and only modify selected functions as needed.

Savepoints

A savepoint is a marker within a transaction that enables you to roll back part of a transaction, rather than the full
transaction. Savepoints are available to the PostgreSQL 8 and Oracle backends. Other backends will provide the
savepoint functions, but they are empty operations - they won’t actually do anything.

98 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Savepoints aren’t especially useful if you are using the default autocommit behaviour of Django. However, if
you are using commit_on_success or commit_manually, each open transaction will build up a series of
database operations, awaiting a commit or rollback. If you issue a rollback, the entire transaction is rolled back.
Savepoints provide the ability to perform a fine-grained rollback, rather than the full rollback that would be performed
by transaction.rollback().

Each of these functions takes a using argument which should be the name of a database for which the behavior
applies. If no using argument is provided then the "default" database is used.

Savepoints are controlled by three methods on the transaction object:

transaction.savepoint(using=None)
Creates a new savepoint. This marks a point in the transaction that is known to be in a “good” state.

Returns the savepoint ID (sid).

transaction.savepoint_commit(sid, using=None)
Updates the savepoint to include any operations that have been performed since the savepoint was created, or
since the last commit.

transaction.savepoint_rollback(sid, using=None)
Rolls the transaction back to the last point at which the savepoint was committed.

The following example demonstrates the use of savepoints:

from django.db import transaction

@transaction.commit_manually
def viewfunc(request):

a.save()
open transaction now contains a.save()
sid = transaction.savepoint()

b.save()
open transaction now contains a.save() and b.save()

if want_to_keep_b:
transaction.savepoint_commit(sid)
open transaction still contains a.save() and b.save()

else:
transaction.savepoint_rollback(sid)
open transaction now contains only a.save()

transaction.commit()

Transactions in MySQL

If you’re using MySQL, your tables may or may not support transactions; it depends on your MySQL version and the
table types you’re using. (By “table types,” we mean something like “InnoDB” or “MyISAM”.) MySQL transaction
peculiarities are outside the scope of this article, but the MySQL site has information on MySQL transactions.

If your MySQL setup does not support transactions, then Django will function in auto-commit mode: Statements will
be executed and committed as soon as they’re called. If your MySQL setup does support transactions, Django will
handle transactions as explained in this document.

3.2. Models and databases 99

http://dev.mysql.com/doc/refman/5.0/en/sql-syntax-transactions.html

Django Documentation, Release 1.2.7

Handling exceptions within PostgreSQL transactions

When a call to a PostgreSQL cursor raises an exception (typically IntegrityError), all subsequent SQL in the
same transaction will fail with the error “current transaction is aborted, queries ignored until end of transaction block”.
Whilst simple use of save() is unlikely to raise an exception in PostgreSQL, there are more advanced usage patterns
which might, such as saving objects with unique fields, saving using the force_insert/force_update flag, or invoking
custom SQL.

There are several ways to recover from this sort of error.

Transaction rollback

The first option is to roll back the entire transaction. For example:

a.save() # Succeeds, but may be undone by transaction rollback
try:

b.save() # Could throw exception
except IntegrityError:

transaction.rollback()
c.save() # Succeeds, but a.save() may have been undone

Calling transaction.rollback() rolls back the entire transaction. Any uncommitted database operations will
be lost. In this example, the changes made by a.save() would be lost, even though that operation raised no error
itself.

Savepoint rollback

If you are using PostgreSQL 8 or later, you can use savepoints to control the extent of a rollback. Before performing
a database operation that could fail, you can set or update the savepoint; that way, if the operation fails, you can roll
back the single offending operation, rather than the entire transaction. For example:

a.save() # Succeeds, and never undone by savepoint rollback
try:

sid = transaction.savepoint()
b.save() # Could throw exception
transaction.savepoint_commit(sid)

except IntegrityError:
transaction.savepoint_rollback(sid)

c.save() # Succeeds, and a.save() is never undone

In this example, a.save() will not be undone in the case where b.save() raises an exception.

Database-level autocommit

New in version 1.1: Please, see the release notes With PostgreSQL 8.2 or later, there is an advanced option to run
PostgreSQL with database-level autocommit. If you use this option, there is no constantly open transaction, so it is
always possible to continue after catching an exception. For example:

a.save() # succeeds
try:

b.save() # Could throw exception
except IntegrityError:

pass
c.save() # succeeds

100 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Note: This is not the same as the autocommit decorator. When using database level autocommit there is no database
transaction at all. The autocommit decorator still uses transactions, automatically committing each transaction
when a database modifying operation occurs.

3.2.7 Multiple databases

New in version 1.2: Please, see the release notes This topic guide describes Django’s support for interacting with
multiple databases. Most of the rest of Django’s documentation assumes you are interacting with a single database. If
you want to interact with multiple databases, you’ll need to take some additional steps.

Defining your databases

The first step to using more than one database with Django is to tell Django about the database servers you’ll be
using. This is done using the DATABASES setting. This setting maps database aliases, which are a way to refer to a
specific database throughout Django, to a dictionary of settings for that specific connection. The settings in the inner
dictionaries are described fully in the DATABASES documentation.

Databases can have any alias you choose. However, the alias default has special significance. Django uses the
database with the alias of default when no other database has been selected. If you don’t have a default
database, you need to be careful to always specify the database that you want to use.

The following is an example settings.py snippet defining two databases – a default PostgreSQL database and a
MySQL database called users:

DATABASES = {
’default’: {

’NAME’: ’app_data’,
’ENGINE’: ’django.db.backends.postgresql_psycopg2’,
’USER’: ’postgres_user’,
’PASSWORD’: ’s3krit’

},
’users’: {

’NAME’: ’user_data’,
’ENGINE’: ’django.db.backends.mysql’,
’USER’: ’mysql_user’,
’PASSWORD’: ’priv4te’

}
}

If you attempt to access a database that you haven’t defined in your DATABASES setting, Django will raise a
django.db.utils.ConnectionDoesNotExist exception.

Synchronizing your databases

The syncdb management command operates on one database at a time. By default, it operates on the default
database, but by providing a --database argument, you can tell syncdb to synchronize a different database. So, to
synchronize all models onto all databases in our example, you would need to call:

$./manage.py syncdb
$./manage.py syncdb --database=users

If you don’t want every application to be synchronized onto a particular database, you can define a database router
that implements a policy constraining the availability of particular models.

3.2. Models and databases 101

Django Documentation, Release 1.2.7

Alternatively, if you want fine-grained control of synchronization, you can pipe all or part of the output of sqlall
for a particular application directly into your database prompt, like this:

$./manage.py sqlall sales | ./manage.py dbshell

Using other management commands

The other django-admin.py commands that interact with the database operate in the same way as syncdb – they
only ever operate on one database at a time, using --database to control the database used.

Automatic database routing

The easiest way to use multiple databases is to set up a database routing scheme. The default routing scheme ensures
that objects remain ‘sticky’ to their original database (i.e., an object retrieved from the foo database will be saved on
the same database). The default routing scheme ensures that if a database isn’t specified, all queries fall back to the
default database.

You don’t have to do anything to activate the default routing scheme – it is provided ‘out of the box’ on every Django
project. However, if you want to implement more interesting database allocation behaviors, you can define and install
your own database routers.

Database routers

A database Router is a class that provides up to four methods:

db_for_read(model, **hints)
Suggest the database that should be used for read operations for objects of type model.

If a database operation is able to provide any additional information that might assist in selecting a database, it
will be provided in the hints dictionary. Details on valid hints are provided below.

Returns None if there is no suggestion.

db_for_write(model, **hints)
Suggest the database that should be used for writes of objects of type Model.

If a database operation is able to provide any additional information that might assist in selecting a database, it
will be provided in the hints dictionary. Details on valid hints are provided below.

Returns None if there is no suggestion.

allow_relation(obj1, obj2, **hints)
Return True if a relation between obj1 and obj2 should be allowed, False if the relation should be prevented, or
None if the router has no opinion. This is purely a validation operation, used by foreign key and many to many
operations to determine if a relation should be allowed between two objects.

allow_syncdb(db, model)
Determine if the model should be synchronized onto the database with alias db. Return True if the model
should be synchronized, False if it should not be synchronized, or None if the router has no opinion. This
method can be used to determine the availability of a model on a given database.

A router doesn’t have to provide all these methods - it omit one or more of them. If one of the methods is omitted,
Django will skip that router when performing the relevant check.

102 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Hints The hints received by the database router can be used to decide which database should receive a given request.

At present, the only hint that will be provided is instance, an object instance that is related to the read or write
operation that is underway. This might be the instance that is being saved, or it might be an instance that is being
added in a many-to-many relation. In some cases, no instance hint will be provided at all. The router checks for the
existence of an instance hint, and determine if that hint should be used to alter routing behavior.

Using routers

Database routers are installed using the DATABASE_ROUTERS setting. This setting defines a list of class names, each
specifying a router that should be used by the master router (django.db.router).

The master router is used by Django’s database operations to allocate database usage. Whenever a query needs to know
which database to use, it calls the master router, providing a model and a hint (if available). Django then tries each
router in turn until a database suggestion can be found. If no suggestion can be found, it tries the current _state.db
of the hint instance. If a hint instance wasn’t provided, or the instance doesn’t currently have database state, the master
router will allocate the default database.

An example

Example purposes only!

This example is intended as a demonstration of how the router infrastructure can be used to alter database usage. It
intentionally ignores some complex issues in order to demonstrate how routers are used.

This example won’t work if any of the models in myapp contain relationships to models outside of the other
database. Cross-database relationships introduce referential integrity problems that Django can’t currently handle.

The master/slave configuration described is also flawed – it doesn’t provide any solution for handling replication lag
(i.e., query inconsistencies introduced because of the time taken for a write to propagate to the slaves). It also doesn’t
consider the interaction of transactions with the database utilization strategy.

So - what does this mean in practice? Say you want myapp to exist on the other database, and you want all other
models in a master/slave relationship between the databases master, slave1 and slave2. To implement this, you
would need 2 routers:

class MyAppRouter(object):
"""A router to control all database operations on models in
the myapp application"""

def db_for_read(self, model, **hints):
"Point all operations on myapp models to ’other’"
if model._meta.app_label == ’myapp’:

return ’other’
return None

def db_for_write(self, model, **hints):
"Point all operations on myapp models to ’other’"
if model._meta.app_label == ’myapp’:

return ’other’
return None

def allow_relation(self, obj1, obj2, **hints):
"Allow any relation if a model in myapp is involved"
if obj1._meta.app_label == ’myapp’ or obj2._meta.app_label == ’myapp’:

3.2. Models and databases 103

Django Documentation, Release 1.2.7

return True
return None

def allow_syncdb(self, db, model):
"Make sure the myapp app only appears on the ’other’ db"
if db == ’other’:

return model._meta.app_label == ’myapp’
elif model._meta.app_label == ’myapp’:

return False
return None

class MasterSlaveRouter(object):
"""A router that sets up a simple master/slave configuration"""

def db_for_read(self, model, **hints):
"Point all read operations to a random slave"
return random.choice([’slave1’,’slave2’])

def db_for_write(self, model, **hints):
"Point all write operations to the master"
return ’master’

def allow_relation(self, obj1, obj2, **hints):
"Allow any relation between two objects in the db pool"
db_list = (’master’,’slave1’,’slave2’)
if obj1._state.db in db_list and obj2._state.db in db_list:

return True
return None

def allow_syncdb(self, db, model):
"Explicitly put all models on all databases."
return True

Then, in your settings file, add the following (substituting path.to. with the actual python path to the module
where you define the routers):

DATABASE_ROUTERS = [’path.to.MyAppRouter’, ’path.to.MasterSlaveRouter’]

The order in which routers are processed is significant. Routers will be queried in the order the are
listed in the DATABASE_ROUTERS setting . In this example, the MyAppRouter is processed before the
MasterSlaveRouter, and as a result, decisions concerning the models in myapp are processed before
any other decision is made. If the DATABASE_ROUTERS setting listed the two routers in the other order,
MasterSlaveRouter.allow_syncdb() would be processed first. The catch-all nature of the MasterSlaveR-
outer implementation would mean that all models would be available on all databases.

With this setup installed, lets run some Django code:

>>> # This retrieval will be performed on the ’credentials’ database
>>> fred = User.objects.get(username=’fred’)
>>> fred.first_name = ’Frederick’

>>> # This save will also be directed to ’credentials’
>>> fred.save()

>>> # These retrieval will be randomly allocated to a slave database
>>> dna = Person.objects.get(name=’Douglas Adams’)

>>> # A new object has no database allocation when created
>>> mh = Book(title=’Mostly Harmless’)

104 Chapter 3. Using Django

Django Documentation, Release 1.2.7

>>> # This assignment will consult the router, and set mh onto
>>> # the same database as the author object
>>> mh.author = dna

>>> # This save will force the ’mh’ instance onto the master database...
>>> mh.save()

>>> # ... but if we re-retrieve the object, it will come back on a slave
>>> mh = Book.objects.get(title=’Mostly Harmless’)

Manually selecting a database

Django also provides an API that allows you to maintain complete control over database usage in your code. A
manually specified database allocation will take priority over a database allocated by a router.

Manually selecting a database for a QuerySet

You can select the database for a QuerySet at any point in the QuerySet “chain.” Just call using() on the
QuerySet to get another QuerySet that uses the specified database.

using() takes a single argument: the alias of the database on which you want to run the query. For example:

>>> # This will run on the ’default’ database.
>>> Author.objects.all()

>>> # So will this.
>>> Author.objects.using(’default’).all()

>>> # This will run on the ’other’ database.
>>> Author.objects.using(’other’).all()

Selecting a database for save()

Use the using keyword to Model.save() to specify to which database the data should be saved.

For example, to save an object to the legacy_users database, you’d use this:

>>> my_object.save(using=’legacy_users’)

If you don’t specify using, the save() method will save into the default database allocated by the routers.

Moving an object from one database to another If you’ve saved an instance to one database, it might be tempt-
ing to use save(using=...) as a way to migrate the instance to a new database. However, if you don’t take
appropriate steps, this could have some unexpected consequences.

Consider the following example:

>>> p = Person(name=’Fred’)
>>> p.save(using=’first’) # (statement 1)
>>> p.save(using=’second’) # (statement 2)

In statement 1, a new Person object is saved to the first database. At this time, p doesn’t have a primary key, so
Django issues a SQL INSERT statement. This creates a primary key, and Django assigns that primary key to p.

3.2. Models and databases 105

Django Documentation, Release 1.2.7

When the save occurs in statement 2, p already has a primary key value, and Django will attempt to use that primary
key on the new database. If the primary key value isn’t in use in the second database, then you won’t have any
problems – the object will be copied to the new database.

However, if the primary key of p is already in use on the second database, the existing object in the second database
will be overridden when p is saved.

You can avoid this in two ways. First, you can clear the primary key of the instance. If an object has no primary key,
Django will treat it as a new object, avoiding any loss of data on the second database:

>>> p = Person(name=’Fred’)
>>> p.save(using=’first’)
>>> p.pk = None # Clear the primary key.
>>> p.save(using=’second’) # Write a completely new object.

The second option is to use the force_insert option to save() to ensure that Django does a SQL INSERT:

>>> p = Person(name=’Fred’)
>>> p.save(using=’first’)
>>> p.save(using=’second’, force_insert=True)

This will ensure that the person named Fred will have the same primary key on both databases. If that primary key is
already in use when you try to save onto the second database, an error will be raised.

Selecting a database to delete from

By default, a call to delete an existing object will be executed on the same database that was used to retrieve the object
in the first place:

>>> u = User.objects.using(’legacy_users’).get(username=’fred’)
>>> u.delete() # will delete from the ‘legacy_users‘ database

To specify the database from which a model will be deleted, pass a using keyword argument to the
Model.delete() method. This argument works just like the using keyword argument to save().

For example, if you’re migrating a user from the legacy_users database to the new_users database, you might
use these commands:

>>> user_obj.save(using=’new_users’)
>>> user_obj.delete(using=’legacy_users’)

Using managers with multiple databases

Use the db_manager() method on managers to give managers access to a non-default database.

For example, say you have a custom manager method that touches the database –
User.objects.create_user(). Because create_user() is a manager method, not a QuerySet
method, you can’t do User.objects.using(’new_users’).create_user(). (The create_user()
method is only available on User.objects, the manager, not on QuerySet objects derived from the manager.)
The solution is to use db_manager(), like this:

User.objects.db_manager(’new_users’).create_user(...)

db_manager() returns a copy of the manager bound to the database you specify.

106 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Using get_query_set()with multiple databases If you’re overriding get_query_set() on your manager,
be sure to either call the method on the parent (using super()) or do the appropriate handling of the _db attribute
on the manager (a string containing the name of the database to use).

For example, if you want to return a custom QuerySet class from the get_query_set method, you could do this:

class MyManager(models.Manager):
def get_query_set(self):

qs = CustomQuerySet(self.model)
if self._db is not None:

qs = qs.using(self._db)
return qs

Exposing multiple databases in Django’s admin interface

Django’s admin doesn’t have any explicit support for multiple databases. If you want to provide an admin interface for
a model on a database other than that that specified by your router chain, you’ll need to write custom ModelAdmin
classes that will direct the admin to use a specific database for content.

ModelAdmin objects have four methods that require customization for multiple-database support:

class MultiDBModelAdmin(admin.ModelAdmin):
A handy constant for the name of the alternate database.
using = ’other’

def save_model(self, request, obj, form, change):
Tell Django to save objects to the ’other’ database.
obj.save(using=self.using)

def queryset(self, request):
Tell Django to look for objects on the ’other’ database.
return super(MultiDBModelAdmin, self).queryset(request).using(self.using)

def formfield_for_foreignkey(self, db_field, request=None, **kwargs):
Tell Django to populate ForeignKey widgets using a query
on the ’other’ database.
return super(MultiDBModelAdmin, self).formfield_for_foreignkey(db_field, request=request, using=self.using, **kwargs)

def formfield_for_manytomany(self, db_field, request=None, **kwargs):
Tell Django to populate ManyToMany widgets using a query
on the ’other’ database.
return super(MultiDBModelAdmin, self).formfield_for_manytomany(db_field, request=request, using=self.using, **kwargs)

The implementation provided here implements a multi-database strategy where all objects of a given type are stored
on a specific database (e.g., all User objects are in the other database). If your usage of multiple databases is more
complex, your ModelAdmin will need to reflect that strategy.

Inlines can be handled in a similar fashion. They require three customized methods:

class MultiDBTabularInline(admin.TabularInline):
using = ’other’

def queryset(self, request):
Tell Django to look for inline objects on the ’other’ database.
return super(MultiDBTabularInline, self).queryset(request).using(self.using)

def formfield_for_foreignkey(self, db_field, request=None, **kwargs):
Tell Django to populate ForeignKey widgets using a query

3.2. Models and databases 107

Django Documentation, Release 1.2.7

on the ’other’ database.
return super(MultiDBTabularInline, self).formfield_for_foreignkey(db_field, request=request, using=self.using, **kwargs)

def formfield_for_manytomany(self, db_field, request=None, **kwargs):
Tell Django to populate ManyToMany widgets using a query
on the ’other’ database.
return super(MultiDBTabularInline, self).formfield_for_manytomany(db_field, request=request, using=self.using, **kwargs)

Once you’ve written your model admin definitions, they can be registered with any Admin instance:

from django.contrib import admin

Specialize the multi-db admin objects for use with specific models.
class BookInline(MultiDBTabularInline):

model = Book

class PublisherAdmin(MultiDBModelAdmin):
inlines = [BookInline]

admin.site.register(Author, MultiDBModelAdmin)
admin.site.register(Publisher, PublisherAdmin)

othersite = admin.Site(’othersite’)
othersite.register(Publisher, MultiDBModelAdmin)

This example sets up two admin sites. On the first site, the Author and Publisher objects are exposed;
Publisher objects have an tabular inline showing books published by that publisher. The second site exposes
just publishers, without the inlines.

Using raw cursors with multiple databases

If you are using more than one database you can use django.db.connections to obtain the connection (and
cursor) for a specific database. django.db.connections is a dictionary-like object that allows you to retrieve a
specific connection using it’s alias:

from django.db import connections
cursor = connections[’my_db_alias’].cursor()

Limitations of multiple databases

Cross-database relations

Django doesn’t currently provide any support for foreign key or many-to-many relationships spanning multiple
databases. If you have used a router to partition models to different databases, any foreign key and many-to-many
relationships defined by those models must be internal to a single database.

This is because of referential integrity. In order to maintain a relationship between two objects, Django needs to know
that the primary key of the related object is valid. If the primary key is stored on a separate database, it’s not possible
to easily evaluate the validity of a primary key.

If you’re using Postgres, Oracle, or MySQL with InnoDB, this is enforced at the database integrity level – database
level key constraints prevent the creation of relations that can’t be validated.

However, if you’re using SQLite or MySQL with MyISAM tables, there is no enforced referential integrity; as a
result, you may be able to ‘fake’ cross database foreign keys. However, this configuration is not officially supported
by Django.

108 Chapter 3. Using Django

Django Documentation, Release 1.2.7

3.2.8 Database access optimization

Django’s database layer provides various ways to help developers get the most out of their databases. This document
gathers together links to the relevant documentation, and adds various tips, organized under a number of headings that
outline the steps to take when attempting to optimize your database usage.

Profile first

As general programming practice, this goes without saying. Find out what queries you are doing and what they are
costing you. You may also want to use an external project like django-debug-toolbar, or a tool that monitors your
database directly.

Remember that you may be optimizing for speed or memory or both, depending on your requirements. Sometimes
optimizing for one will be detrimental to the other, but sometimes they will help each other. Also, work that is done by
the database process might not have the same cost (to you) as the same amount of work done in your Python process.
It is up to you to decide what your priorities are, where the balance must lie, and profile all of these as required since
this will depend on your application and server.

With everything that follows, remember to profile after every change to ensure that the change is a benefit, and a big
enough benefit given the decrease in readability of your code. All of the suggestions below come with the caveat that
in your circumstances the general principle might not apply, or might even be reversed.

Use standard DB optimization techniques

...including:

• Indexes. This is a number one priority, after you have determined from profiling what indexes should be added.
Use django.db.models.Field.db_index to add these from Django.

• Appropriate use of field types.

We will assume you have done the obvious things above. The rest of this document focuses on how to use Django
in such a way that you are not doing unnecessary work. This document also does not address other optimization
techniques that apply to all expensive operations, such as general purpose caching.

Understand QuerySets

Understanding QuerySets is vital to getting good performance with simple code. In particular:

Understand QuerySet evaluation

To avoid performance problems, it is important to understand:

• that QuerySets are lazy.

• when they are evaluated.

• how the data is held in memory.

Understand cached attributes

As well as caching of the whole QuerySet, there is caching of the result of attributes on ORM objects. In general,
attributes that are not callable will be cached. For example, assuming the example Weblog models:

3.2. Models and databases 109

http://robhudson.github.com/django-debug-toolbar/

Django Documentation, Release 1.2.7

>>> entry = Entry.objects.get(id=1)
>>> entry.blog # Blog object is retrieved at this point
>>> entry.blog # cached version, no DB access

But in general, callable attributes cause DB lookups every time:

>>> entry = Entry.objects.get(id=1)
>>> entry.authors.all() # query performed
>>> entry.authors.all() # query performed again

Be careful when reading template code - the template system does not allow use of parentheses, but will call callables
automatically, hiding the above distinction.

Be careful with your own custom properties - it is up to you to implement caching.

Use the with template tag

To make use of the caching behaviour of QuerySet, you may need to use the with template tag.

Use iterator()

When you have a lot of objects, the caching behaviour of the QuerySet can cause a large amount of memory to be
used. In this case, iterator() may help.

Do database work in the database rather than in Python

For instance:

• At the most basic level, use filter and exclude to do filtering in the database.

• Use F() object query expressions to do filtering against other fields within the same model.

• Use annotate to do aggregation in the database.

If these aren’t enough to generate the SQL you need:

Use QuerySet.extra()

A less portable but more powerful method is extra(), which allows some SQL to be explicitly added to the query.
If that still isn’t powerful enough:

Use raw SQL

Write your own custom SQL to retrieve data or populate models. Use django.db.connection.queries to
find out what Django is writing for you and start from there.

Retrieve everything at once if you know you will need it

Hitting the database multiple times for different parts of a single ‘set’ of data that you will need all parts of is, in
general, less efficient than retrieving it all in one query. This is particularly important if you have a query that is
executed in a loop, and could therefore end up doing many database queries, when only one was needed. So:

110 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Use QuerySet.select_related()

Understand QuerySet.select_related() thoroughly, and use it:

• in view code,

• and in managers and default managers where appropriate. Be aware when your manager is and is not used;
sometimes this is tricky so don’t make assumptions.

Don’t retrieve things you don’t need

Use QuerySet.values() and values_list()

When you just want a dict or list of values, and don’t need ORM model objects, make appropriate usage of
values(). These can be useful for replacing model objects in template code - as long as the dicts you supply have
the same attributes as those used in the template, you are fine.

Use QuerySet.defer() and only()

Use defer() and only() if there are database columns you know that you won’t need (or won’t need in most
cases) to avoid loading them. Note that if you do use them, the ORM will have to go and get them in a separate query,
making this a pessimization if you use it inappropriately.

Use QuerySet.count()

...if you only want the count, rather than doing len(queryset).

Use QuerySet.exists()

...if you only want to find out if at least one result exists, rather than if queryset.

But:

Don’t overuse count() and exists()

If you are going to need other data from the QuerySet, just evaluate it.

For example, assuming an Email model that has a body attribute and a many-to-many relation to User, the following
template code is optimal:

{% if display_inbox %}
{% with user.emails.all as emails %}
{% if emails %}
<p>You have {{ emails|length }} email(s)</p>
{% for email in emails %}

<p>{{ email.body }}</p>
{% endfor %}

{% else %}
<p>No messages today.</p>

{% endif %}
{% endwith %}

{% endif %}

3.2. Models and databases 111

Django Documentation, Release 1.2.7

It is optimal because:

1. Since QuerySets are lazy, this does no database queries if ‘display_inbox’ is False.

2. Use of with means that we store user.emails.all in a variable for later use, allowing its cache to be
re-used.

3. The line {% if emails %} causes QuerySet.__nonzero__() to be called, which causes the
user.emails.all() query to be run on the database, and at the least the first line to be turned into an
ORM object. If there aren’t any results, it will return False, otherwise True.

4. The use of {{ emails|length }} calls QuerySet.__len__(), filling out the rest of the cache without
doing another query.

5. The for loop iterates over the already filled cache.

In total, this code does either one or zero database queries. The only deliberate optimization performed is the use of the
with tag. Using QuerySet.exists() or QuerySet.count() at any point would cause additional queries.

Use QuerySet.update() and delete()

Rather than retrieve a load of objects, set some values, and save them individual, use a bulk SQL UPDATE statement,
via QuerySet.update(). Similarly, do bulk deletes where possible.

Note, however, that these bulk update methods cannot call the save() or delete()methods of individual instances,
which means that any custom behaviour you have added for these methods will not be executed, including anything
driven from the normal database object signals.

Use foreign key values directly

If you only need a foreign key value, use the foreign key value that is already on the object you’ve got, rather than
getting the whole related object and taking its primary key. i.e. do:

entry.blog_id

instead of:

entry.blog.id

3.3 Handling HTTP requests

Information on handling HTTP requests in Django:

3.3.1 URL dispatcher

A clean, elegant URL scheme is an important detail in a high-quality Web application. Django lets you design URLs
however you want, with no framework limitations.

There’s no .php or .cgi required, and certainly none of that 0,2097,1-1-1928,00 nonsense.

See Cool URIs don’t change, by World Wide Web creator Tim Berners-Lee, for excellent arguments on why URLs
should be clean and usable.

112 Chapter 3. Using Django

http://www.w3.org/Provider/Style/URI

Django Documentation, Release 1.2.7

Overview

To design URLs for an app, you create a Python module informally called a URLconf (URL configuration). This
module is pure Python code and is a simple mapping between URL patterns (as simple regular expressions) to Python
callback functions (your views).

This mapping can be as short or as long as needed. It can reference other mappings. And, because it’s pure Python
code, it can be constructed dynamically.

How Django processes a request

When a user requests a page from your Django-powered site, this is the algorithm the system follows to determine
which Python code to execute:

1. Django determines the root URLconf module to use. Ordinarily, this is the value of the ROOT_URLCONF
setting, but if the incoming HttpRequest object has an attribute called urlconf (set by middleware request
processing), its value will be used in place of the ROOT_URLCONF setting.

2. Django loads that Python module and looks for the variable urlpatterns. This should be a Python list, in
the format returned by the function django.conf.urls.defaults.patterns().

3. Django runs through each URL pattern, in order, and stops at the first one that matches the requested URL.

4. Once one of the regexes matches, Django imports and calls the given view, which is a simple Python function.
The view gets passed an HttpRequest as its first argument and any values captured in the regex as remaining
arguments.

Example

Here’s a sample URLconf:

from django.conf.urls.defaults import *

urlpatterns = patterns(’’,
(r’^articles/2003/$’, ’news.views.special_case_2003’),
(r’^articles/(\d{4})/$’, ’news.views.year_archive’),
(r’^articles/(\d{4})/(\d{2})/$’, ’news.views.month_archive’),
(r’^articles/(\d{4})/(\d{2})/(\d+)/$’, ’news.views.article_detail’),

)

Notes:

• from django.conf.urls.defaults import * makes the patterns() function available.

• To capture a value from the URL, just put parenthesis around it.

• There’s no need to add a leading slash, because every URL has that. For example, it’s ^articles, not
^/articles.

• The ’r’ in front of each regular expression string is optional but recommended. It tells Python that a string is
“raw” – that nothing in the string should be escaped. See Dive Into Python’s explanation.

Example requests:

• A request to /articles/2005/03/ would match the third entry in the list. Django would call the function
news.views.month_archive(request, ’2005’, ’03’).

• /articles/2005/3/ would not match any URL patterns, because the third entry in the list requires two
digits for the month.

3.3. Handling HTTP requests 113

http://diveintopython.org/regular_expressions/street_addresses.html#re.matching.2.3

Django Documentation, Release 1.2.7

• /articles/2003/ would match the first pattern in the list, not the second one, because the patterns are
tested in order, and the first one is the first test to pass. Feel free to exploit the ordering to insert special cases
like this.

• /articles/2003 would not match any of these patterns, because each pattern requires that the URL end
with a slash.

• /articles/2003/03/3/ would match the final pattern. Django would call the function
news.views.article_detail(request, ’2003’, ’03’, ’3’).

Named groups

The above example used simple, non-named regular-expression groups (via parenthesis) to capture bits of the URL and
pass them as positional arguments to a view. In more advanced usage, it’s possible to use named regular-expression
groups to capture URL bits and pass them as keyword arguments to a view.

In Python regular expressions, the syntax for named regular-expression groups is (?P<name>pattern), where
name is the name of the group and pattern is some pattern to match.

Here’s the above example URLconf, rewritten to use named groups:

urlpatterns = patterns(’’,
(r’^articles/2003/$’, ’news.views.special_case_2003’),
(r’^articles/(?P<year>\d{4})/$’, ’news.views.year_archive’),
(r’^articles/(?P<year>\d{4})/(?P<month>\d{2})/$’, ’news.views.month_archive’),
(r’^articles/(?P<year>\d{4})/(?P<month>\d{2})/(?P<day>\d+)/$’, ’news.views.article_detail’),

)

This accomplishes exactly the same thing as the previous example, with one subtle difference: The captured values
are passed to view functions as keyword arguments rather than positional arguments. For example:

• A request to /articles/2005/03/would call the function news.views.month_archive(request,
year=’2005’, month=’03’), instead of news.views.month_archive(request, ’2005’,
’03’).

• A request to /articles/2003/03/3/would call the function news.views.article_detail(request,
year=’2003’, month=’03’, day=’3’).

In practice, this means your URLconfs are slightly more explicit and less prone to argument-order bugs – and you can
reorder the arguments in your views’ function definitions. Of course, these benefits come at the cost of brevity; some
developers find the named-group syntax ugly and too verbose.

The matching/grouping algorithm

Here’s the algorithm the URLconf parser follows, with respect to named groups vs. non-named groups in a regular
expression:

If there are any named arguments, it will use those, ignoring non-named arguments. Otherwise, it will pass all non-
named arguments as positional arguments.

In both cases, it will pass any extra keyword arguments as keyword arguments. See “Passing extra options to view
functions” below.

What the URLconf searches against

The URLconf searches against the requested URL, as a normal Python string. This does not include GET or POST
parameters, or the domain name.

114 Chapter 3. Using Django

Django Documentation, Release 1.2.7

For example, in a request to http://www.example.com/myapp/, the URLconf will look for myapp/.

In a request to http://www.example.com/myapp/?page=3, the URLconf will look for myapp/.

The URLconf doesn’t look at the request method. In other words, all request methods – POST, GET, HEAD, etc. – will
be routed to the same function for the same URL.

Syntax of the urlpatterns variable

urlpatterns should be a Python list, in the format returned by the function
django.conf.urls.defaults.patterns(). Always use patterns() to create the urlpatterns
variable.

Convention is to use from django.conf.urls.defaults import * at the top of your URLconf. This
gives your module access to these objects:

patterns

patterns(prefix, pattern_description, ...)

A function that takes a prefix, and an arbitrary number of URL patterns, and returns a list of URL patterns in the format
Django needs.

The first argument to patterns() is a string prefix. See The view prefix below.

The remaining arguments should be tuples in this format:

(regular expression, Python callback function [, optional dictionary [, optional name]])

...where optional dictionary and optional name are optional. (See Passing extra options to view func-
tions below.)

Note: Because patterns() is a function call, it accepts a maximum of 255 arguments (URL patterns, in this case).
This is a limit for all Python function calls. This is rarely a problem in practice, because you’ll typically structure your
URL patterns modularly by using include() sections. However, on the off-chance you do hit the 255-argument limit,
realize that patterns() returns a Python list, so you can split up the construction of the list.

urlpatterns = patterns(’’,
...
)

urlpatterns += patterns(’’,
...
)

Python lists have unlimited size, so there’s no limit to how many URL patterns you can construct. The only limit is
that you can only create 254 at a time (the 255th argument is the initial prefix argument).

url

url(regex, view, kwargs=None, name=None, prefix=’‘)

You can use the url() function, instead of a tuple, as an argument to patterns(). This is convenient if you want
to specify a name without the optional extra arguments dictionary. For example:

3.3. Handling HTTP requests 115

Django Documentation, Release 1.2.7

urlpatterns = patterns(’’,
url(r’^index/$’, index_view, name="main-view"),
...

)

This function takes five arguments, most of which are optional:

url(regex, view, kwargs=None, name=None, prefix=’’)

See Naming URL patterns for why the name parameter is useful.

The prefix parameter has the same meaning as the first argument to patterns() and is only relevant when you’re
passing a string as the view parameter.

handler404

handler404

A callable, or a string representing the full Python import path to the view that should be called if none of the URL
patterns match.

By default, this is ’django.views.defaults.page_not_found’. That default value should suffice.
Changed in version 1.2: Previous versions of Django only accepted strings representing import paths.

handler500

handler500

A callable, or a string representing the full Python import path to the view that should be called in case of server errors.
Server errors happen when you have runtime errors in view code.

By default, this is ’django.views.defaults.server_error’. That default value should suffice. Changed
in version 1.2: Previous versions of Django only accepted strings representing import paths.

include

include(<module or pattern_list>)

A function that takes a full Python import path to another URLconf module that should be “included” in this place.
New in version 1.1: Please, see the release notes include() also accepts as an argument an iterable that returns
URL patterns.

See Including other URLconfs below.

Notes on capturing text in URLs

Each captured argument is sent to the view as a plain Python string, regardless of what sort of match the regular
expression makes. For example, in this URLconf line:

(r’^articles/(?P<year>\d{4})/$’, ’news.views.year_archive’),

...the year argument to news.views.year_archive() will be a string, not an integer, even though the \d{4}
will only match integer strings.

A convenient trick is to specify default parameters for your views’ arguments. Here’s an example URLconf and view:

116 Chapter 3. Using Django

Django Documentation, Release 1.2.7

URLconf
urlpatterns = patterns(’’,

(r’^blog/$’, ’blog.views.page’),
(r’^blog/page(?P<num>\d+)/$’, ’blog.views.page’),

)

View (in blog/views.py)
def page(request, num="1"):

Output the appropriate page of blog entries, according to num.

In the above example, both URL patterns point to the same view – blog.views.page – but the first pattern doesn’t
capture anything from the URL. If the first pattern matches, the page() function will use its default argument for
num, "1". If the second pattern matches, page() will use whatever num value was captured by the regex.

Performance

Each regular expression in a urlpatterns is compiled the first time it’s accessed. This makes the system blazingly
fast.

The view prefix

You can specify a common prefix in your patterns() call, to cut down on code duplication.

Here’s the example URLconf from the Django overview:

from django.conf.urls.defaults import *

urlpatterns = patterns(’’,
(r’^articles/(\d{4})/$’, ’news.views.year_archive’),
(r’^articles/(\d{4})/(\d{2})/$’, ’news.views.month_archive’),
(r’^articles/(\d{4})/(\d{2})/(\d+)/$’, ’news.views.article_detail’),

)

In this example, each view has a common prefix – ’news.views’. Instead of typing that out for each entry in
urlpatterns, you can use the first argument to the patterns() function to specify a prefix to apply to each
view function.

With this in mind, the above example can be written more concisely as:

from django.conf.urls.defaults import *

urlpatterns = patterns(’news.views’,
(r’^articles/(\d{4})/$’, ’year_archive’),
(r’^articles/(\d{4})/(\d{2})/$’, ’month_archive’),
(r’^articles/(\d{4})/(\d{2})/(\d+)/$’, ’article_detail’),

)

Note that you don’t put a trailing dot (".") in the prefix. Django puts that in automatically.

Multiple view prefixes

In practice, you’ll probably end up mixing and matching views to the point where the views in your urlpatterns
won’t have a common prefix. However, you can still take advantage of the view prefix shortcut to remove duplication.
Just add multiple patterns() objects together, like this:

Old:

3.3. Handling HTTP requests 117

Django Documentation, Release 1.2.7

from django.conf.urls.defaults import *

urlpatterns = patterns(’’,
(r’^$’, ’django.views.generic.date_based.archive_index’),
(r’^(?P<year>\d{4})/(?P<month>[a-z]{3})/$’, ’django.views.generic.date_based.archive_month’),
(r’^tag/(?P<tag>\w+)/$’, ’weblog.views.tag’),

)

New:

from django.conf.urls.defaults import *

urlpatterns = patterns(’django.views.generic.date_based’,
(r’^$’, ’archive_index’),
(r’^(?P<year>\d{4})/(?P<month>[a-z]{3})/$’,’archive_month’),

)

urlpatterns += patterns(’weblog.views’,
(r’^tag/(?P<tag>\w+)/$’, ’tag’),

)

Including other URLconfs

At any point, your urlpatterns can “include” other URLconf modules. This essentially “roots” a set of URLs
below other ones.

For example, here’s the URLconf for the Django Web site itself. It includes a number of other URLconfs:

from django.conf.urls.defaults import *

urlpatterns = patterns(’’,
(r’^weblog/’, include(’django_website.apps.blog.urls.blog’)),
(r’^documentation/’, include(’django_website.apps.docs.urls.docs’)),
(r’^comments/’, include(’django.contrib.comments.urls’)),

)

Note that the regular expressions in this example don’t have a $ (end-of-string match character) but do include a
trailing slash. Whenever Django encounters include(), it chops off whatever part of the URL matched up to that
point and sends the remaining string to the included URLconf for further processing. New in version 1.1: Please,
see the release notes Another possibility is to include additional URL patterns not by specifying the URLconf Python
module defining them as the include argument but by using directly the pattern list as returned by patterns instead. For
example:

from django.conf.urls.defaults import *

extra_patterns = patterns(’’,
url(r’reports/(?P<id>\d+)/$’, ’credit.views.report’, name=’credit-reports’),
url(r’charge/$’, ’credit.views.charge’, name=’credit-charge’),

)

urlpatterns = patterns(’’,
url(r’^$’, ’apps.main.views.homepage’, name=’site-homepage’),
(r’^help/’, include(’apps.help.urls’)),
(r’^credit/’, include(extra_patterns)),

)

This approach can be seen in use when you deploy an instance of the Django Admin application. The Django Admin
is deployed as instances of a AdminSite; each AdminSite instance has an attribute urls that returns the url

118 Chapter 3. Using Django

http://www.djangoproject.com/

Django Documentation, Release 1.2.7

patterns available to that instance. It is this attribute that you include() into your projects urlpatterns when
you deploy the admin instance.

Captured parameters

An included URLconf receives any captured parameters from parent URLconfs, so the following example is valid:

In settings/urls/main.py
urlpatterns = patterns(’’,

(r’^(?P<username>\w+)/blog/’, include(’foo.urls.blog’)),
)

In foo/urls/blog.py
urlpatterns = patterns(’foo.views’,

(r’^$’, ’blog.index’),
(r’^archive/$’, ’blog.archive’),

)

In the above example, the captured "username" variable is passed to the included URLconf, as expected.

Defining URL namespaces

When you need to deploy multiple instances of a single application, it can be helpful to be able to differentiate
between instances. This is especially important when using named URL patterns, since multiple instances of a single
application will share named URLs. Namespaces provide a way to tell these named URLs apart.

A URL namespace comes in two parts, both of which are strings:

• An application namespace. This describes the name of the application that is being deployed. Every instance
of a single application will have the same application namespace. For example, Django’s admin application has
the somewhat predictable application namespace of admin.

• An instance namespace. This identifies a specific instance of an application. Instance namespaces should
be unique across your entire project. However, an instance namespace can be the same as the application
namespace. This is used to specify a default instance of an application. For example, the default Django Admin
instance has an instance namespace of admin.

URL Namespaces can be specified in two ways.

Firstly, you can provide the application and instance namespace as arguments to include() when you construct
your URL patterns. For example,:

(r’^help/’, include(’apps.help.urls’, namespace=’foo’, app_name=’bar’)),

This will include the URLs defined in apps.help.urls into the application namespace bar, with the instance
namespace foo.

Secondly, you can include an object that contains embedded namespace data. If you include() a patterns
object, that object will be added to the global namespace. However, you can also include() an object that contains
a 3-tuple containing:

(<patterns object>, <application namespace>, <instance namespace>)

This will include the nominated URL patterns into the given application and instance namespace. For example, the
urls attribute of Django’s AdminSite object returns a 3-tuple that contains all the patterns in an admin site, plus
the name of the admin instance, and the application namespace admin.

3.3. Handling HTTP requests 119

Django Documentation, Release 1.2.7

Once you have defined namespaced URLs, you can reverse them. For details on reversing namespaced urls, see the
documentation on reversing namespaced URLs.

Passing extra options to view functions

URLconfs have a hook that lets you pass extra arguments to your view functions, as a Python dictionary.

Any URLconf tuple can have an optional third element, which should be a dictionary of extra keyword arguments to
pass to the view function.

For example:

urlpatterns = patterns(’blog.views’,
(r’^blog/(?P<year>\d{4})/$’, ’year_archive’, {’foo’: ’bar’}),

)

In this example, for a request to /blog/2005/, Django will call the blog.views.year_archive() view,
passing it these keyword arguments:

year=’2005’, foo=’bar’

This technique is used in generic views and in the syndication framework to pass metadata and options to views.

Dealing with conflicts

It’s possible to have a URL pattern which captures named keyword arguments, and also passes arguments with the
same names in its dictionary of extra arguments. When this happens, the arguments in the dictionary will be used
instead of the arguments captured in the URL.

Passing extra options to include()

Similarly, you can pass extra options to include(). When you pass extra options to include(), each line in the
included URLconf will be passed the extra options.

For example, these two URLconf sets are functionally identical:

Set one:

main.py
urlpatterns = patterns(’’,

(r’^blog/’, include(’inner’), {’blogid’: 3}),
)

inner.py
urlpatterns = patterns(’’,

(r’^archive/$’, ’mysite.views.archive’),
(r’^about/$’, ’mysite.views.about’),

)

Set two:

main.py
urlpatterns = patterns(’’,

(r’^blog/’, include(’inner’)),
)

inner.py

120 Chapter 3. Using Django

Django Documentation, Release 1.2.7

urlpatterns = patterns(’’,
(r’^archive/$’, ’mysite.views.archive’, {’blogid’: 3}),
(r’^about/$’, ’mysite.views.about’, {’blogid’: 3}),

)

Note that extra options will always be passed to every line in the included URLconf, regardless of whether the line’s
view actually accepts those options as valid. For this reason, this technique is only useful if you’re certain that every
view in the included URLconf accepts the extra options you’re passing.

Passing callable objects instead of strings

Some developers find it more natural to pass the actual Python function object rather than a string containing the path
to its module. This alternative is supported – you can pass any callable object as the view.

For example, given this URLconf in “string” notation:

urlpatterns = patterns(’’,
(r’^archive/$’, ’mysite.views.archive’),
(r’^about/$’, ’mysite.views.about’),
(r’^contact/$’, ’mysite.views.contact’),

)

You can accomplish the same thing by passing objects rather than strings. Just be sure to import the objects:

from mysite.views import archive, about, contact

urlpatterns = patterns(’’,
(r’^archive/$’, archive),
(r’^about/$’, about),
(r’^contact/$’, contact),

)

The following example is functionally identical. It’s just a bit more compact because it imports the module that
contains the views, rather than importing each view individually:

from mysite import views

urlpatterns = patterns(’’,
(r’^archive/$’, views.archive),
(r’^about/$’, views.about),
(r’^contact/$’, views.contact),

)

The style you use is up to you.

Note that if you use this technique – passing objects rather than strings – the view prefix (as explained in “The view
prefix” above) will have no effect.

Naming URL patterns

It’s fairly common to use the same view function in multiple URL patterns in your URLconf. For example, these two
URL patterns both point to the archive view:

urlpatterns = patterns(’’,
(r’^archive/(\d{4})/$’, archive),
(r’^archive-summary/(\d{4})/$’, archive, {’summary’: True}),

)

3.3. Handling HTTP requests 121

Django Documentation, Release 1.2.7

This is completely valid, but it leads to problems when you try to do reverse URL matching (through the
permalink() decorator or the url template tag). Continuing this example, if you wanted to retrieve the URL
for the archive view, Django’s reverse URL matcher would get confused, because two URLpatterns point at that
view.

To solve this problem, Django supports named URL patterns. That is, you can give a name to a URL pattern in order
to distinguish it from other patterns using the same view and parameters. Then, you can use this name in reverse URL
matching.

Here’s the above example, rewritten to use named URL patterns:

urlpatterns = patterns(’’,
url(r’^archive/(\d{4})/$’, archive, name="full-archive"),
url(r’^archive-summary/(\d{4})/$’, archive, {’summary’: True}, "arch-summary"),

)

With these names in place (full-archive and arch-summary), you can target each pattern individually by
using its name:

{% url arch-summary 1945 %}
{% url full-archive 2007 %}

Even though both URL patterns refer to the archive view here, using the name parameter to url() allows you to
tell them apart in templates.

The string used for the URL name can contain any characters you like. You are not restricted to valid Python names.

Note: When you name your URL patterns, make sure you use names that are unlikely to clash with any other
application’s choice of names. If you call your URL pattern comment, and another application does the same thing,
there’s no guarantee which URL will be inserted into your template when you use this name.

Putting a prefix on your URL names, perhaps derived from the application name, will decrease the chances of collision.
We recommend something like myapp-comment instead of comment.

URL namespaces

New in version 1.1: Please, see the release notes Namespaced URLs are specified using the : operator. For example,
the main index page of the admin application is referenced using admin:index. This indicates a namespace of
admin, and a named URL of index.

Namespaces can also be nested. The named URL foo:bar:whiz would look for a pattern named whiz in the
namespace bar that is itself defined within the top-level namespace foo.

When given a namespaced URL (e.g. myapp:index) to resolve, Django splits the fully qualified name into parts,
and then tries the following lookup:

1. First, Django looks for a matching application namespace (in this example, myapp). This will yield a list of
instances of that application.

2. If there is a current application defined, Django finds and returns the URL resolver for that instance. The current
application can be specified as an attribute on the template context - applications that expect to have multiple
deployments should set the current_app attribute on any Context or RequestContext that is used to
render a template.

The current application can also be specified manually as an argument to the reverse() function.

3. If there is no current application. Django looks for a default application instance. The default application
instance is the instance that has an instance namespace matching the application namespace (in this example, an
instance of the myapp called myapp).

122 Chapter 3. Using Django

Django Documentation, Release 1.2.7

4. If there is no default application instance, Django will pick the last deployed instance of the application, whatever
its instance name may be.

5. If the provided namespace doesn’t match an application namespace in step 1, Django will attempt a direct lookup
of the namespace as an instance namespace.

If there are nested namespaces, these steps are repeated for each part of the namespace until only the view name is
unresolved. The view name will then be resolved into a URL in the namespace that has been found.

To show this resolution strategy in action, consider an example of two instances of myapp: one called foo, and one
called bar. myapp has a main index page with a URL named index. Using this setup, the following lookups are
possible:

• If one of the instances is current - say, if we were rendering a utility page in the instance bar - myapp:index
will resolve to the index page of the instance bar.

• If there is no current instance - say, if we were rendering a page somewhere else on the site - myapp:index
will resolve to the last registered instance of myapp. Since there is no default instance, the last instance of
myapp that is registered will be used. This could be foo or bar, depending on the order they are introduced
into the urlpatterns of the project.

• foo:index will always resolve to the index page of the instance foo.

If there was also a default instance - i.e., an instance named myapp - the following would happen:

• If one of the instances is current - say, if we were rendering a utility page in the instance bar - myapp:index
will resolve to the index page of the instance bar.

• If there is no current instance - say, if we were rendering a page somewhere else on the site - myapp:index
will resolve to the index page of the default instance.

• foo:index will again resolve to the index page of the instance foo.

Utility methods

reverse()

If you need to use something similar to the url template tag in your code, Django provides the following method (in
the django.core.urlresolvers module):

reverse(viewname, urlconf=None, args=None, kwargs=None, current_app=None)

viewname is either the function name (either a function reference, or the string version of the name, if you used
that form in urlpatterns) or the URL pattern name. Normally, you won’t need to worry about the urlconf
parameter and will only pass in the positional and keyword arguments to use in the URL matching. For example:

from django.core.urlresolvers import reverse

def myview(request):
return HttpResponseRedirect(reverse(’arch-summary’, args=[1945]))

The reverse() function can reverse a large variety of regular expression patterns for URLs, but not every possible
one. The main restriction at the moment is that the pattern cannot contain alternative choices using the vertical bar
("|") character. You can quite happily use such patterns for matching against incoming URLs and sending them off
to views, but you cannot reverse such patterns. New in version 1.1: Please, see the release notes The current_app
argument allows you to provide a hint to the resolver indicating the application to which the currently executing view
belongs. This current_app argument is used as a hint to resolve application namespaces into URLs on specific
application instances, according to the namespaced URL resolution strategy.

3.3. Handling HTTP requests 123

Django Documentation, Release 1.2.7

Make sure your views are all correct.

As part of working out which URL names map to which patterns, the reverse() function has to import all of your
URLconf files and examine the name of each view. This involves importing each view function. If there are any errors
whilst importing any of your view functions, it will cause reverse() to raise an error, even if that view function is
not the one you are trying to reverse.

Make sure that any views you reference in your URLconf files exist and can be imported correctly. Do not include
lines that reference views you haven’t written yet, because those views will not be importable.

resolve()

The django.core.urlresolvers.resolve() function can be used for resolving URL paths to the corre-
sponding view functions. It has the following signature:

resolve(path, urlconf=None)

path is the URL path you want to resolve. As with reverse(), you don’t need to worry about the urlconf
parameter. The function returns the triple (view function, arguments, keyword arguments).

If the URL does not resolve, the function raises an Http404 exception.

For example, it can be used for testing if a view would raise a Http404 error before redirecting to it:

from urlparse import urlparse
from django.core.urlresolvers import resolve
from django.http import HttpResponseRedirect, Http404

def myview(request):
next = request.META.get(’HTTP_REFERER’, None) or ’/’
response = HttpResponseRedirect(next)

modify the request and response as required, e.g. change locale
and set corresponding locale cookie

view, args, kwargs = resolve(urlparse(next)[2])
kwargs[’request’] = request
try:

view(*args, **kwargs)
except Http404:

return HttpResponseRedirect(’/’)
return response

permalink()

The django.db.models.permalink() decorator is useful for writing short methods that return a full URL
path. For example, a model’s get_absolute_url() method. See django.db.models.permalink() for
more.

get_script_prefix()

get_script_prefix()

Normally, you should always use reverse() or permalink() to define URLs within your application. However,
if your application constructs part of the URL hierarchy itself, you may occasionally need to generate URLs. In that

124 Chapter 3. Using Django

Django Documentation, Release 1.2.7

case, you need to be able to find the base URL of the Django project within its web server (normally, reverse()
takes care of this for you). In that case, you can call get_script_prefix(), which will return the script prefix
portion of the URL for your Django project. If your Django project is at the root of its webserver, this is always "/",
but it can be changed, for instance by using django.root (see How to use Django with Apache and mod_python).

3.3.2 Writing views

A view function, or view for short, is simply a Python function that takes a Web request and returns a Web response.
This response can be the HTML contents of a Web page, or a redirect, or a 404 error, or an XML document, or an
image . . . or anything, really. The view itself contains whatever arbitrary logic is necessary to return that response.
This code can live anywhere you want, as long as it’s on your Python path. There’s no other requirement–no “magic,”
so to speak. For the sake of putting the code somewhere, let’s create a file called views.py in the mysite directory,
which you created in the previous chapter.

A simple view

Here’s a view that returns the current date and time, as an HTML document:

from django.http import HttpResponse
import datetime

def current_datetime(request):
now = datetime.datetime.now()
html = "<html><body>It is now %s.</body></html>" % now
return HttpResponse(html)

Let’s step through this code one line at a time:

• First, we import the class HttpResponse from the django.http module, along with Python’s datetime
library.

• Next, we define a function called current_datetime. This is the view function. Each view function takes
an HttpRequest object as its first parameter, which is typically named request.

Note that the name of the view function doesn’t matter; it doesn’t have to be named in a certain way in order for
Django to recognize it. We’re calling it current_datetime here, because that name clearly indicates what
it does.

• The view returns an HttpResponse object that contains the generated response. Each view function is re-
sponsible for returning an HttpResponse object. (There are exceptions, but we’ll get to those later.)

Django’s Time Zone

Django includes a TIME_ZONE setting that defaults to America/Chicago. This probably isn’t where you live, so
you might want to change it in your settings file.

Mapping URLs to views

So, to recap, this view function returns an HTML page that includes the current date and time. To display this view at
a particular URL, you’ll need to create a URLconf ; see URL dispatcher for instructions.

3.3. Handling HTTP requests 125

Django Documentation, Release 1.2.7

Returning errors

Returning HTTP error codes in Django is easy. There are subclasses of HttpResponse for a number of common
HTTP status codes other than 200 (which means “OK”). You can find the full list of available subclasses in the re-
quest/response documentation. Just return an instance of one of those subclasses instead of a normal HttpResponse
in order to signify an error. For example:

def my_view(request):
...
if foo:

return HttpResponseNotFound(’<h1>Page not found</h1>’)
else:

return HttpResponse(’<h1>Page was found</h1>’)

There isn’t a specialized subclass for every possible HTTP response code, since many of them aren’t going to be that
common. However, as documented in the HttpResponse documentation, you can also pass the HTTP status code
into the constructor for HttpResponse to create a return class for any status code you like. For example:

def my_view(request):
...

Return a "created" (201) response code.
return HttpResponse(status=201)

Because 404 errors are by far the most common HTTP error, there’s an easier way to handle those errors.

The Http404 exception

class django.http.Http404

When you return an error such as HttpResponseNotFound, you’re responsible for defining the HTML of the
resulting error page:

return HttpResponseNotFound(’<h1>Page not found</h1>’)

For convenience, and because it’s a good idea to have a consistent 404 error page across your site, Django provides
an Http404 exception. If you raise Http404 at any point in a view function, Django will catch it and return the
standard error page for your application, along with an HTTP error code 404.

Example usage:

from django.http import Http404

def detail(request, poll_id):
try:

p = Poll.objects.get(pk=poll_id)
except Poll.DoesNotExist:

raise Http404
return render_to_response(’polls/detail.html’, {’poll’: p})

In order to use the Http404 exception to its fullest, you should create a template that is displayed when a 404 error
is raised. This template should be called 404.html and located in the top level of your template tree.

126 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Customizing error views

The 404 (page not found) view

When you raise an Http404 exception, Django loads a special view devoted to handling 404 errors. By default, it’s
the view django.views.defaults.page_not_found, which loads and renders the template 404.html.

This means you need to define a 404.html template in your root template directory. This template will be used for
all 404 errors.

This page_not_found view should suffice for 99% of Web applications, but if you want to override the 404 view,
you can specify handler404 in your URLconf, like so:

handler404 = ’mysite.views.my_custom_404_view’

Behind the scenes, Django determines the 404 view by looking for handler404. By default, URLconfs contain the
following line:

from django.conf.urls.defaults import *

That takes care of setting handler404 in the current module. As you
can see in django/conf/urls/defaults.py, handler404 is set to
’django.views.defaults.page_not_found’ by default.

Three things to note about 404 views:

• The 404 view is also called if Django doesn’t find a match after checking every regular expression in the
URLconf.

• If you don’t define your own 404 view – and simply use the default, which is recommended – you still have
one obligation: you must create a 404.html template in the root of your template directory. The default 404
view will use that template for all 404 errors. The default 404 view will pass one variable to the template:
request_path, which is the URL that resulted in the 404.

• The 404 view is passed a RequestContext and will have access to variables supplied by your
TEMPLATE_CONTEXT_PROCESSORS setting (e.g., MEDIA_URL).

• If DEBUG is set to True (in your settings module), then your 404 view will never be used, and the traceback
will be displayed instead.

The 500 (server error) view

Similarly, Django executes special-case behavior in the case of runtime errors in view code. If a view results in an
exception, Django will, by default, call the view django.views.defaults.server_error, which loads and
renders the template 500.html.

This means you need to define a 500.html template in your root template directory. This template will be used for
all server errors. The default 500 view passes no variables to this template and is rendered with an empty Context
to lessen the chance of additional errors.

This server_error view should suffice for 99% of Web applications, but if you want to override the view, you can
specify handler500 in your URLconf, like so:

handler500 = ’mysite.views.my_custom_error_view’

Behind the scenes, Django determines the error view by looking for handler500. By default, URLconfs contain
the following line:

3.3. Handling HTTP requests 127

Django Documentation, Release 1.2.7

from django.conf.urls.defaults import *

That takes care of setting handler500 in the current module. As you
can see in django/conf/urls/defaults.py, handler500 is set to
’django.views.defaults.server_error’ by default.

3.3.3 View decorators

Django provides several decorators that can be applied to views to support various HTTP features.

Allowed HTTP methods

The following decorators in django.views.decorators.http can be used to restrict access to views based on
the request method.

require_http_methods(request_method_list)

This decorator is used to ensure that a view only accepts particular request methods. Usage:

from django.views.decorators.http import require_http_methods

@require_http_methods(["GET", "POST"])
def my_view(request):

I can assume now that only GET or POST requests make it this far
...
pass

Note that request methods should be in uppercase.

require_GET()

Decorator to require that a view only accept the GET method.

require_POST()

Decorator to require that a view only accept the POST method.

Conditional view processing

The following decorators in django.views.decorators.http can be used to control caching behavior on
particular views.

condition(etag_func=None, last_modified_func=None)

etag(etag_func)

last_modified(last_modified_func)

These decorators can be used to generate ETag and Last-Modified headers; see conditional view processing.

GZip compression

The decorators in django.views.decorators.gzip control content compression on a per-view basis.

gzip_page()

This decorator compresses content if the browser allows gzip compression. It sets the Vary header accordingly, so
that caches will base their storage on the Accept-Encoding header.

128 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Vary headers

The decorators in django.views.decorators.vary can be used to control caching based on specific request
headers.

vary_on_cookie(func)

vary_on_headers(*headers)

The Vary header defines which request headers a cache mechanism should take into account when building its cache
key.

See using vary headers.

3.3.4 File Uploads

When Django handles a file upload, the file data ends up placed in request.FILES (for more on the request
object see the documentation for request and response objects). This document explains how files are stored on disk
and in memory, and how to customize the default behavior.

Basic file uploads

Consider a simple form containing a FileField:

from django import forms

class UploadFileForm(forms.Form):
title = forms.CharField(max_length=50)
file = forms.FileField()

A view handling this form will receive the file data in request.FILES, which is a dictionary containing a key for
each FileField (or ImageField, or other FileField subclass) in the form. So the data from the above form
would be accessible as request.FILES[’file’].

Note that request.FILES will only contain data if the request method was POST and the <form> that posted the
request has the attribute enctype="multipart/form-data". Otherwise, request.FILES will be empty.

Most of the time, you’ll simply pass the file data from request into the form as described in Binding uploaded files
to a form. This would look something like:

from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response

Imaginary function to handle an uploaded file.
from somewhere import handle_uploaded_file

def upload_file(request):
if request.method == ’POST’:

form = UploadFileForm(request.POST, request.FILES)
if form.is_valid():

handle_uploaded_file(request.FILES[’file’])
return HttpResponseRedirect(’/success/url/’)

else:
form = UploadFileForm()

return render_to_response(’upload.html’, {’form’: form})

Notice that we have to pass request.FILES into the form’s constructor; this is how file data gets bound into a
form.

3.3. Handling HTTP requests 129

Django Documentation, Release 1.2.7

Handling uploaded files

The final piece of the puzzle is handling the actual file data from request.FILES. Each entry in this dictionary is
an UploadedFile object – a simple wrapper around an uploaded file. You’ll usually use one of these methods to
access the uploaded content:

UploadedFile.read() Read the entire uploaded data from the file. Be careful with this method: if the uploaded
file is huge it can overwhelm your system if you try to read it into memory. You’ll probably want to use
chunks() instead; see below.

UploadedFile.multiple_chunks() Returns True if the uploaded file is big enough to require reading in
multiple chunks. By default this will be any file larger than 2.5 megabytes, but that’s configurable; see below.

UploadedFile.chunks() A generator returning chunks of the file. If multiple_chunks() is True, you
should use this method in a loop instead of read().

In practice, it’s often easiest simply to use chunks() all the time; see the example below.

UploadedFile.name The name of the uploaded file (e.g. my_file.txt).

UploadedFile.size The size, in bytes, of the uploaded file.

There are a few other methods and attributes available on UploadedFile objects; see UploadedFile objects for a
complete reference.

Putting it all together, here’s a common way you might handle an uploaded file:

def handle_uploaded_file(f):
destination = open(’some/file/name.txt’, ’wb+’)
for chunk in f.chunks():

destination.write(chunk)
destination.close()

Looping over UploadedFile.chunks() instead of using read() ensures that large files don’t overwhelm your
system’s memory.

Where uploaded data is stored

Before you save uploaded files, the data needs to be stored somewhere.

By default, if an uploaded file is smaller than 2.5 megabytes, Django will hold the entire contents of the upload in
memory. This means that saving the file involves only a read from memory and a write to disk and thus is very fast.

However, if an uploaded file is too large, Django will write the uploaded file to a temporary file stored in your system’s
temporary directory. On a Unix-like platform this means you can expect Django to generate a file called something
like /tmp/tmpzfp6I6.upload. If an upload is large enough, you can watch this file grow in size as Django
streams the data onto disk.

These specifics – 2.5 megabytes; /tmp; etc. – are simply “reasonable defaults”. Read on for details on how you can
customize or completely replace upload behavior.

Changing upload handler behavior

Three settings control Django’s file upload behavior:

FILE_UPLOAD_MAX_MEMORY_SIZE The maximum size, in bytes, for files that will be uploaded into memory.
Files larger than FILE_UPLOAD_MAX_MEMORY_SIZE will be streamed to disk.

Defaults to 2.5 megabytes.

130 Chapter 3. Using Django

Django Documentation, Release 1.2.7

FILE_UPLOAD_TEMP_DIR The directory where uploaded files larger than
FILE_UPLOAD_MAX_MEMORY_SIZE will be stored.

Defaults to your system’s standard temporary directory (i.e. /tmp on most Unix-like systems).

FILE_UPLOAD_PERMISSIONS The numeric mode (i.e. 0644) to set newly uploaded files to. For more informa-
tion about what these modes mean, see the documentation for os.chmod

If this isn’t given or is None, you’ll get operating-system dependent behavior. On most platforms, temporary
files will have a mode of 0600, and files saved from memory will be saved using the system’s standard umask.

Warning: If you’re not familiar with file modes, please note that the leading 0 is very important: it indicates
an octal number, which is the way that modes must be specified. If you try to use 644, you’ll get totally
incorrect behavior.
Always prefix the mode with a 0.

FILE_UPLOAD_HANDLERS The actual handlers for uploaded files. Changing this setting allows complete cus-
tomization – even replacement – of Django’s upload process. See upload handlers, below, for details.

Defaults to:

("django.core.files.uploadhandler.MemoryFileUploadHandler",
"django.core.files.uploadhandler.TemporaryFileUploadHandler",)

Which means “try to upload to memory first, then fall back to temporary files.”

UploadedFile objects

class UploadedFile

In addition to those inherited from File, all UploadedFile objects define the following methods/attributes:

UploadedFile.content_type The content-type header uploaded with the file (e.g. text/plain or
application/pdf). Like any data supplied by the user, you shouldn’t trust that the uploaded file is ac-
tually this type. You’ll still need to validate that the file contains the content that the content-type header claims
– “trust but verify.”

UploadedFile.charset For text/* content-types, the character set (i.e. utf8) supplied by the browser.
Again, “trust but verify” is the best policy here.

UploadedFile.temporary_file_path() Only files uploaded onto disk will have this method; it returns the
full path to the temporary uploaded file.

Note: Like regular Python files, you can read the file line-by-line simply by iterating over the uploaded file:

for line in uploadedfile:
do_something_with(line)

However, unlike standard Python files, UploadedFile only understands \n (also known as “Unix-style”) line
endings. If you know that you need to handle uploaded files with different line endings, you’ll need to do so in your
view.

Upload Handlers

When a user uploads a file, Django passes off the file data to an upload handler – a small class that handles file data as
it gets uploaded. Upload handlers are initially defined in the FILE_UPLOAD_HANDLERS setting, which defaults to:

3.3. Handling HTTP requests 131

http://docs.python.org/library/os.html#os.chmod

Django Documentation, Release 1.2.7

("django.core.files.uploadhandler.MemoryFileUploadHandler",
"django.core.files.uploadhandler.TemporaryFileUploadHandler",)

Together the MemoryFileUploadHandler and TemporaryFileUploadHandler provide Django’s default
file upload behavior of reading small files into memory and large ones onto disk.

You can write custom handlers that customize how Django handles files. You could, for example, use custom handlers
to enforce user-level quotas, compress data on the fly, render progress bars, and even send data to another storage
location directly without storing it locally.

Modifying upload handlers on the fly

Sometimes particular views require different upload behavior. In these cases, you can override upload handlers on a
per-request basis by modifying request.upload_handlers. By default, this list will contain the upload handlers
given by FILE_UPLOAD_HANDLERS, but you can modify the list as you would any other list.

For instance, suppose you’ve written a ProgressBarUploadHandler that provides feedback on upload progress
to some sort of AJAX widget. You’d add this handler to your upload handlers like this:

request.upload_handlers.insert(0, ProgressBarUploadHandler())

You’d probably want to use list.insert() in this case (instead of append()) because a progress bar handler
would need to run before any other handlers. Remember, the upload handlers are processed in order.

If you want to replace the upload handlers completely, you can just assign a new list:

request.upload_handlers = [ProgressBarUploadHandler()]

Note: You can only modify upload handlers before accessing request.POST or request.FILES – it
doesn’t make sense to change upload handlers after upload handling has already started. If you try to modify
request.upload_handlers after reading from request.POST or request.FILES Django will throw an
error.

Thus, you should always modify uploading handlers as early in your view as possible.

Also, request.POST is accessed by CsrfViewMiddleware which is enabled by default. This means you will
probably need to use csrf_exempt() on your view to allow you to change the upload handlers. Assuming you
do need CSRF protection, you will then need to use csrf_protect() on the function that actually processes the
request. Note that this means that the handlers may start receiving the file upload before the CSRF checks have been
done. Example code:

from django.views.decorators.csrf import csrf_exempt, csrf_protect

@csrf_exempt
def upload_file_view(request):

request.upload_handlers.insert(0, ProgressBarUploadHandler())
return _upload_file_view(request)

@csrf_protect
def _upload_file_view(request):

... # Process request

132 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Writing custom upload handlers

All file upload handlers should be subclasses of django.core.files.uploadhandler.FileUploadHandler.
You can define upload handlers wherever you wish.

Required methods Custom file upload handlers must define the following methods:

FileUploadHandler.receive_data_chunk(self, raw_data, start) Receives a “chunk” of data
from the file upload.

raw_data is a byte string containing the uploaded data.

start is the position in the file where this raw_data chunk begins.

The data you return will get fed into the subsequent upload handlers’ receive_data_chunk methods. In
this way, one handler can be a “filter” for other handlers.

Return None from receive_data_chunk to sort-circuit remaining upload handlers from getting this
chunk.. This is useful if you’re storing the uploaded data yourself and don’t want future handlers to store a
copy of the data.

If you raise a StopUpload or a SkipFile exception, the upload will abort or the file will be completely
skipped.

FileUploadHandler.file_complete(self, file_size) Called when a file has finished uploading.

The handler should return an UploadedFile object that will be stored in request.FILES. Handlers may
also return None to indicate that the UploadedFile object should come from subsequent upload handlers.

Optional methods Custom upload handlers may also define any of the following optional methods or attributes:

FileUploadHandler.chunk_size Size, in bytes, of the “chunks” Django should store into mem-
ory and feed into the handler. That is, this attribute controls the size of chunks fed into
FileUploadHandler.receive_data_chunk.

For maximum performance the chunk sizes should be divisible by 4 and should not exceed 2 GB (231 bytes) in
size. When there are multiple chunk sizes provided by multiple handlers, Django will use the smallest chunk
size defined by any handler.

The default is 64*210 bytes, or 64 KB.

FileUploadHandler.new_file(self, field_name, file_name, content_type, content_length, charset)
Callback signaling that a new file upload is starting. This is called before any data has been fed to any upload
handlers.

field_name is a string name of the file <input> field.

file_name is the unicode filename that was provided by the browser.

content_type is the MIME type provided by the browser – E.g. ’image/jpeg’.

content_length is the length of the image given by the browser. Sometimes this won’t be provided and
will be None.

charset is the character set (i.e. utf8) given by the browser. Like content_length, this sometimes
won’t be provided.

This method may raise a StopFutureHandlers exception to prevent future handlers from handling this file.

FileUploadHandler.upload_complete(self) Callback signaling that the entire upload (all files) has
completed.

3.3. Handling HTTP requests 133

Django Documentation, Release 1.2.7

FileUploadHandler.handle_raw_input(self, input_data, META, content_length, boundary, encoding)
Allows the handler to completely override the parsing of the raw HTTP input.

input_data is a file-like object that supports read()-ing.

META is the same object as request.META.

content_length is the length of the data in input_data. Don’t read more than content_length
bytes from input_data.

boundary is the MIME boundary for this request.

encoding is the encoding of the request.

Return None if you want upload handling to continue, or a tuple of (POST, FILES) if you want to return
the new data structures suitable for the request directly.

3.3.5 Django shortcut functions

The package django.shortcuts collects helper functions and classes that “span” multiple levels of MVC. In
other words, these functions/classes introduce controlled coupling for convenience’s sake.

render_to_response

render_to_response(template[, dictionary][, context_instance][, mimetype])
Renders a given template with a given context dictionary and returns an HttpResponse object with that
rendered text.

Required arguments

template The full name of a template to use or sequence of template names. If a sequence is given, the first
template that exists will be used. See the template loader documentation for more information on how templates
are found.

Optional arguments

dictionary A dictionary of values to add to the template context. By default, this is an empty dictionary. If a
value in the dictionary is callable, the view will call it just before rendering the template.

context_instance The context instance to render the template with. By default, the template will be rendered
with a Context instance (filled with values from dictionary). If you need to use context processors, render
the template with a RequestContext instance instead. Your code might look something like this:

return render_to_response(’my_template.html’,
my_data_dictionary,
context_instance=RequestContext(request))

mimetype The MIME type to use for the resulting document. Defaults to the value of the
DEFAULT_CONTENT_TYPE setting.

Example

The following example renders the template myapp/index.html with the MIME type
application/xhtml+xml:

134 Chapter 3. Using Django

Django Documentation, Release 1.2.7

from django.shortcuts import render_to_response

def my_view(request):
View code here...
return render_to_response(’myapp/index.html’, {"foo": "bar"},

mimetype="application/xhtml+xml")

This example is equivalent to:

from django.http import HttpResponse
from django.template import Context, loader

def my_view(request):
View code here...
t = loader.get_template(’myapp/template.html’)
c = Context({’foo’: ’bar’})
return HttpResponse(t.render(c),

mimetype="application/xhtml+xml")

redirect

redirect(to[, permanent=False], *args, **kwargs)
New in version 1.1: Please, see the release notes Returns an HttpResponseRedirect to the appropriate
URL for the arguments passed.

The arguments could be:

•A model: the model’s get_absolute_url() function will be called.

•A view name, possibly with arguments: urlresolvers.reverse() will be used to reverse-resolve the name.

•A URL, which will be used as-is for the redirect location.

By default issues a temporary redirect; pass permanent=True to issue a permanent redirect

Examples

You can use the redirect() function in a number of ways.

1. By passing some object; that object’s get_absolute_url() method will be called to figure out the redirect
URL:

def my_view(request):
...
object = MyModel.objects.get(...)
return redirect(object)

2. By passing the name of a view and optionally some positional or keyword arguments; the URL will be reverse
resolved using the reverse() method:

def my_view(request):
...
return redirect(’some-view-name’, foo=’bar’)

3. By passing a hardcoded URL to redirect to:

3.3. Handling HTTP requests 135

Django Documentation, Release 1.2.7

def my_view(request):
...
return redirect(’/some/url/’)

This also works with full URLs:

def my_view(request):
...
return redirect(’http://example.com/’)

By default, redirect() returns a temporary redirect. All of the above forms accept a permanent argument; if set
to True a permanent redirect will be returned:

def my_view(request):
...
object = MyModel.objects.get(...)
return redirect(object, permanent=True)

get_object_or_404

get_object_or_404(klass, *args, **kwargs)
Calls get() on a given model manager, but it raises Http404 instead of the model’s DoesNotExist ex-
ception.

Required arguments

klass A Model, Manager or QuerySet instance from which to get the object.

**kwargs Lookup parameters, which should be in the format accepted by get() and filter().

Example

The following example gets the object with the primary key of 1 from MyModel:

from django.shortcuts import get_object_or_404

def my_view(request):
my_object = get_object_or_404(MyModel, pk=1)

This example is equivalent to:

from django.http import Http404

def my_view(request):
try:

my_object = MyModel.objects.get(pk=1)
except MyModel.DoesNotExist:

raise Http404

Note: As with get(), a MultipleObjectsReturned exception will be raised if more than one object is found.

get_list_or_404

get_list_or_404(klass, *args, **kwargs)
Returns the result of filter() on a given model manager, raising Http404 if the resulting list is empty.

136 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Required arguments

klass A Model, Manager or QuerySet instance from which to get the list.

**kwargs Lookup parameters, which should be in the format accepted by get() and filter().

Example

The following example gets all published objects from MyModel:

from django.shortcuts import get_list_or_404

def my_view(request):
my_objects = get_list_or_404(MyModel, published=True)

This example is equivalent to:

from django.http import Http404

def my_view(request):
my_objects = list(MyModel.objects.filter(published=True))
if not my_objects:

raise Http404

3.3.6 Generic views

See Generic views.

3.3.7 Middleware

Middleware is a framework of hooks into Django’s request/response processing. It’s a light, low-level “plugin” system
for globally altering Django’s input and/or output.

Each middleware component is responsible for doing some specific function. For example, Django includes a middle-
ware component, XViewMiddleware, that adds an "X-View" HTTP header to every response to a HEAD request.

This document explains how middleware works, how you activate middleware, and how to write your own middleware.
Django ships with some built-in middleware you can use right out of the box; they’re documented in the built-in
middleware reference.

Activating middleware

To activate a middleware component, add it to the MIDDLEWARE_CLASSES list in your Django settings. In
MIDDLEWARE_CLASSES, each middleware component is represented by a string: the full Python path to the mid-
dleware’s class name. For example, here’s the default MIDDLEWARE_CLASSES created by django-admin.py
startproject:

MIDDLEWARE_CLASSES = (
’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.middleware.csrf.CsrfViewMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’django.contrib.messages.middleware.MessageMiddleware’,

)

3.3. Handling HTTP requests 137

Django Documentation, Release 1.2.7

During the request phases (process_request() and process_view() middleware), Django applies
middleware in the order it’s defined in MIDDLEWARE_CLASSES, top-down. During the response phases
(process_response() and process_exception() middleware), the classes are applied in reverse order,
from the bottom up. You can think of it like an onion: each middleware class is a “layer” that wraps the view:

A Django installation doesn’t require any middleware – e.g., MIDDLEWARE_CLASSES can be empty, if you’d like –
but it’s strongly suggested that you at least use CommonMiddleware.

Writing your own middleware

Writing your own middleware is easy. Each middleware component is a single Python class that defines one or more
of the following methods:

process_request

process_request(self, request)

request is an HttpRequest object. This method is called on each request, before Django decides which view to
execute.

138 Chapter 3. Using Django

Django Documentation, Release 1.2.7

process_request() should return either None or an HttpResponse object. If it returns None, Django will
continue processing this request, executing any other middleware and, then, the appropriate view. If it returns an
HttpResponse object, Django won’t bother calling ANY other request, view or exception middleware, or the
appropriate view; it’ll return that HttpResponse. Response middleware is always called on every response.

process_view

process_view(self, request, view_func, view_args, view_kwargs)

request is an HttpRequest object. view_func is the Python function that Django is about to use. (It’s the
actual function object, not the name of the function as a string.) view_args is a list of positional arguments that
will be passed to the view, and view_kwargs is a dictionary of keyword arguments that will be passed to the view.
Neither view_args nor view_kwargs include the first view argument (request).

process_view() is called just before Django calls the view. It should return either None or an HttpResponse
object. If it returns None, Django will continue processing this request, executing any other process_view()
middleware and, then, the appropriate view. If it returns an HttpResponse object, Django won’t bother calling ANY
other request, view or exception middleware, or the appropriate view; it’ll return that HttpResponse. Response
middleware is always called on every response.

process_response

process_response(self, request, response)

request is an HttpRequest object. response is the HttpResponse object returned by a Django view.

process_response() must return an HttpResponse object. It could alter the given response, or it could
create and return a brand-new HttpResponse.

Unlike the process_request() and process_view() methods, the process_response() method is
always called, even if the process_request() and process_view() methods of the same middleware
class were skipped because an earlier middleware method returned an HttpResponse (this means that your
process_response() method cannot rely on setup done in process_request(), for example). In addi-
tion, during the response phase the classes are applied in reverse order, from the bottom up. This means classes
defined at the end of MIDDLEWARE_CLASSES will be run first.

process_exception

process_exception(self, request, exception)

request is an HttpRequest object. exception is an Exception object raised by the view function.

Django calls process_exception() when a view raises an exception. process_exception() should return
either None or an HttpResponse object. If it returns an HttpResponse object, the response will be returned to
the browser. Otherwise, default exception handling kicks in.

Again, middleware are run in reverse order during the response phase, which includes process_exception. If an
exception middleware return a response, the middleware classes above that middleware will not be called at all.

__init__

Most middleware classes won’t need an initializer since middleware classes are essentially placeholders for the
process_* methods. If you do need some global state you may use __init__ to set up. However, keep in
mind a couple of caveats:

3.3. Handling HTTP requests 139

Django Documentation, Release 1.2.7

• Django initializes your middleware without any arguments, so you can’t define __init__ as requiring any
arguments.

• Unlike the process_* methods which get called once per request, __init__ gets called only once, when
the Web server starts up.

Marking middleware as unused It’s sometimes useful to determine at run-time whether a piece
of middleware should be used. In these cases, your middleware’s __init__ method may raise
django.core.exceptions.MiddlewareNotUsed. Django will then remove that piece of middleware from
the middleware process.

Guidelines

• Middleware classes don’t have to subclass anything.

• The middleware class can live anywhere on your Python path. All Django cares about is that the
MIDDLEWARE_CLASSES setting includes the path to it.

• Feel free to look at Django’s available middleware for examples.

• If you write a middleware component that you think would be useful to other people, contribute to the commu-
nity! Let us know, and we’ll consider adding it to Django.

3.3.8 How to use sessions

Django provides full support for anonymous sessions. The session framework lets you store and retrieve arbitrary data
on a per-site-visitor basis. It stores data on the server side and abstracts the sending and receiving of cookies. Cookies
contain a session ID – not the data itself.

Enabling sessions

Sessions are implemented via a piece of middleware.

To enable session functionality, do the following:

• Edit the MIDDLEWARE_CLASSES setting and make sure MIDDLEWARE_CLASSES contains
’django.contrib.sessions.middleware.SessionMiddleware’. The default settings.py
created by django-admin.py startproject has SessionMiddleware activated.

If you don’t want to use sessions, you might as well remove the SessionMiddleware line from
MIDDLEWARE_CLASSES and ’django.contrib.sessions’ from your INSTALLED_APPS. It’ll save you a
small bit of overhead.

Configuring the session engine

By default, Django stores sessions in your database (using the model
django.contrib.sessions.models.Session). Though this is convenient, in some setups it’s faster
to store session data elsewhere, so Django can be configured to store session data on your filesystem or in your cache.

140 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Using database-backed sessions

If you want to use a database-backed session, you need to add ’django.contrib.sessions’ to your
INSTALLED_APPS setting.

Once you have configured your installation, run manage.py syncdb to install the single database table that stores
session data.

Using cached sessions

For better performance, you may want to use a cache-based session backend. Changed in version 1.1: Django 1.0 did
not include the cached_db session backend. To store session data using Django’s cache system, you’ll first need to
make sure you’ve configured your cache; see the cache documentation for details.

Warning: You should only use cache-based sessions if you’re using the Memcached cache backend. The local-
memory cache backend doesn’t retain data long enough to be a good choice, and it’ll be faster to use file or database
sessions directly instead of sending everything through the file or database cache backends.

Once your cache is configured, you’ve got two choices for how to store data in the cache:

• Set SESSION_ENGINE to "django.contrib.sessions.backends.cache" for a simple caching
session store. Session data will be stored directly your cache. However, session data may not be persistent:
cached data can be evicted if the cache fills up or if the cache server is restarted.

• For persistent, cached data, set SESSION_ENGINE to "django.contrib.sessions.backends.cached_db".
This uses a write-through cache – every write to the cache will also be written to the database. Session reads
only use the database if the data is not already in the cache.

Both session stores are quite fast, but the simple cache is faster because it disregards persistence. In most cases, the
cached_db backend will be fast enough, but if you need that last bit of performance, and are willing to let session
data be expunged from time to time, the cache backend is for you.

If you use the cached_db session backend, you also need to follow the configuration instructions for the using
database-backed sessions.

Using file-based sessions

To use file-based sessions, set the SESSION_ENGINE setting to "django.contrib.sessions.backends.file".

You might also want to set the SESSION_FILE_PATH setting (which defaults to output from
tempfile.gettempdir(), most likely /tmp) to control where Django stores session files. Be sure to
check that your Web server has permissions to read and write to this location.

Using sessions in views

When SessionMiddleware is activated, each HttpRequest object – the first argument to any Django view
function – will have a session attribute, which is a dictionary-like object. You can read it and write to it.

A session object has the following standard dictionary methods:

• __getitem__(key)

Example: fav_color = request.session[’fav_color’]

3.3. Handling HTTP requests 141

Django Documentation, Release 1.2.7

• __setitem__(key, value)

Example: request.session[’fav_color’] = ’blue’

• __delitem__(key)

Example: del request.session[’fav_color’]. This raises KeyError if the given key isn’t al-
ready in the session.

• __contains__(key)

Example: ’fav_color’ in request.session

• get(key, default=None)

Example: fav_color = request.session.get(’fav_color’, ’red’)

• keys()

• items()

• setdefault()

• clear()

It also has these methods:

• flush()

Delete the current session data from the session and regenerate the session key value that is sent back to the user
in the cookie. This is used if you want to ensure that the previous session data can’t be accessed again from the
user’s browser (for example, the django.contrib.auth.logout() function calls it).

• set_test_cookie()

Sets a test cookie to determine whether the user’s browser supports cookies. Due to the way cookies work, you
won’t be able to test this until the user’s next page request. See Setting test cookies below for more information.

• test_cookie_worked()

Returns either True or False, depending on whether the user’s browser accepted the test cookie. Due to
the way cookies work, you’ll have to call set_test_cookie() on a previous, separate page request. See
Setting test cookies below for more information.

• delete_test_cookie()

Deletes the test cookie. Use this to clean up after yourself.

• set_expiry(value)

Sets the expiration time for the session. You can pass a number of different values:

– If value is an integer, the session will expire after that many seconds of inactivity. For example, calling
request.session.set_expiry(300) would make the session expire in 5 minutes.

– If value is a datetime or timedelta object, the session will expire at that specific date/time.

– If value is 0, the user’s session cookie will expire when the user’s Web browser is closed.

– If value is None, the session reverts to using the global session expiry policy.

Reading a session is not considered activity for expiration purposes. Session expiration is computed from the
last time the session was modified.

• get_expiry_age()

Returns the number of seconds until this session expires. For sessions with no custom expiration (or those set to
expire at browser close), this will equal settings.SESSION_COOKIE_AGE.

142 Chapter 3. Using Django

Django Documentation, Release 1.2.7

• get_expiry_date()

Returns the date this session will expire. For sessions with no custom expiration (or those set to expire at browser
close), this will equal the date settings.SESSION_COOKIE_AGE seconds from now.

• get_expire_at_browser_close()

Returns either True or False, depending on whether the user’s session cookie will expire when the user’s
Web browser is closed.

You can edit request.session at any point in your view. You can edit it multiple times.

Session object guidelines

• Use normal Python strings as dictionary keys on request.session. This is more of a convention than a
hard-and-fast rule.

• Session dictionary keys that begin with an underscore are reserved for internal use by Django.

• Don’t override request.session with a new object, and don’t access or set its attributes. Use it like a
Python dictionary.

Examples

This simplistic view sets a has_commented variable to True after a user posts a comment. It doesn’t let a user post
a comment more than once:

def post_comment(request, new_comment):
if request.session.get(’has_commented’, False):

return HttpResponse("You’ve already commented.")
c = comments.Comment(comment=new_comment)
c.save()
request.session[’has_commented’] = True
return HttpResponse(’Thanks for your comment!’)

This simplistic view logs in a “member” of the site:

def login(request):
m = Member.objects.get(username=request.POST[’username’])
if m.password == request.POST[’password’]:

request.session[’member_id’] = m.id
return HttpResponse("You’re logged in.")

else:
return HttpResponse("Your username and password didn’t match.")

...And this one logs a member out, according to login() above:

def logout(request):
try:

del request.session[’member_id’]
except KeyError:

pass
return HttpResponse("You’re logged out.")

The standard django.contrib.auth.logout() function actually does a bit more than this to prevent inadver-
tent data leakage. It calls request.session.flush(). We are using this example as a demonstration of how to
work with session objects, not as a full logout() implementation.

3.3. Handling HTTP requests 143

Django Documentation, Release 1.2.7

Setting test cookies

As a convenience, Django provides an easy way to test whether the user’s browser ac-
cepts cookies. Just call request.session.set_test_cookie() in a view, and call
request.session.test_cookie_worked() in a subsequent view – not in the same view call.

This awkward split between set_test_cookie() and test_cookie_worked() is necessary due to the way
cookies work. When you set a cookie, you can’t actually tell whether a browser accepted it until the browser’s next
request.

It’s good practice to use delete_test_cookie() to clean up after yourself. Do this after you’ve verified that the
test cookie worked.

Here’s a typical usage example:

def login(request):
if request.method == ’POST’:

if request.session.test_cookie_worked():
request.session.delete_test_cookie()
return HttpResponse("You’re logged in.")

else:
return HttpResponse("Please enable cookies and try again.")

request.session.set_test_cookie()
return render_to_response(’foo/login_form.html’)

Using sessions out of views

An API is available to manipulate session data outside of a view:

>>> from django.contrib.sessions.backends.db import SessionStore
>>> import datetime
>>> s = SessionStore(session_key=’2b1189a188b44ad18c35e113ac6ceead’)
>>> s[’last_login’] = datetime.datetime(2005, 8, 20, 13, 35, 10)
>>> s[’last_login’]
datetime.datetime(2005, 8, 20, 13, 35, 0)
>>> s.save()

If session_key isn’t provided, one will be generated automatically:

>>> from django.contrib.sessions.backends.db import SessionStore
>>> s = SessionStore()
>>> s.save()
>>> s.session_key
’2b1189a188b44ad18c35e113ac6ceead’

If you’re using the django.contrib.sessions.backends.db backend, each session is just a normal Django
model. The Session model is defined in django/contrib/sessions/models.py. Because it’s a normal
model, you can access sessions using the normal Django database API:

>>> from django.contrib.sessions.models import Session
>>> s = Session.objects.get(pk=’2b1189a188b44ad18c35e113ac6ceead’)
>>> s.expire_date
datetime.datetime(2005, 8, 20, 13, 35, 12)

Note that you’ll need to call get_decoded() to get the session dictionary. This is necessary because the dictionary
is stored in an encoded format:

144 Chapter 3. Using Django

Django Documentation, Release 1.2.7

>>> s.session_data
’KGRwMQpTJ19hdXRoX3VzZXJfaWQnCnAyCkkxCnMuMTExY2ZjODI2Yj...’
>>> s.get_decoded()
{’user_id’: 42}

When sessions are saved

By default, Django only saves to the session database when the session has been modified – that is if any of its
dictionary values have been assigned or deleted:

Session is modified.
request.session[’foo’] = ’bar’

Session is modified.
del request.session[’foo’]

Session is modified.
request.session[’foo’] = {}

Gotcha: Session is NOT modified, because this alters
request.session[’foo’] instead of request.session.
request.session[’foo’][’bar’] = ’baz’

In the last case of the above example, we can tell the session object explicitly that it has been modified by setting the
modified attribute on the session object:

request.session.modified = True

To change this default behavior, set the SESSION_SAVE_EVERY_REQUEST setting to True. If
SESSION_SAVE_EVERY_REQUEST is True, Django will save the session to the database on every single request.

Note that the session cookie is only sent when a session has been created or modified. If
SESSION_SAVE_EVERY_REQUEST is True, the session cookie will be sent on every request.

Similarly, the expires part of a session cookie is updated each time the session cookie is sent.

Browser-length sessions vs. persistent sessions

You can control whether the session framework uses browser-length sessions vs. persistent sessions with the
SESSION_EXPIRE_AT_BROWSER_CLOSE setting.

By default, SESSION_EXPIRE_AT_BROWSER_CLOSE is set to False, which means session cookies will be stored
in users’ browsers for as long as SESSION_COOKIE_AGE. Use this if you don’t want people to have to log in every
time they open a browser.

If SESSION_EXPIRE_AT_BROWSER_CLOSE is set to True, Django will use browser-length cookies – cookies
that expire as soon as the user closes his or her browser. Use this if you want people to have to log in every time they
open a browser.

This setting is a global default and can be overwritten at a per-session level by explicitly calling
request.session.set_expiry() as described above in using sessions in views.

Clearing the session table

If you’re using the database backend, note that session data can accumulate in the django_session database table
and Django does not provide automatic purging. Therefore, it’s your job to purge expired sessions on a regular basis.

3.3. Handling HTTP requests 145

Django Documentation, Release 1.2.7

To understand this problem, consider what happens when a user uses a session. When a user logs in, Django adds a
row to the django_session database table. Django updates this row each time the session data changes. If the
user logs out manually, Django deletes the row. But if the user does not log out, the row never gets deleted.

Django provides a sample clean-up script: django-admin.py cleanup. That script deletes any session in the
session table whose expire_date is in the past – but your application may have different requirements.

Settings

A few Django settings give you control over session behavior:

SESSION_ENGINE

Changed in version 1.1: The cached_db backend was added Default:
django.contrib.sessions.backends.db

Controls where Django stores session data. Valid values are:

• ’django.contrib.sessions.backends.db’

• ’django.contrib.sessions.backends.file’

• ’django.contrib.sessions.backends.cache’

• ’django.contrib.sessions.backends.cached_db’

See configuring the session engine for more details.

SESSION_FILE_PATH

Default: /tmp/

If you’re using file-based session storage, this sets the directory in which Django will store session data.

SESSION_COOKIE_AGE

Default: 1209600 (2 weeks, in seconds)

The age of session cookies, in seconds.

SESSION_COOKIE_DOMAIN

Default: None

The domain to use for session cookies. Set this to a string such as ".lawrence.com" (note the leading dot!) for
cross-domain cookies, or use None for a standard domain cookie.

SESSION_COOKIE_NAME

Default: ’sessionid’

The name of the cookie to use for sessions. This can be whatever you want.

146 Chapter 3. Using Django

Django Documentation, Release 1.2.7

SESSION_COOKIE_PATH

Default: ’/’

The path set on the session cookie. This should either match the URL path of your Django installation or be parent of
that path.

This is useful if you have multiple Django instances running under the same hostname. They can use different cookie
paths, and each instance will only see its own session cookie.

SESSION_COOKIE_SECURE

Default: False

Whether to use a secure cookie for the session cookie. If this is set to True, the cookie will be marked as “secure,”
which means browsers may ensure that the cookie is only sent under an HTTPS connection.

SESSION_EXPIRE_AT_BROWSER_CLOSE

Default: False

Whether to expire the session when the user closes his or her browser. See “Browser-length sessions vs. persistent
sessions” above.

SESSION_SAVE_EVERY_REQUEST

Default: False

Whether to save the session data on every request. If this is False (default), then the session data will only be saved
if it has been modified – that is, if any of its dictionary values have been assigned or deleted.

Technical details

• The session dictionary should accept any pickleable Python object. See the pickle module for more information.

• Session data is stored in a database table named django_session .

• Django only sends a cookie if it needs to. If you don’t set any session data, it won’t send a session cookie.

Session IDs in URLs

The Django sessions framework is entirely, and solely, cookie-based. It does not fall back to putting session IDs in
URLs as a last resort, as PHP does. This is an intentional design decision. Not only does that behavior make URLs
ugly, it makes your site vulnerable to session-ID theft via the “Referer” header.

3.4 Working with forms

About this document

This document provides an introduction to Django’s form handling features. For a more detailed look at specific areas
of the forms API, see The Forms API, Form fields, and Form and field validation.

3.4. Working with forms 147

http://docs.python.org/library/pickle.html

Django Documentation, Release 1.2.7

django.forms is Django’s form-handling library.

While it is possible to process form submissions just using Django’s HttpRequest class, using the form library
takes care of a number of common form-related tasks. Using it, you can:

1. Display an HTML form with automatically generated form widgets.

2. Check submitted data against a set of validation rules.

3. Redisplay a form in the case of validation errors.

4. Convert submitted form data to the relevant Python data types.

3.4.1 Overview

The library deals with these concepts:

Widget A class that corresponds to an HTML form widget, e.g. <input type="text"> or <textarea>. This
handles rendering of the widget as HTML.

Field A class that is responsible for doing validation, e.g. an EmailField that makes sure its data is a valid e-mail
address.

Form A collection of fields that knows how to validate itself and display itself as HTML.

Form Media The CSS and JavaScript resources that are required to render a form.

The library is decoupled from the other Django components, such as the database layer, views and templates. It relies
only on Django settings, a couple of django.utils helper functions and Django’s internationalization hooks (but
you’re not required to be using internationalization features to use this library).

3.4.2 Form objects

A Form object encapsulates a sequence of form fields and a collection of validation rules that must be fulfilled in order
for the form to be accepted. Form classes are created as subclasses of django.forms.Form and make use of a
declarative style that you’ll be familiar with if you’ve used Django’s database models.

For example, consider a form used to implement “contact me” functionality on a personal Web site:

from django import forms

class ContactForm(forms.Form):
subject = forms.CharField(max_length=100)
message = forms.CharField()
sender = forms.EmailField()
cc_myself = forms.BooleanField(required=False)

A form is composed of Field objects. In this case, our form has four fields: subject, message, sender and
cc_myself. CharField, EmailField and BooleanField are just three of the available field types; a full list
can be found in Form fields.

If your form is going to be used to directly add or edit a Django model, you can use a ModelForm to avoid duplicating
your model description.

Using a form in a view

The standard pattern for processing a form in a view looks like this:

148 Chapter 3. Using Django

Django Documentation, Release 1.2.7

def contact(request):
if request.method == ’POST’: # If the form has been submitted...

form = ContactForm(request.POST) # A form bound to the POST data
if form.is_valid(): # All validation rules pass

Process the data in form.cleaned_data
...
return HttpResponseRedirect(’/thanks/’) # Redirect after POST

else:
form = ContactForm() # An unbound form

return render_to_response(’contact.html’, {
’form’: form,

})

There are three code paths here:

1. If the form has not been submitted, an unbound instance of ContactForm is created and passed to the template.

2. If the form has been submitted, a bound instance of the form is created using request.POST. If the submitted
data is valid, it is processed and the user is re-directed to a “thanks” page.

3. If the form has been submitted but is invalid, the bound form instance is passed on to the template.

The distinction between bound and unbound forms is important. An unbound form does not have any data associated
with it; when rendered to the user, it will be empty or will contain default values. A bound form does have submitted
data, and hence can be used to tell if that data is valid. If an invalid bound form is rendered it can include inline error
messages telling the user where they went wrong.

See Bound and unbound forms for further information on the differences between bound and unbound forms.

Handling file uploads with a form

To see how to handle file uploads with your form see Binding uploaded files to a form for more information.

Processing the data from a form

Once is_valid() returns True, you can process the form submission safe in the knowledge that it conforms
to the validation rules defined by your form. While you could access request.POST directly at this point, it is
better to access form.cleaned_data. This data has not only been validated but will also be converted in to the
relevant Python types for you. In the above example, cc_myself will be a boolean value. Likewise, fields such
as IntegerField and FloatField convert values to a Python int and float respectively. Note that read-only
fields are not available in form.cleaned_data (and setting a value in a custom clean() method won’t have
any effect) because these fields are displayed as text rather than as input elements, and thus are not posted back to the
server.

Extending the above example, here’s how the form data could be processed:

if form.is_valid():
subject = form.cleaned_data[’subject’]
message = form.cleaned_data[’message’]
sender = form.cleaned_data[’sender’]
cc_myself = form.cleaned_data[’cc_myself’]

recipients = [’info@example.com’]
if cc_myself:

recipients.append(sender)

3.4. Working with forms 149

Django Documentation, Release 1.2.7

from django.core.mail import send_mail
send_mail(subject, message, sender, recipients)
return HttpResponseRedirect(’/thanks/’) # Redirect after POST

For more on sending e-mail from Django, see Sending e-mail.

Displaying a form using a template

Forms are designed to work with the Django template language. In the above example, we passed our ContactForm
instance to the template using the context variable form. Here’s a simple example template:

<form action="/contact/" method="post">{% csrf_token %}
{{ form.as_p }}
<input type="submit" value="Submit" />
</form>

The form only outputs its own fields; it is up to you to provide the surrounding <form> tags and the submit button.

Forms and Cross Site Request Forgery protection

Django ships with an easy-to-use protection against Cross Site Request Forgeries. When submitting a form via POST
with CSRF protection enabled you must use the csrf_token template tag as in the preceding example. However,
since CSRF protection is not directly tied to forms in templates, this tag is omitted from the following examples in this
document.

form.as_p will output the form with each form field and accompanying label wrapped in a paragraph. Here’s the
output for our example template:

<form action="/contact/" method="post">
<p><label for="id_subject">Subject:</label>

<input id="id_subject" type="text" name="subject" maxlength="100" /></p>
<p><label for="id_message">Message:</label>

<input type="text" name="message" id="id_message" /></p>
<p><label for="id_sender">Sender:</label>

<input type="text" name="sender" id="id_sender" /></p>
<p><label for="id_cc_myself">Cc myself:</label>

<input type="checkbox" name="cc_myself" id="id_cc_myself" /></p>
<input type="submit" value="Submit" />
</form>

Note that each form field has an ID attribute set to id_<field-name>, which is referenced by the accompanying
label tag. This is important for ensuring forms are accessible to assistive technology such as screen reader software.
You can also customize the way in which labels and ids are generated.

You can also use form.as_table to output table rows (you’ll need to provide your own <table> tags) and
form.as_ul to output list items.

Customizing the form template

If the default generated HTML is not to your taste, you can completely customize the way a form is presented using
the Django template language. Extending the above example:

<form action="/contact/" method="post">
{{ form.non_field_errors }}
<div class="fieldWrapper">

{{ form.subject.errors }}

150 Chapter 3. Using Django

Django Documentation, Release 1.2.7

<label for="id_subject">E-mail subject:</label>
{{ form.subject }}

</div>
<div class="fieldWrapper">

{{ form.message.errors }}
<label for="id_message">Your message:</label>
{{ form.message }}

</div>
<div class="fieldWrapper">

{{ form.sender.errors }}
<label for="id_sender">Your email address:</label>
{{ form.sender }}

</div>
<div class="fieldWrapper">

{{ form.cc_myself.errors }}
<label for="id_cc_myself">CC yourself?</label>
{{ form.cc_myself }}

</div>
<p><input type="submit" value="Send message" /></p>

</form>

Each named form-field can be output to the template using {{ form.name_of_field }}, which will produce
the HTML needed to display the form widget. Using {{ form.name_of_field.errors }} displays a list of
form errors, rendered as an unordered list. This might look like:

<ul class="errorlist">
Sender is required.

The list has a CSS class of errorlist to allow you to style its appearance. If you wish to further customize the
display of errors you can do so by looping over them:

{% if form.subject.errors %}

{% for error in form.subject.errors %}

{{ error|escape }}
{% endfor %}

{% endif %}

Looping over the form’s fields

If you’re using the same HTML for each of your form fields, you can reduce duplicate code by looping through each
field in turn using a {% for %} loop:

<form action="/contact/" method="post">
{% for field in form %}

<div class="fieldWrapper">
{{ field.errors }}
{{ field.label_tag }}: {{ field }}

</div>
{% endfor %}
<p><input type="submit" value="Send message" /></p>

</form>

Within this loop, {{ field }} is an instance of BoundField. BoundField also has the following attributes,
which can be useful in your templates:

3.4. Working with forms 151

Django Documentation, Release 1.2.7

{{ field.label }} The label of the field, e.g. E-mail address.

{{ field.label_tag }} The field’s label wrapped in the appropriate HTML <label> tag, e.g. <label
for="id_email">E-mail address</label>

{{ field.html_name }} The name of the field that will be used in the input element’s name field. This takes
the form prefix into account, if it has been set.

{{ field.help_text }} Any help text that has been associated with the field.

{{ field.errors }} Outputs a <ul class="errorlist"> containing any validation errors corre-
sponding to this field. You can customize the presentation of the errors with a {% for error in
field.errors %} loop. In this case, each object in the loop is a simple string containing the error message.

field.is_hidden This attribute is True if the form field is a hidden field and False otherwise. It’s not partic-
ularly useful as a template variable, but could be useful in conditional tests such as:

{% if field.is_hidden %}
{# Do something special #}

{% endif %}

Looping over hidden and visible fields

If you’re manually laying out a form in a template, as opposed to relying on Django’s default form layout, you might
want to treat <input type="hidden"> fields differently than non-hidden fields. For example, because hidden
fields don’t display anything, putting error messages “next to” the field could cause confusion for your users – so errors
for those fields should be handled differently.

Django provides two methods on a form that allow you to loop over the hidden and visible fields independently:
hidden_fields() and visible_fields(). Here’s a modification of an earlier example that uses these two
methods:

<form action="/contact/" method="post">
{% for field in form.visible_fields %}

<div class="fieldWrapper">

{# Include the hidden fields in the form #}
{% if forloop.first %}

{% for hidden in form.hidden_fields %}
{{ hidden }}
{% endfor %}

{% endif %}

{{ field.errors }}
{{ field.label_tag }}: {{ field }}

</div>
{% endfor %}
<p><input type="submit" value="Send message" /></p>

</form>

This example does not handle any errors in the hidden fields. Usually, an error in a hidden field is a sign of form
tampering, since normal form interaction won’t alter them. However, you could easily insert some error displays for
those form errors, as well. New in version 1.1: The hidden_fields and visible_fields methods are new in
Django 1.1.

152 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Reusable form templates

If your site uses the same rendering logic for forms in multiple places, you can reduce duplication by saving the form’s
loop in a standalone template and using the include tag to reuse it in other templates:

<form action="/contact/" method="post">
{% include "form_snippet.html" %}
<p><input type="submit" value="Send message" /></p>

</form>

In form_snippet.html:

{% for field in form %}
<div class="fieldWrapper">

{{ field.errors }}
{{ field.label_tag }}: {{ field }}

</div>
{% endfor %}

If the form object passed to a template has a different name within the context, you can alias it using the with tag:

<form action="/comments/add/" method="post">
{% with comment_form as form %}

{% include "form_snippet.html" %}
{% endwith %}
<p><input type="submit" value="Submit comment" /></p>

</form>

If you find yourself doing this often, you might consider creating a custom inclusion tag.

3.4.3 Further topics

This covers the basics, but forms can do a whole lot more:

Creating forms from models

ModelForm

class ModelForm

If you’re building a database-driven app, chances are you’ll have forms that map closely to Django models. For
instance, you might have a BlogComment model, and you want to create a form that lets people submit comments.
In this case, it would be redundant to define the field types in your form, because you’ve already defined the fields in
your model.

For this reason, Django provides a helper class that let you create a Form class from a Django model.

For example:

>>> from django.forms import ModelForm

Create the form class.
>>> class ArticleForm(ModelForm):
... class Meta:
... model = Article

Creating a form to add an article.

3.4. Working with forms 153

Django Documentation, Release 1.2.7

>>> form = ArticleForm()

Creating a form to change an existing article.
>>> article = Article.objects.get(pk=1)
>>> form = ArticleForm(instance=article)

Field types The generated Form class will have a form field for every model field. Each model field has a corre-
sponding default form field. For example, a CharField on a model is represented as a CharField on a form. A
model ManyToManyField is represented as a MultipleChoiceField. Here is the full list of conversions:

Model field Form field
AutoField Not represented in the form
BigIntegerField IntegerField with min_value set to -9223372036854775808 and

max_value set to 9223372036854775807.
BooleanField BooleanField
CharField CharField with max_length set to the model field’s max_length
CommaSeparatedIntegerFieldCharField
DateField DateField
DateTimeField DateTimeField
DecimalField DecimalField
EmailField EmailField
FileField FileField
FilePathField CharField
FloatField FloatField
ForeignKey ModelChoiceField (see below)
ImageField ImageField
IntegerField IntegerField
IPAddressField IPAddressField
ManyToManyField ModelMultipleChoiceField (see below)
NullBooleanField CharField
PhoneNumberField USPhoneNumberField (from django.contrib.localflavor.us)
PositiveIntegerField IntegerField
PositiveSmallIntegerFieldIntegerField
SlugField SlugField
SmallIntegerField IntegerField
TextField CharField with widget=forms.Textarea
TimeField TimeField
URLField URLField with verify_exists set to the model field’s verify_exists
XMLField CharField with widget=forms.Textarea

New in version 1.2: The BigIntegerField is new in Django 1.2. As you might expect, the ForeignKey and
ManyToManyField model field types are special cases:

• ForeignKey is represented by django.forms.ModelChoiceField, which is a ChoiceFieldwhose
choices are a model QuerySet.

• ManyToManyField is represented by django.forms.ModelMultipleChoiceField, which is a
MultipleChoiceField whose choices are a model QuerySet.

In addition, each generated form field has attributes set as follows:

• If the model field has blank=True, then required is set to False on the form field. Otherwise,
required=True.

• The form field’s label is set to the verbose_name of the model field, with the first character capitalized.

154 Chapter 3. Using Django

Django Documentation, Release 1.2.7

• The form field’s help_text is set to the help_text of the model field.

• If the model field has choices set, then the form field’s widget will be set to Select, with choices coming
from the model field’s choices. The choices will normally include the blank choice which is selected by
default. If the field is required, this forces the user to make a selection. The blank choice will not be included
if the model field has blank=False and an explicit default value (the default value will be initially
selected instead).

Finally, note that you can override the form field used for a given model field. See Overriding the default field types
or widgets below.

A full example Consider this set of models:

from django.db import models
from django.forms import ModelForm

TITLE_CHOICES = (
(’MR’, ’Mr.’),
(’MRS’, ’Mrs.’),
(’MS’, ’Ms.’),

)

class Author(models.Model):
name = models.CharField(max_length=100)
title = models.CharField(max_length=3, choices=TITLE_CHOICES)
birth_date = models.DateField(blank=True, null=True)

def __unicode__(self):
return self.name

class Book(models.Model):
name = models.CharField(max_length=100)
authors = models.ManyToManyField(Author)

class AuthorForm(ModelForm):
class Meta:

model = Author

class BookForm(ModelForm):
class Meta:

model = Book

With these models, the ModelForm subclasses above would be roughly equivalent to this (the only difference being
the save() method, which we’ll discuss in a moment.):

class AuthorForm(forms.Form):
name = forms.CharField(max_length=100)
title = forms.CharField(max_length=3,

widget=forms.Select(choices=TITLE_CHOICES))
birth_date = forms.DateField(required=False)

class BookForm(forms.Form):
name = forms.CharField(max_length=100)
authors = forms.ModelMultipleChoiceField(queryset=Author.objects.all())

The is_valid() method and errors Changed in version 1.2: Please, see the release notes The first time you
call is_valid() or access the errors attribute of a ModelForm has always triggered form validation, but as

3.4. Working with forms 155

Django Documentation, Release 1.2.7

of Django 1.2, it will also trigger model validation. This has the side-effect of cleaning the model you pass to the
ModelForm constructor. For instance, calling is_valid() on your form will convert any date fields on your
model to actual date objects.

The save() method Every form produced by ModelForm also has a save() method. This method creates
and saves a database object from the data bound to the form. A subclass of ModelForm can accept an existing
model instance as the keyword argument instance; if this is supplied, save() will update that instance. If it’s not
supplied, save() will create a new instance of the specified model:

Create a form instance from POST data.
>>> f = ArticleForm(request.POST)

Save a new Article object from the form’s data.
>>> new_article = f.save()

Create a form to edit an existing Article.
>>> a = Article.objects.get(pk=1)
>>> f = ArticleForm(instance=a)
>>> f.save()

Create a form to edit an existing Article, but use
POST data to populate the form.
>>> a = Article.objects.get(pk=1)
>>> f = ArticleForm(request.POST, instance=a)
>>> f.save()

Note that save() will raise a ValueError if the data in the form doesn’t validate – i.e., if form.errors evaluates to
True.

This save() method accepts an optional commit keyword argument, which accepts either True or False. If you
call save() with commit=False, then it will return an object that hasn’t yet been saved to the database. In this
case, it’s up to you to call save() on the resulting model instance. This is useful if you want to do custom processing
on the object before saving it, or if you want to use one of the specialized model saving options. commit is True by
default.

Another side effect of using commit=False is seen when your model has a many-to-many relation with another
model. If your model has a many-to-many relation and you specify commit=False when you save a form, Django
cannot immediately save the form data for the many-to-many relation. This is because it isn’t possible to save many-
to-many data for an instance until the instance exists in the database.

To work around this problem, every time you save a form using commit=False, Django adds a save_m2m()
method to your ModelForm subclass. After you’ve manually saved the instance produced by the form, you can
invoke save_m2m() to save the many-to-many form data. For example:

Create a form instance with POST data.
>>> f = AuthorForm(request.POST)

Create, but don’t save the new author instance.
>>> new_author = f.save(commit=False)

Modify the author in some way.
>>> new_author.some_field = ’some_value’

Save the new instance.
>>> new_author.save()

Now, save the many-to-many data for the form.
>>> f.save_m2m()

156 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Calling save_m2m() is only required if you use save(commit=False). When you use a simple save() on a
form, all data – including many-to-many data – is saved without the need for any additional method calls. For example:

Create a form instance with POST data.
>>> a = Author()
>>> f = AuthorForm(request.POST, instance=a)

Create and save the new author instance. There’s no need to do anything else.
>>> new_author = f.save()

Other than the save() and save_m2m() methods, a ModelForm works exactly the same way as any other forms
form. For example, the is_valid() method is used to check for validity, the is_multipart() method is used
to determine whether a form requires multipart file upload (and hence whether request.FILES must be passed to
the form), etc. See Binding uploaded files to a form for more information.

Using a subset of fields on the form In some cases, you may not want all the model fields to appear on the generated
form. There are three ways of telling ModelForm to use only a subset of the model fields:

1. Set editable=False on the model field. As a result, any form created from the model via ModelForm will
not include that field.

2. Use the fields attribute of the ModelForm‘s inner Meta class. This attribute, if given, should be a list of
field names to include in the form. Changed in version 1.1: Please, see the release notes The form will render
the fields in the same order they are specified in the fields attribute.

3. Use the exclude attribute of the ModelForm‘s inner Meta class. This attribute, if given, should be a list of
field names to exclude from the form.

For example, if you want a form for the Author model (defined above) that includes only the name and title
fields, you would specify fields or exclude like this:

class PartialAuthorForm(ModelForm):
class Meta:

model = Author
fields = (’name’, ’title’)

class PartialAuthorForm(ModelForm):
class Meta:

model = Author
exclude = (’birth_date’,)

Since the Author model has only 3 fields, ‘name’, ‘title’, and ‘birth_date’, the forms above will contain exactly the
same fields.

Note: If you specify fields or exclude when creating a form with ModelForm, then the fields that are not in the
resulting form will not be set by the form’s save() method. Django will prevent any attempt to save an incomplete
model, so if the model does not allow the missing fields to be empty, and does not provide a default value for the
missing fields, any attempt to save() a ModelForm with missing fields will fail. To avoid this failure, you must
instantiate your model with initial values for the missing, but required fields:

author = Author(title=’Mr’)
form = PartialAuthorForm(request.POST, instance=author)
form.save()

Alternatively, you can use save(commit=False) and manually set any extra required fields:

form = PartialAuthorForm(request.POST)
author = form.save(commit=False)

3.4. Working with forms 157

Django Documentation, Release 1.2.7

author.title = ’Mr’
author.save()

See the section on saving forms for more details on using save(commit=False).

Overriding the default field types or widgets New in version 1.2: The widgets attribute is new in Django 1.2.
The default field types, as described in the Field types table above, are sensible defaults. If you have a DateField
in your model, chances are you’d want that to be represented as a DateField in your form. But ModelForm gives
you the flexibility of changing the form field type and widget for a given model field.

To specify a custom widget for a field, use the widgets attribute of the inner Meta class. This should be a dictionary
mapping field names to widget classes or instances.

For example, if you want the a CharField for the name attribute of Author to be represented by a <textarea>
instead of its default <input type="text">, you can override the field’s widget:

from django.forms import ModelForm, Textarea

class AuthorForm(ModelForm):
class Meta:

model = Author
fields = (’name’, ’title’, ’birth_date’)
widgets = {

’name’: Textarea(attrs={’cols’: 80, ’rows’: 20}),
}

The widgets dictionary accepts either widget instances (e.g., Textarea(...)) or classes (e.g., Textarea).

If you want to further customize a field – including its type, label, etc. – you can do this by declaratively specifying
fields like you would in a regular Form. Declared fields will override the default ones generated by using the model
attribute.

For example, if you wanted to use MyDateFormField for the pub_date field, you could do the following:

class ArticleForm(ModelForm):
pub_date = MyDateFormField()

class Meta:
model = Article

If you want to override a field’s default label, then specify the label parameter when declaring the form field:

>>> class ArticleForm(ModelForm):
... pub_date = DateField(label=’Publication date’)
...
... class Meta:
... model = Article

Note: If you explicitly instantiate a form field like this, Django assumes that you want to completely define its
behavior; therefore, default attributes (such as max_length or required) are not drawn from the corresponding
model. If you want to maintain the behavior specified in the model, you must set the relevant arguments explicitly
when declaring the form field.

For example, if the Article model looks like this:

class Article(models.Model):
headline = models.CharField(max_length=200, null=True, blank=True,

158 Chapter 3. Using Django

Django Documentation, Release 1.2.7

help_text="Use puns liberally")
content = models.TextField()

and you want to do some custom validation for headline, while keeping the blank and help_text values as
specified, you might define ArticleForm like this:

class ArticleForm(ModelForm):
headline = MyFormField(max_length=200, required=False,

help_text="Use puns liberally")

class Meta:
model = Article

See the form field documentation for more information on fields and their arguments.

Changing the order of fields New in version 1.1: Please, see the release notes By default, a ModelForm will
render fields in the same order that they are defined on the model, with ManyToManyField instances appearing
last. If you want to change the order in which fields are rendered, you can use the fields attribute on the Meta
class.

The fields attribute defines the subset of model fields that will be rendered, and the order in which they will be
rendered. For example given this model:

class Book(models.Model):
author = models.ForeignKey(Author)
title = models.CharField(max_length=100)

the author field would be rendered first. If we wanted the title field to be rendered first, we could specify the
following ModelForm:

>>> class BookForm(ModelForm):
... class Meta:
... model = Book
... fields = (’title’, ’author’)

Overriding the clean() method You can override the clean() method on a model form to provide additional
validation in the same way you can on a normal form.

In this regard, model forms have two specific characteristics when compared to forms:

By default the clean()method validates the uniqueness of fields that are marked as unique, unique_together
or unique_for_date|month|year on the model. Therefore, if you would like to override the clean()method
and maintain the default validation, you must call the parent class’s clean() method.

Also, a model form instance bound to a model object will contain a self.instance attribute that gives model form
methods access to that specific model instance.

Form inheritance As with basic forms, you can extend and reuse ModelForms by inheriting them. This is useful
if you need to declare extra fields or extra methods on a parent class for use in a number of forms derived from models.
For example, using the previous ArticleForm class:

>>> class EnhancedArticleForm(ArticleForm):
... def clean_pub_date(self):
... ...

3.4. Working with forms 159

Django Documentation, Release 1.2.7

This creates a form that behaves identically to ArticleForm, except there’s some extra validation and cleaning for
the pub_date field.

You can also subclass the parent’s Meta inner class if you want to change the Meta.fields or Meta.excludes
lists:

>>> class RestrictedArticleForm(EnhancedArticleForm):
... class Meta(ArticleForm.Meta):
... exclude = (’body’,)

This adds the extra method from the EnhancedArticleForm and modifies the original ArticleForm.Meta to
remove one field.

There are a couple of things to note, however.

• Normal Python name resolution rules apply. If you have multiple base classes that declare a Meta inner class,
only the first one will be used. This means the child’s Meta, if it exists, otherwise the Meta of the first parent,
etc.

• For technical reasons, a subclass cannot inherit from both a ModelForm and a Form simultaneously.

Chances are these notes won’t affect you unless you’re trying to do something tricky with subclassing.

Interaction with model validation As part of its validation process, ModelForm will call the clean() method
of each field on your model that has a corresponding field on your form. If you have excluded any model fields,
validation will not be run on those fields. See the form validation documentation for more on how field cleaning and
validation work. Also, your model’s clean() method will be called before any uniqueness checks are made. See
Validating objects for more information on the model’s clean() hook.

Model formsets

Like regular formsets, Django provides a couple of enhanced formset classes that make it easy to work with Django
models. Let’s reuse the Author model from above:

>>> from django.forms.models import modelformset_factory
>>> AuthorFormSet = modelformset_factory(Author)

This will create a formset that is capable of working with the data associated with the Author model. It works just
like a regular formset:

>>> formset = AuthorFormSet()
>>> print formset
<input type="hidden" name="form-TOTAL_FORMS" value="1" id="id_form-TOTAL_FORMS" /><input type="hidden" name="form-INITIAL_FORMS" value="0" id="id_form-INITIAL_FORMS" /><input type="hidden" name="form-MAX_NUM_FORMS" id="id_form-MAX_NUM_FORMS" />
<tr><th><label for="id_form-0-name">Name:</label></th><td><input id="id_form-0-name" type="text" name="form-0-name" maxlength="100" /></td></tr>
<tr><th><label for="id_form-0-title">Title:</label></th><td><select name="form-0-title" id="id_form-0-title">
<option value="" selected="selected">---------</option>
<option value="MR">Mr.</option>
<option value="MRS">Mrs.</option>
<option value="MS">Ms.</option>
</select></td></tr>
<tr><th><label for="id_form-0-birth_date">Birth date:</label></th><td><input type="text" name="form-0-birth_date" id="id_form-0-birth_date" /><input type="hidden" name="form-0-id" id="id_form-0-id" /></td></tr>

Note: modelformset_factory uses formset_factory to generate formsets. This means that a model
formset is just an extension of a basic formset that knows how to interact with a particular model.

160 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Changing the queryset By default, when you create a formset from a model, the formset will use a queryset that
includes all objects in the model (e.g., Author.objects.all()). You can override this behavior by using the
queryset argument:

>>> formset = AuthorFormSet(queryset=Author.objects.filter(name__startswith=’O’))

Alternatively, you can create a subclass that sets self.queryset in __init__:

from django.forms.models import BaseModelFormSet

class BaseAuthorFormSet(BaseModelFormSet):
def __init__(self, *args, **kwargs):

super(BaseAuthorFormSet, self).__init__(*args, **kwargs)
self.queryset = Author.objects.filter(name__startswith=’O’)

Then, pass your BaseAuthorFormSet class to the factory function:

>>> AuthorFormSet = modelformset_factory(Author, formset=BaseAuthorFormSet)

If you want to return a formset that doesn’t include any pre-existing instances of the model, you can specify an empty
QuerySet:

>>> AuthorFormSet(queryset=Author.objects.none())

Controlling which fields are used with fields and exclude By default, a model formset uses all fields in the
model that are not marked with editable=False. However, this can be overridden at the formset level:

>>> AuthorFormSet = modelformset_factory(Author, fields=(’name’, ’title’))

Using fields restricts the formset to use only the given fields. Alternatively, you can take an “opt-out” approach,
specifying which fields to exclude:

>>> AuthorFormSet = modelformset_factory(Author, exclude=(’birth_date’,))

Saving objects in the formset As with a ModelForm, you can save the data as a model object. This is done with
the formset’s save() method:

Create a formset instance with POST data.
>>> formset = AuthorFormSet(request.POST)

Assuming all is valid, save the data.
>>> instances = formset.save()

The save()method returns the instances that have been saved to the database. If a given instance’s data didn’t change
in the bound data, the instance won’t be saved to the database and won’t be included in the return value (instances,
in the above example).

Pass commit=False to return the unsaved model instances:

don’t save to the database
>>> instances = formset.save(commit=False)
>>> for instance in instances:
... # do something with instance
... instance.save()

This gives you the ability to attach data to the instances before saving them to the database. If your formset contains
a ManyToManyField, you’ll also need to call formset.save_m2m() to ensure the many-to-many relationships
are saved properly.

3.4. Working with forms 161

Django Documentation, Release 1.2.7

Limiting the number of editable objects Changed in version 1.2: Please, see the release notes As with regular
formsets, you can use the max_num and extra parameters to modelformset_factory to limit the number of
extra forms displayed.

max_num does not prevent existing objects from being displayed:

>>> Author.objects.order_by(’name’)
[<Author: Charles Baudelaire>, <Author: Paul Verlaine>, <Author: Walt Whitman>]

>>> AuthorFormSet = modelformset_factory(Author, max_num=1)
>>> formset = AuthorFormSet(queryset=Author.objects.order_by(’name’))
>>> [x.name for x in formset.get_queryset()]
[u’Charles Baudelaire’, u’Paul Verlaine’, u’Walt Whitman’]

If the value of max_num is greater than the number of existing related objects, up to extra additional blank forms
will be added to the formset, so long as the total number of forms does not exceed max_num:

>>> AuthorFormSet = modelformset_factory(Author, max_num=4, extra=2)
>>> formset = AuthorFormSet(queryset=Author.objects.order_by(’name’))
>>> for form in formset.forms:
... print form.as_table()
<tr><th><label for="id_form-0-name">Name:</label></th><td><input id="id_form-0-name" type="text" name="form-0-name" value="Charles Baudelaire" maxlength="100" /><input type="hidden" name="form-0-id" value="1" id="id_form-0-id" /></td></tr>
<tr><th><label for="id_form-1-name">Name:</label></th><td><input id="id_form-1-name" type="text" name="form-1-name" value="Paul Verlaine" maxlength="100" /><input type="hidden" name="form-1-id" value="3" id="id_form-1-id" /></td></tr>
<tr><th><label for="id_form-2-name">Name:</label></th><td><input id="id_form-2-name" type="text" name="form-2-name" value="Walt Whitman" maxlength="100" /><input type="hidden" name="form-2-id" value="2" id="id_form-2-id" /></td></tr>
<tr><th><label for="id_form-3-name">Name:</label></th><td><input id="id_form-3-name" type="text" name="form-3-name" maxlength="100" /><input type="hidden" name="form-3-id" id="id_form-3-id" /></td></tr>

Changed in version 1.2: Please, see the release notes A max_num value of None (the default) puts no limit on the
number of forms displayed.

Using a model formset in a view Model formsets are very similar to formsets. Let’s say we want to present a
formset to edit Author model instances:

def manage_authors(request):
AuthorFormSet = modelformset_factory(Author)
if request.method == ’POST’:

formset = AuthorFormSet(request.POST, request.FILES)
if formset.is_valid():

formset.save()
do something.

else:
formset = AuthorFormSet()

return render_to_response("manage_authors.html", {
"formset": formset,

})

As you can see, the view logic of a model formset isn’t drastically different than that of a “normal” formset. The only
difference is that we call formset.save() to save the data into the database. (This was described above, in Saving
objects in the formset.)

Overiding clean() on a model_formset Just like with ModelForms, by default the clean() method
of a model_formset will validate that none of the items in the formset violate the unique constraints on your
model (either unique, unique_together or unique_for_date|month|year). If you want to overide the
clean() method on a model_formset and maintain this validation, you must call the parent class’s clean
method:

class MyModelFormSet(BaseModelFormSet):
def clean(self):

162 Chapter 3. Using Django

Django Documentation, Release 1.2.7

super(MyModelFormSet, self).clean()
example custom validation across forms in the formset:
for form in self.forms:

your custom formset validation

Using a custom queryset As stated earlier, you can override the default queryset used by the model formset:

def manage_authors(request):
AuthorFormSet = modelformset_factory(Author)
if request.method == "POST":

formset = AuthorFormSet(request.POST, request.FILES,
queryset=Author.objects.filter(name__startswith=’O’))

if formset.is_valid():
formset.save()
Do something.

else:
formset = AuthorFormSet(queryset=Author.objects.filter(name__startswith=’O’))

return render_to_response("manage_authors.html", {
"formset": formset,

})

Note that we pass the queryset argument in both the POST and GET cases in this example.

Using the formset in the template There are three ways to render a formset in a Django template.

First, you can let the formset do most of the work:

<form method="post" action="">
{{ formset }}

</form>

Second, you can manually render the formset, but let the form deal with itself:

<form method="post" action="">
{{ formset.management_form }}
{% for form in formset.forms %}

{{ form }}
{% endfor %}

</form>

When you manually render the forms yourself, be sure to render the management form as shown above. See the
management form documentation.

Third, you can manually render each field:

<form method="post" action="">
{{ formset.management_form }}
{% for form in formset.forms %}

{% for field in form %}
{{ field.label_tag }}: {{ field }}

{% endfor %}
{% endfor %}

</form>

If you opt to use this third method and you don’t iterate over the fields with a {% for %} loop, you’ll need to render
the primary key field. For example, if you were rendering the name and age fields of a model:

3.4. Working with forms 163

Django Documentation, Release 1.2.7

<form method="post" action="">
{{ formset.management_form }}
{% for form in formset.forms %}

{{ form.id }}

{{ form.name }}
{{ form.age }}

{% endfor %}

</form>

Notice how we need to explicitly render {{ form.id }}. This ensures that the model formset, in the POST case,
will work correctly. (This example assumes a primary key named id. If you’ve explicitly defined your own primary
key that isn’t called id, make sure it gets rendered.)

Inline formsets

Inline formsets is a small abstraction layer on top of model formsets. These simplify the case of working with related
objects via a foreign key. Suppose you have these two models:

class Author(models.Model):
name = models.CharField(max_length=100)

class Book(models.Model):
author = models.ForeignKey(Author)
title = models.CharField(max_length=100)

If you want to create a formset that allows you to edit books belonging to a particular author, you could do this:

>>> from django.forms.models import inlineformset_factory
>>> BookFormSet = inlineformset_factory(Author, Book)
>>> author = Author.objects.get(name=u’Mike Royko’)
>>> formset = BookFormSet(instance=author)

Note: inlineformset_factory uses modelformset_factory and marks can_delete=True.

More than one foreign key to the same model If your model contains more than one foreign key to the same
model, you’ll need to resolve the ambiguity manually using fk_name. For example, consider the following model:

class Friendship(models.Model):
from_friend = models.ForeignKey(Friend)
to_friend = models.ForeignKey(Friend)
length_in_months = models.IntegerField()

To resolve this, you can use fk_name to inlineformset_factory:

>>> FriendshipFormSet = inlineformset_factory(Friend, Friendship, fk_name="from_friend")

Using an inline formset in a view You may want to provide a view that allows a user to edit the related objects of a
model. Here’s how you can do that:

def manage_books(request, author_id):
author = Author.objects.get(pk=author_id)
BookInlineFormSet = inlineformset_factory(Author, Book)

164 Chapter 3. Using Django

Django Documentation, Release 1.2.7

if request.method == "POST":
formset = BookInlineFormSet(request.POST, request.FILES, instance=author)
if formset.is_valid():

formset.save()
Do something.

else:
formset = BookInlineFormSet(instance=author)

return render_to_response("manage_books.html", {
"formset": formset,

})

Notice how we pass instance in both the POST and GET cases.

Formsets

A formset is a layer of abstraction to working with multiple forms on the same page. It can be best compared to a data
grid. Let’s say you have the following form:

>>> from django import forms
>>> class ArticleForm(forms.Form):
... title = forms.CharField()
... pub_date = forms.DateField()

You might want to allow the user to create several articles at once. To create a formset out of an ArticleForm you
would do:

>>> from django.forms.formsets import formset_factory
>>> ArticleFormSet = formset_factory(ArticleForm)

You now have created a formset named ArticleFormSet. The formset gives you the ability to iterate over the
forms in the formset and display them as you would with a regular form:

>>> formset = ArticleFormSet()
>>> for form in formset.forms:
... print form.as_table()
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pub_date" id="id_form-0-pub_date" /></td></tr>

As you can see it only displayed one empty form. The number of empty forms that is displayed is controlled by the
extra parameter. By default, formset_factory defines one extra form; the following example will display two
blank forms:

>>> ArticleFormSet = formset_factory(ArticleForm, extra=2)

Using initial data with a formset

Initial data is what drives the main usability of a formset. As shown above you can define the number of extra forms.
What this means is that you are telling the formset how many additional forms to show in addition to the number of
forms it generates from the initial data. Lets take a look at an example:

>>> ArticleFormSet = formset_factory(ArticleForm, extra=2)
>>> formset = ArticleFormSet(initial=[
... {’title’: u’Django is now open source’,
... ’pub_date’: datetime.date.today()},
...])

3.4. Working with forms 165

Django Documentation, Release 1.2.7

>>> for form in formset.forms:
... print form.as_table()
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" value="Django is now open source" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pub_date" value="2008-05-12" id="id_form-0-pub_date" /></td></tr>
<tr><th><label for="id_form-1-title">Title:</label></th><td><input type="text" name="form-1-title" id="id_form-1-title" /></td></tr>
<tr><th><label for="id_form-1-pub_date">Pub date:</label></th><td><input type="text" name="form-1-pub_date" id="id_form-1-pub_date" /></td></tr>
<tr><th><label for="id_form-2-title">Title:</label></th><td><input type="text" name="form-2-title" id="id_form-2-title" /></td></tr>
<tr><th><label for="id_form-2-pub_date">Pub date:</label></th><td><input type="text" name="form-2-pub_date" id="id_form-2-pub_date" /></td></tr>

There are now a total of three forms showing above. One for the initial data that was passed in and two extra forms.
Also note that we are passing in a list of dictionaries as the initial data.

See Also:

Creating formsets from models with model formsets.

Limiting the maximum number of forms

The max_num parameter to formset_factory gives you the ability to limit the maximum number of empty forms
the formset will display:

>>> ArticleFormSet = formset_factory(ArticleForm, extra=2, max_num=1)
>>> formset = ArticleFormset()
>>> for form in formset.forms:
... print form.as_table()
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pub_date" id="id_form-0-pub_date" /></td></tr>

Changed in version 1.2: Please, see the release notes If the value of max_num is greater than the number of existing
objects, up to extra additional blank forms will be added to the formset, so long as the total number of forms does
not exceed max_num.

A max_num value of None (the default) puts no limit on the number of forms displayed. Please note that the default
value of max_num was changed from 0 to None in version 1.2 to allow 0 as a valid value.

Formset validation

Validation with a formset is almost identical to a regular Form. There is an is_valid method on the formset to
provide a convenient way to validate all forms in the formset:

>>> ArticleFormSet = formset_factory(ArticleForm)
>>> formset = ArticleFormSet({})
>>> formset.is_valid()
True

We passed in no data to the formset which is resulting in a valid form. The formset is smart enough to ignore extra
forms that were not changed. If we provide an invalid article:

>>> data = {
... ’form-TOTAL_FORMS’: u’2’,
... ’form-INITIAL_FORMS’: u’0’,
... ’form-MAX_NUM_FORMS’: u’’,
... ’form-0-title’: u’Test’,
... ’form-0-pub_date’: u’16 June 1904’,
... ’form-1-title’: u’Test’,
... ’form-1-pub_date’: u’’, # <-- this date is missing but required
... }

166 Chapter 3. Using Django

Django Documentation, Release 1.2.7

>>> formset = ArticleFormSet(data)
>>> formset.is_valid()
False
>>> formset.errors
[{}, {’pub_date’: [u’This field is required.’]}]

As we can see, formset.errors is a list whose entries correspond to the forms in the formset. Validation was
performed for each of the two forms, and the expected error message appears for the second item.

Understanding the ManagementForm You may have noticed the additional data (form-TOTAL_FORMS,
form-INITIAL_FORMS and form-MAX_NUM_FORMS) that was required in the formset’s data above. This data is
required for the ManagementForm. This form is used by the formset to manage the collection of forms contained
in the formset. If you don’t provide this management data, an exception will be raised:

>>> data = {
... ’form-0-title’: u’Test’,
... ’form-0-pub_date’: u’’,
... }
>>> formset = ArticleFormSet(data)
Traceback (most recent call last):
...
django.forms.util.ValidationError: [u’ManagementForm data is missing or has been tampered with’]

It is used to keep track of how many form instances are being displayed. If you are adding new forms via JavaScript,
you should increment the count fields in this form as well.

The management form is available as an attribute of the formset itself. When rendering a formset in a template, you
can include all the management data by rendering {{ my_formset.management_form }} (substituting the
name of your formset as appropriate). New in version 1.1: Please, see the release notes

total_form_count and initial_form_count BaseFormSet has a couple of methods that are closely
related to the ManagementForm, total_form_count and initial_form_count.

total_form_count returns the total number of forms in this formset. initial_form_count returns the
number of forms in the formset that were pre-filled, and is also used to determine how many forms are required. You
will probably never need to override either of these methods, so please be sure you understand what they do before
doing so. New in version 1.2: Please, see the release notes

empty_form BaseFormSet provides an additional attribute empty_form which returns a form instance with
a prefix of __prefix__ for easier use in dynamic forms with JavaScript.

Custom formset validation A formset has a clean method similar to the one on a Form class. This is where you
define your own validation that works at the formset level:

>>> from django.forms.formsets import BaseFormSet

>>> class BaseArticleFormSet(BaseFormSet):
... def clean(self):
... """Checks that no two articles have the same title."""
... if any(self.errors):
... # Don’t bother validating the formset unless each form is valid on its own
... return
... titles = []
... for i in range(0, self.total_form_count()):
... form = self.forms[i]

3.4. Working with forms 167

Django Documentation, Release 1.2.7

... title = form.cleaned_data[’title’]

... if title in titles:

... raise forms.ValidationError, "Articles in a set must have distinct titles."

... titles.append(title)

>>> ArticleFormSet = formset_factory(ArticleForm, formset=BaseArticleFormSet)
>>> data = {
... ’form-TOTAL_FORMS’: u’2’,
... ’form-INITIAL_FORMS’: u’0’,
... ’form-MAX_NUM_FORMS’: u’’,
... ’form-0-title’: u’Test’,
... ’form-0-pub_date’: u’16 June 1904’,
... ’form-1-title’: u’Test’,
... ’form-1-pub_date’: u’23 June 1912’,
... }
>>> formset = ArticleFormSet(data)
>>> formset.is_valid()
False
>>> formset.errors
[{}, {}]
>>> formset.non_form_errors()
[u’Articles in a set must have distinct titles.’]

The formset clean method is called after all the Form.clean methods have been called. The errors will be found
using the non_form_errors() method on the formset.

Dealing with ordering and deletion of forms

Common use cases with a formset is dealing with ordering and deletion of the form instances. This has been dealt
with for you. The formset_factory provides two optional parameters can_order and can_delete that will
do the extra work of adding the extra fields and providing simpler ways of getting to that data.

can_order Default: False

Lets create a formset with the ability to order:

>>> ArticleFormSet = formset_factory(ArticleForm, can_order=True)
>>> formset = ArticleFormSet(initial=[
... {’title’: u’Article #1’, ’pub_date’: datetime.date(2008, 5, 10)},
... {’title’: u’Article #2’, ’pub_date’: datetime.date(2008, 5, 11)},
...])
>>> for form in formset.forms:
... print form.as_table()
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" value="Article #1" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pub_date" value="2008-05-10" id="id_form-0-pub_date" /></td></tr>
<tr><th><label for="id_form-0-ORDER">Order:</label></th><td><input type="text" name="form-0-ORDER" value="1" id="id_form-0-ORDER" /></td></tr>
<tr><th><label for="id_form-1-title">Title:</label></th><td><input type="text" name="form-1-title" value="Article #2" id="id_form-1-title" /></td></tr>
<tr><th><label for="id_form-1-pub_date">Pub date:</label></th><td><input type="text" name="form-1-pub_date" value="2008-05-11" id="id_form-1-pub_date" /></td></tr>
<tr><th><label for="id_form-1-ORDER">Order:</label></th><td><input type="text" name="form-1-ORDER" value="2" id="id_form-1-ORDER" /></td></tr>
<tr><th><label for="id_form-2-title">Title:</label></th><td><input type="text" name="form-2-title" id="id_form-2-title" /></td></tr>
<tr><th><label for="id_form-2-pub_date">Pub date:</label></th><td><input type="text" name="form-2-pub_date" id="id_form-2-pub_date" /></td></tr>
<tr><th><label for="id_form-2-ORDER">Order:</label></th><td><input type="text" name="form-2-ORDER" id="id_form-2-ORDER" /></td></tr>

This adds an additional field to each form. This new field is named ORDER and is an forms.IntegerField. For
the forms that came from the initial data it automatically assigned them a numeric value. Lets look at what will happen
when the user changes these values:

168 Chapter 3. Using Django

Django Documentation, Release 1.2.7

>>> data = {
... ’form-TOTAL_FORMS’: u’3’,
... ’form-INITIAL_FORMS’: u’2’,
... ’form-MAX_NUM_FORMS’: u’’,
... ’form-0-title’: u’Article #1’,
... ’form-0-pub_date’: u’2008-05-10’,
... ’form-0-ORDER’: u’2’,
... ’form-1-title’: u’Article #2’,
... ’form-1-pub_date’: u’2008-05-11’,
... ’form-1-ORDER’: u’1’,
... ’form-2-title’: u’Article #3’,
... ’form-2-pub_date’: u’2008-05-01’,
... ’form-2-ORDER’: u’0’,
... }

>>> formset = ArticleFormSet(data, initial=[
... {’title’: u’Article #1’, ’pub_date’: datetime.date(2008, 5, 10)},
... {’title’: u’Article #2’, ’pub_date’: datetime.date(2008, 5, 11)},
...])
>>> formset.is_valid()
True
>>> for form in formset.ordered_forms:
... print form.cleaned_data
{’pub_date’: datetime.date(2008, 5, 1), ’ORDER’: 0, ’title’: u’Article #3’}
{’pub_date’: datetime.date(2008, 5, 11), ’ORDER’: 1, ’title’: u’Article #2’}
{’pub_date’: datetime.date(2008, 5, 10), ’ORDER’: 2, ’title’: u’Article #1’}

can_delete Default: False

Lets create a formset with the ability to delete:

>>> ArticleFormSet = formset_factory(ArticleForm, can_delete=True)
>>> formset = ArticleFormSet(initial=[
... {’title’: u’Article #1’, ’pub_date’: datetime.date(2008, 5, 10)},
... {’title’: u’Article #2’, ’pub_date’: datetime.date(2008, 5, 11)},
...])
>>> for form in formset.forms:
.... print form.as_table()
<input type="hidden" name="form-TOTAL_FORMS" value="3" id="id_form-TOTAL_FORMS" /><input type="hidden" name="form-INITIAL_FORMS" value="2" id="id_form-INITIAL_FORMS" /><input type="hidden" name="form-MAX_NUM_FORMS" id="id_form-MAX_NUM_FORMS" />
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" value="Article #1" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pub_date" value="2008-05-10" id="id_form-0-pub_date" /></td></tr>
<tr><th><label for="id_form-0-DELETE">Delete:</label></th><td><input type="checkbox" name="form-0-DELETE" id="id_form-0-DELETE" /></td></tr>
<tr><th><label for="id_form-1-title">Title:</label></th><td><input type="text" name="form-1-title" value="Article #2" id="id_form-1-title" /></td></tr>
<tr><th><label for="id_form-1-pub_date">Pub date:</label></th><td><input type="text" name="form-1-pub_date" value="2008-05-11" id="id_form-1-pub_date" /></td></tr>
<tr><th><label for="id_form-1-DELETE">Delete:</label></th><td><input type="checkbox" name="form-1-DELETE" id="id_form-1-DELETE" /></td></tr>
<tr><th><label for="id_form-2-title">Title:</label></th><td><input type="text" name="form-2-title" id="id_form-2-title" /></td></tr>
<tr><th><label for="id_form-2-pub_date">Pub date:</label></th><td><input type="text" name="form-2-pub_date" id="id_form-2-pub_date" /></td></tr>
<tr><th><label for="id_form-2-DELETE">Delete:</label></th><td><input type="checkbox" name="form-2-DELETE" id="id_form-2-DELETE" /></td></tr>

Similar to can_order this adds a new field to each form named DELETE and is a forms.BooleanField. When
data comes through marking any of the delete fields you can access them with deleted_forms:

>>> data = {
... ’form-TOTAL_FORMS’: u’3’,
... ’form-INITIAL_FORMS’: u’2’,
... ’form-MAX_NUM_FORMS’: u’’,
... ’form-0-title’: u’Article #1’,
... ’form-0-pub_date’: u’2008-05-10’,

3.4. Working with forms 169

Django Documentation, Release 1.2.7

... ’form-0-DELETE’: u’on’,

... ’form-1-title’: u’Article #2’,

... ’form-1-pub_date’: u’2008-05-11’,

... ’form-1-DELETE’: u’’,

... ’form-2-title’: u’’,

... ’form-2-pub_date’: u’’,

... ’form-2-DELETE’: u’’,

... }

>>> formset = ArticleFormSet(data, initial=[
... {’title’: u’Article #1’, ’pub_date’: datetime.date(2008, 5, 10)},
... {’title’: u’Article #2’, ’pub_date’: datetime.date(2008, 5, 11)},
...])
>>> [form.cleaned_data for form in formset.deleted_forms]
[{’DELETE’: True, ’pub_date’: datetime.date(2008, 5, 10), ’title’: u’Article #1’}]

Adding additional fields to a formset

If you need to add additional fields to the formset this can be easily accomplished. The formset base class provides
an add_fields method. You can simply override this method to add your own fields or even redefine the default
fields/attributes of the order and deletion fields:

>>> class BaseArticleFormSet(BaseFormSet):
... def add_fields(self, form, index):
... super(BaseArticleFormSet, self).add_fields(form, index)
... form.fields["my_field"] = forms.CharField()

>>> ArticleFormSet = formset_factory(ArticleForm, formset=BaseArticleFormSet)
>>> formset = ArticleFormSet()
>>> for form in formset.forms:
... print form.as_table()
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pub_date" id="id_form-0-pub_date" /></td></tr>
<tr><th><label for="id_form-0-my_field">My field:</label></th><td><input type="text" name="form-0-my_field" id="id_form-0-my_field" /></td></tr>

Using a formset in views and templates

Using a formset inside a view is as easy as using a regular Form class. The only thing you will want to be aware of is
making sure to use the management form inside the template. Let’s look at a sample view:

def manage_articles(request):
ArticleFormSet = formset_factory(ArticleForm)
if request.method == ’POST’:

formset = ArticleFormSet(request.POST, request.FILES)
if formset.is_valid():

do something with the formset.cleaned_data
pass

else:
formset = ArticleFormSet()

return render_to_response(’manage_articles.html’, {’formset’: formset})

The manage_articles.html template might look like this:

<form method="post" action="">
{{ formset.management_form }}

170 Chapter 3. Using Django

Django Documentation, Release 1.2.7

<table>
{% for form in formset.forms %}
{{ form }}
{% endfor %}

</table>
</form>

However the above can be slightly shortcutted and let the formset itself deal with the management form:

<form method="post" action="">
<table>

{{ formset }}
</table>

</form>

The above ends up calling the as_table method on the formset class.

Using more than one formset in a view You are able to use more than one formset in a view if you like. Formsets
borrow much of its behavior from forms. With that said you are able to use prefix to prefix formset form field
names with a given value to allow more than one formset to be sent to a view without name clashing. Lets take a look
at how this might be accomplished:

def manage_articles(request):
ArticleFormSet = formset_factory(ArticleForm)
BookFormSet = formset_factory(BookForm)
if request.method == ’POST’:

article_formset = ArticleFormSet(request.POST, request.FILES, prefix=’articles’)
book_formset = BookFormSet(request.POST, request.FILES, prefix=’books’)
if article_formset.is_valid() and book_formset.is_valid():

do something with the cleaned_data on the formsets.
pass

else:
article_formset = ArticleFormSet(prefix=’articles’)
book_formset = BookFormSet(prefix=’books’)

return render_to_response(’manage_articles.html’, {
’article_formset’: article_formset,
’book_formset’: book_formset,

})

You would then render the formsets as normal. It is important to point out that you need to pass prefix on both the
POST and non-POST cases so that it is rendered and processed correctly.

Form Media

Rendering an attractive and easy-to-use Web form requires more than just HTML - it also requires CSS stylesheets,
and if you want to use fancy “Web2.0” widgets, you may also need to include some JavaScript on each page. The
exact combination of CSS and JavaScript that is required for any given page will depend upon the widgets that are in
use on that page.

This is where Django media definitions come in. Django allows you to associate different media files with the forms
and widgets that require that media. For example, if you want to use a calendar to render DateFields, you can define
a custom Calendar widget. This widget can then be associated with the CSS and JavaScript that is required to render
the calendar. When the Calendar widget is used on a form, Django is able to identify the CSS and JavaScript files that
are required, and provide the list of file names in a form suitable for easy inclusion on your Web page.

Media and Django Admin

3.4. Working with forms 171

Django Documentation, Release 1.2.7

The Django Admin application defines a number of customized widgets for calendars, filtered selections, and so on.
These widgets define media requirements, and the Django Admin uses the custom widgets in place of the Django
defaults. The Admin templates will only include those media files that are required to render the widgets on any given
page.

If you like the widgets that the Django Admin application uses, feel free to use them in your own application! They’re
all stored in django.contrib.admin.widgets.

Which JavaScript toolkit?

Many JavaScript toolkits exist, and many of them include widgets (such as calendar widgets) that can be used to
enhance your application. Django has deliberately avoided blessing any one JavaScript toolkit. Each toolkit has its
own relative strengths and weaknesses - use whichever toolkit suits your requirements. Django is able to integrate
with any JavaScript toolkit.

Media as a static definition

The easiest way to define media is as a static definition. Using this method, the media declaration is an inner class.
The properties of the inner class define the media requirements.

Here’s a simple example:

class CalendarWidget(forms.TextInput):
class Media:

css = {
’all’: (’pretty.css’,)

}
js = (’animations.js’, ’actions.js’)

This code defines a CalendarWidget, which will be based on TextInput. Every time the CalendarWid-
get is used on a form, that form will be directed to include the CSS file pretty.css, and the JavaScript files
animations.js and actions.js.

This static media definition is converted at runtime into a widget property named media. The media for a Calendar-
Widget instance can be retrieved through this property:

>>> w = CalendarWidget()
>>> print w.media
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://media.example.com/actions.js"></script>

Here’s a list of all possible Media options. There are no required options.

css A dictionary describing the CSS files required for various forms of output media.

The values in the dictionary should be a tuple/list of file names. See the section on media paths for details of how to
specify paths to media files. The keys in the dictionary are the output media types. These are the same types accepted
by CSS files in media declarations: ‘all’, ‘aural’, ‘braille’, ‘embossed’, ‘handheld’, ‘print’, ‘projection’, ‘screen’, ‘tty’
and ‘tv’. If you need to have different stylesheets for different media types, provide a list of CSS files for each output
medium. The following example would provide two CSS options – one for the screen, and one for print:

class Media:
css = {

’screen’: (’pretty.css’,),

172 Chapter 3. Using Django

Django Documentation, Release 1.2.7

’print’: (’newspaper.css’,)
}

If a group of CSS files are appropriate for multiple output media types, the dictionary key can be a comma separated
list of output media types. In the following example, TV’s and projectors will have the same media requirements:

class Media:
css = {

’screen’: (’pretty.css’,),
’tv,projector’: (’lo_res.css’,),
’print’: (’newspaper.css’,)

}

If this last CSS definition were to be rendered, it would become the following HTML:

<link href="http://media.example.com/pretty.css" type="text/css" media="screen" rel="stylesheet" />
<link href="http://media.example.com/lo_res.css" type="text/css" media="tv,projector" rel="stylesheet" />
<link href="http://media.example.com/newspaper.css" type="text/css" media="print" rel="stylesheet" />

js A tuple describing the required JavaScript files. See the section on media paths for details of how to specify
paths to media files.

extend A boolean defining inheritance behavior for media declarations.

By default, any object using a static media definition will inherit all the media associated with the parent widget.
This occurs regardless of how the parent defines its media requirements. For example, if we were to extend our basic
Calendar widget from the example above:

>>> class FancyCalendarWidget(CalendarWidget):
... class Media:
... css = {
... ’all’: (’fancy.css’,)
... }
... js = (’whizbang.js’,)

>>> w = FancyCalendarWidget()
>>> print w.media
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />
<link href="http://media.example.com/fancy.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://media.example.com/actions.js"></script>
<script type="text/javascript" src="http://media.example.com/whizbang.js"></script>

The FancyCalendar widget inherits all the media from it’s parent widget. If you don’t want media to be inherited in
this way, add an extend=False declaration to the media declaration:

>>> class FancyCalendarWidget(CalendarWidget):
... class Media:
... extend = False
... css = {
... ’all’: (’fancy.css’,)
... }
... js = (’whizbang.js’,)

>>> w = FancyCalendarWidget()
>>> print w.media

3.4. Working with forms 173

Django Documentation, Release 1.2.7

<link href="http://media.example.com/fancy.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/whizbang.js"></script>

If you require even more control over media inheritance, define your media using a dynamic property. Dynamic
properties give you complete control over which media files are inherited, and which are not.

Media as a dynamic property

If you need to perform some more sophisticated manipulation of media requirements, you can define the media prop-
erty directly. This is done by defining a widget property that returns an instance of forms.Media. The constructor
for forms.Media accepts css and js keyword arguments in the same format as that used in a static media defini-
tion.

For example, the static media definition for our Calendar Widget could also be defined in a dynamic fashion:

class CalendarWidget(forms.TextInput):
def _media(self):

return forms.Media(css={’all’: (’pretty.css’,)},
js=(’animations.js’, ’actions.js’))

media = property(_media)

See the section on Media objects for more details on how to construct return values for dynamic media properties.

Paths in media definitions

Paths used to specify media can be either relative or absolute. If a path starts with ‘/’, ‘http://‘ or ‘https://‘,
it will be interpreted as an absolute path, and left as-is. All other paths will be prepended with the value of
settings.MEDIA_URL. For example, if the MEDIA_URL for your site was http://media.example.com/:

class CalendarWidget(forms.TextInput):
class Media:

css = {
’all’: (’/css/pretty.css’,),

}
js = (’animations.js’, ’http://othersite.com/actions.js’)

>>> w = CalendarWidget()
>>> print w.media
<link href="/css/pretty.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://othersite.com/actions.js"></script>

Media objects

When you interrogate the media attribute of a widget or form, the value that is returned is a forms.Media object.
As we have already seen, the string representation of a Media object is the HTML required to include media in the
<head> block of your HTML page.

However, Media objects have some other interesting properties.

Media subsets If you only want media of a particular type, you can use the subscript operator to filter out a medium
of interest. For example:

174 Chapter 3. Using Django

http://
https://

Django Documentation, Release 1.2.7

>>> w = CalendarWidget()
>>> print w.media
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://media.example.com/actions.js"></script>

>>> print w.media[’css’]
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />

When you use the subscript operator, the value that is returned is a new Media object – but one that only contains the
media of interest.

Combining media objects Media objects can also be added together. When two media objects are added, the
resulting Media object contains the union of the media from both files:

>>> class CalendarWidget(forms.TextInput):
... class Media:
... css = {
... ’all’: (’pretty.css’,)
... }
... js = (’animations.js’, ’actions.js’)

>>> class OtherWidget(forms.TextInput):
... class Media:
... js = (’whizbang.js’,)

>>> w1 = CalendarWidget()
>>> w2 = OtherWidget()
>>> print w1.media + w2.media
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://media.example.com/actions.js"></script>
<script type="text/javascript" src="http://media.example.com/whizbang.js"></script>

Media on Forms

Widgets aren’t the only objects that can have media definitions – forms can also define media. The rules for media
definitions on forms are the same as the rules for widgets: declarations can be static or dynamic; path and inheritance
rules for those declarations are exactly the same.

Regardless of whether you define a media declaration, all Form objects have a media property. The default value for
this property is the result of adding the media definitions for all widgets that are part of the form:

>>> class ContactForm(forms.Form):
... date = DateField(widget=CalendarWidget)
... name = CharField(max_length=40, widget=OtherWidget)

>>> f = ContactForm()
>>> f.media
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://media.example.com/actions.js"></script>
<script type="text/javascript" src="http://media.example.com/whizbang.js"></script>

If you want to associate additional media with a form – for example, CSS for form layout – simply add a media
declaration to the form:

3.4. Working with forms 175

Django Documentation, Release 1.2.7

>>> class ContactForm(forms.Form):
... date = DateField(widget=CalendarWidget)
... name = CharField(max_length=40, widget=OtherWidget)
...
... class Media:
... css = {
... ’all’: (’layout.css’,)
... }

>>> f = ContactForm()
>>> f.media
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />
<link href="http://media.example.com/layout.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://media.example.com/actions.js"></script>
<script type="text/javascript" src="http://media.example.com/whizbang.js"></script>

See Also:

The Forms Reference Covers the full API reference, including form fields, form widgets, and form and field valida-
tion.

3.5 The Django template language

About this document

This document explains the language syntax of the Django template system. If you’re looking for a more technical
perspective on how it works and how to extend it, see The Django template language: For Python programmers.

Django’s template language is designed to strike a balance between power and ease. It’s designed to feel comfortable
to those used to working with HTML. If you have any exposure to other text-based template languages, such as Smarty
or CheetahTemplate, you should feel right at home with Django’s templates.

Philosophy

If you have a background in programming, or if you’re used to languages like PHP which mix programming code
directly into HTML, you’ll want to bear in mind that the Django template system is not simply Python embedded into
HTML. This is by design: the template system is meant to express presentation, not program logic.

The Django template system provides tags which function similarly to some programming constructs – an if tag for
boolean tests, a for tag for looping, etc. – but these are not simply executed as the corresponding Python code, and
the template system will not execute arbitrary Python expressions. Only the tags, filters and syntax listed below are
supported by default (although you can add your own extensions to the template language as needed).

3.5.1 Templates

A template is simply a text file. It can generate any text-based format (HTML, XML, CSV, etc.).

A template contains variables, which get replaced with values when the template is evaluated, and tags, which control
the logic of the template.

Below is a minimal template that illustrates a few basics. Each element will be explained later in this document.:

176 Chapter 3. Using Django

http://smarty.php.net/
http://www.cheetahtemplate.org/

Django Documentation, Release 1.2.7

{% extends "base_generic.html" %}

{% block title %}{{ section.title }}{% endblock %}

{% block content %}
<h1>{{ section.title }}</h1>

{% for story in story_list %}
<h2>

{{ story.headline|upper }}

</h2>
<p>{{ story.tease|truncatewords:"100" }}</p>
{% endfor %}
{% endblock %}

Philosophy

Why use a text-based template instead of an XML-based one (like Zope’s TAL)? We wanted Django’s template lan-
guage to be usable for more than just XML/HTML templates. At World Online, we use it for e-mails, JavaScript and
CSV. You can use the template language for any text-based format.

Oh, and one more thing: Making humans edit XML is sadistic!

3.5.2 Variables

Variables look like this: {{ variable }}. When the template engine encounters a variable, it evaluates that
variable and replaces it with the result.

Use a dot (.) to access attributes of a variable.

Behind the scenes

Technically, when the template system encounters a dot, it tries the following lookups, in this order:

• Dictionary lookup

• Attribute lookup

• Method call

• List-index lookup

In the above example, {{ section.title }} will be replaced with the title attribute of the section object.

If you use a variable that doesn’t exist, the template system will insert the value of the
TEMPLATE_STRING_IF_INVALID setting, which is set to ” (the empty string) by default.

3.5.3 Filters

You can modify variables for display by using filters.

Filters look like this: {{ name|lower }}. This displays the value of the {{ name }} variable after being
filtered through the lower filter, which converts text to lowercase. Use a pipe (|) to apply a filter.

3.5. The Django template language 177

Django Documentation, Release 1.2.7

Filters can be “chained.” The output of one filter is applied to the next. {{ text|escape|linebreaks }} is a
common idiom for escaping text contents, then converting line breaks to <p> tags.

Some filters take arguments. A filter argument looks like this: {{ bio|truncatewords:30 }}. This will
display the first 30 words of the bio variable.

Filter arguments that contain spaces must be quoted; for example, to join a list with commas and spaced you’d use {{
list|join:", " }}.

Django provides about thirty built-in template filters. You can read all about them in the built-in filter reference. To
give you a taste of what’s available, here are some of the more commonly used template filters:

default If a variable is false or empty, use given default. Otherwise, use the value of the variable

For example:

{{ value|default:"nothing" }}

If value isn’t provided or is empty, the above will display “nothing”.

length Returns the length of the value. This works for both strings and lists; for example:

{{ value|length }}

If value is [’a’, ’b’, ’c’, ’d’], the output will be 4.

striptags Strips all [X]HTML tags. For example:

{{ value|striptags }}

If value is "Joel <button>is</button> a slug", the output will be
"Joel is a slug".

Again, these are just a few examples; see the built-in filter reference for the complete list.

You can also create your own custom template filters; see Custom template tags and filters.

See Also:

Django’s admin interface can include a complete reference of all template tags and filters available for a given site.
See The Django admin documentation generator.

3.5.4 Tags

Tags look like this: {% tag %}. Tags are more complex than variables: Some create text in the output, some control
flow by performing loops or logic, and some load external information into the template to be used by later variables.

Some tags require beginning and ending tags (i.e. {% tag %} ... tag contents ... {% endtag
%}).

Django ships with about two dozen built-in template tags. You can read all about them in the built-in tag reference.
To give you a taste of what’s available, here are some of the more commonly used tags:

for Loop over each item in an array. For example, to display a list of athletes provided in athlete_list:

{% for athlete in athlete_list %}

{{ athlete.name }}
{% endfor %}

if and else Evaluates a variable, and if that variable is “true” the contents of the block are displayed:

178 Chapter 3. Using Django

Django Documentation, Release 1.2.7

{% if athlete_list %}
Number of athletes: {{ athlete_list|length }}

{% else %}
No athletes.

{% endif %}

In the above, if athlete_list is not empty, the number of athletes will be displayed by the {{
athlete_list|length }} variable.

You can also use filters and various operators in the if tag:

{% if athlete_list|length > 1 %}
Team: {% for athlete in athlete_list %} ... {% endfor %}

{% else %}
Athlete: {{ athlete_list.0.name }}

{% endif %}

block and extends Set up template inheritance (see below), a powerful way of cutting down on “boilerplate” in
templates.

Again, the above is only a selection of the whole list; see the built-in tag reference for the complete list.

You can also create your own custom template tags; see Custom template tags and filters.

See Also:

Django’s admin interface can include a complete reference of all template tags and filters available for a given site.
See The Django admin documentation generator.

3.5.5 Comments

To comment-out part of a line in a template, use the comment syntax: {# #}.

For example, this template would render as ’hello’:

{# greeting #}hello

A comment can contain any template code, invalid or not. For example:

{# {% if foo %}bar{% else %} #}

This syntax can only be used for single-line comments (no newlines are permitted between the {# and #} delimiters).
If you need to comment out a multiline portion of the template, see the comment tag.

3.5.6 Template inheritance

The most powerful – and thus the most complex – part of Django’s template engine is template inheritance. Template
inheritance allows you to build a base “skeleton” template that contains all the common elements of your site and
defines blocks that child templates can override.

It’s easiest to understand template inheritance by starting with an example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<link rel="stylesheet" href="style.css" />
<title>{% block title %}My amazing site{% endblock %}</title>

</head>

3.5. The Django template language 179

Django Documentation, Release 1.2.7

<body>
<div id="sidebar">

{% block sidebar %}

Home
Blog

{% endblock %}

</div>

<div id="content">
{% block content %}{% endblock %}

</div>
</body>
</html>

This template, which we’ll call base.html, defines a simple HTML skeleton document that you might use for a
simple two-column page. It’s the job of “child” templates to fill the empty blocks with content.

In this example, the {% block %} tag defines three blocks that child templates can fill in. All the block tag does
is to tell the template engine that a child template may override those portions of the template.

A child template might look like this:

{% extends "base.html" %}

{% block title %}My amazing blog{% endblock %}

{% block content %}
{% for entry in blog_entries %}

<h2>{{ entry.title }}</h2>
<p>{{ entry.body }}</p>

{% endfor %}
{% endblock %}

The {% extends %} tag is the key here. It tells the template engine that this template “extends” another template.
When the template system evaluates this template, first it locates the parent – in this case, “base.html”.

At that point, the template engine will notice the three {% block %} tags in base.html and replace those blocks
with the contents of the child template. Depending on the value of blog_entries, the output might look like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<link rel="stylesheet" href="style.css" />
<title>My amazing blog</title>

</head>

<body>
<div id="sidebar">

Home
Blog

</div>

<div id="content">
<h2>Entry one</h2>

180 Chapter 3. Using Django

Django Documentation, Release 1.2.7

<p>This is my first entry.</p>

<h2>Entry two</h2>
<p>This is my second entry.</p>

</div>
</body>
</html>

Note that since the child template didn’t define the sidebar block, the value from the parent template is used instead.
Content within a {% block %} tag in a parent template is always used as a fallback.

You can use as many levels of inheritance as needed. One common way of using inheritance is the following three-level
approach:

• Create a base.html template that holds the main look-and-feel of your site.

• Create a base_SECTIONNAME.html template for each “section” of your site. For example,
base_news.html, base_sports.html. These templates all extend base.html and include section-
specific styles/design.

• Create individual templates for each type of page, such as a news article or blog entry. These templates extend
the appropriate section template.

This approach maximizes code reuse and makes it easy to add items to shared content areas, such as section-wide
navigation.

Here are some tips for working with inheritance:

• If you use {% extends %} in a template, it must be the first template tag in that template. Template inheri-
tance won’t work, otherwise.

• More {% block %} tags in your base templates are better. Remember, child templates don’t have to define
all parent blocks, so you can fill in reasonable defaults in a number of blocks, then only define the ones you need
later. It’s better to have more hooks than fewer hooks.

• If you find yourself duplicating content in a number of templates, it probably means you should move that
content to a {% block %} in a parent template.

• If you need to get the content of the block from the parent template, the {{ block.super }} variable will
do the trick. This is useful if you want to add to the contents of a parent block instead of completely overriding
it. Data inserted using {{ block.super }} will not be automatically escaped (see the next section), since
it was already escaped, if necessary, in the parent template.

• For extra readability, you can optionally give a name to your {% endblock %} tag. For example:

{% block content %}
...
{% endblock content %}

In larger templates, this technique helps you see which {% block %} tags are being closed.

Finally, note that you can’t define multiple {% block %} tags with the same name in the same template. This
limitation exists because a block tag works in “both” directions. That is, a block tag doesn’t just provide a hole to fill
– it also defines the content that fills the hole in the parent. If there were two similarly-named {% block %} tags in
a template, that template’s parent wouldn’t know which one of the blocks’ content to use.

3.5.7 Automatic HTML escaping

When generating HTML from templates, there’s always a risk that a variable will include characters that affect the
resulting HTML. For example, consider this template fragment:

3.5. The Django template language 181

Django Documentation, Release 1.2.7

Hello, {{ name }}.

At first, this seems like a harmless way to display a user’s name, but consider what would happen if the user entered
his name as this:

<script>alert(’hello’)</script>

With this name value, the template would be rendered as:

Hello, <script>alert(’hello’)</script>

...which means the browser would pop-up a JavaScript alert box!

Similarly, what if the name contained a ’<’ symbol, like this?

username

That would result in a rendered template like this:

Hello, username

...which, in turn, would result in the remainder of the Web page being bolded!

Clearly, user-submitted data shouldn’t be trusted blindly and inserted directly into your Web pages, because a malicious
user could use this kind of hole to do potentially bad things. This type of security exploit is called a Cross Site Scripting
(XSS) attack.

To avoid this problem, you have two options:

• One, you can make sure to run each untrusted variable through the escape filter (documented below), which
converts potentially harmful HTML characters to unharmful ones. This was the default solution in Django for
its first few years, but the problem is that it puts the onus on you, the developer / template author, to ensure
you’re escaping everything. It’s easy to forget to escape data.

• Two, you can take advantage of Django’s automatic HTML escaping. The remainder of this section describes
how auto-escaping works.

By default in Django, every template automatically escapes the output of every variable tag. Specifically, these five
characters are escaped:

• < is converted to <

• > is converted to >

• ’ (single quote) is converted to '

• " (double quote) is converted to "

• & is converted to &

Again, we stress that this behavior is on by default. If you’re using Django’s template system, you’re protected.

How to turn it off

If you don’t want data to be auto-escaped, on a per-site, per-template level or per-variable level, you can turn it off in
several ways.

Why would you want to turn it off? Because sometimes, template variables contain data that you intend to be rendered
as raw HTML, in which case you don’t want their contents to be escaped. For example, you might store a blob of
HTML in your database and want to embed that directly into your template. Or, you might be using Django’s template
system to produce text that is not HTML – like an e-mail message, for instance.

182 Chapter 3. Using Django

http://en.wikipedia.org/wiki/Cross-site_scripting

Django Documentation, Release 1.2.7

For individual variables

To disable auto-escaping for an individual variable, use the safe filter:

This will be escaped: {{ data }}
This will not be escaped: {{ data|safe }}

Think of safe as shorthand for safe from further escaping or can be safely interpreted as HTML. In this example, if
data contains ’’, the output will be:

This will be escaped:
This will not be escaped:

For template blocks

To control auto-escaping for a template, wrap the template (or just a particular section of the template) in the
autoescape tag, like so:

{% autoescape off %}
Hello {{ name }}

{% endautoescape %}

The autoescape tag takes either on or off as its argument. At times, you might want to force auto-escaping when
it would otherwise be disabled. Here is an example template:

Auto-escaping is on by default. Hello {{ name }}

{% autoescape off %}
This will not be auto-escaped: {{ data }}.

Nor this: {{ other_data }}
{% autoescape on %}

Auto-escaping applies again: {{ name }}
{% endautoescape %}

{% endautoescape %}

The auto-escaping tag passes its effect onto templates that extend the current one as well as templates included via the
include tag, just like all block tags. For example:

base.html

{% autoescape off %}
<h1>{% block title %}{% endblock %}</h1>
{% block content %}
{% endblock %}
{% endautoescape %}

child.html

{% extends "base.html" %}
{% block title %}This & that{% endblock %}
{% block content %}{{ greeting }}{% endblock %}

Because auto-escaping is turned off in the base template, it will also be turned off in the child template, resulting in
the following rendered HTML when the greeting variable contains the string Hello!:

3.5. The Django template language 183

Django Documentation, Release 1.2.7

<h1>This & that</h1>
Hello!

Notes

Generally, template authors don’t need to worry about auto-escaping very much. Developers on the Python side
(people writing views and custom filters) need to think about the cases in which data shouldn’t be escaped, and mark
data appropriately, so things Just Work in the template.

If you’re creating a template that might be used in situations where you’re not sure whether auto-escaping is enabled,
then add an escape filter to any variable that needs escaping. When auto-escaping is on, there’s no danger of the
escape filter double-escaping data – the escape filter does not affect auto-escaped variables.

String literals and automatic escaping

As we mentioned earlier, filter arguments can be strings:

{{ data|default:"This is a string literal." }}

All string literals are inserted without any automatic escaping into the template – they act as if they were all passed
through the safe filter. The reasoning behind this is that the template author is in control of what goes into the string
literal, so they can make sure the text is correctly escaped when the template is written.

This means you would write

{{ data|default:"3 < 2" }}

...rather than

{{ data|default:"3 < 2" }} <-- Bad! Don’t do this.

This doesn’t affect what happens to data coming from the variable itself. The variable’s contents are still automatically
escaped, if necessary, because they’re beyond the control of the template author.

3.5.8 Custom tag and filter libraries

Certain applications provide custom tag and filter libraries. To access them in a template, use the {% load %} tag:

{% load comments %}

{% comment_form for blogs.entries entry.id with is_public yes %}

In the above, the load tag loads the comments tag library, which then makes the comment_form tag available for
use. Consult the documentation area in your admin to find the list of custom libraries in your installation.

The {% load %} tag can take multiple library names, separated by spaces. Example:

{% load comments i18n %}

See Custom template tags and filters for information on writing your own custom template libraries.

184 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Custom libraries and template inheritance

When you load a custom tag or filter library, the tags/filters are only made available to the current template – not any
parent or child templates along the template-inheritance path.

For example, if a template foo.html has {% load comments %}, a child template (e.g., one that has {%
extends "foo.html" %}) will not have access to the comments template tags and filters. The child template is
responsible for its own {% load comments %}.

This is a feature for the sake of maintainability and sanity.

3.6 Generic views

Writing Web applications can be monotonous, because we repeat certain patterns again and again. Django tries to take
away some of that monotony at the model and template layers, but Web developers also experience this boredom at
the view level.

Django’s generic views were developed to ease that pain. They take certain common idioms and patterns found in
view development and abstract them so that you can quickly write common views of data without having to write too
much code.

We can recognize certain common tasks, like displaying a list of objects, and write code that displays a list of any
object. Then the model in question can be passed as an extra argument to the URLconf.

Django ships with generic views to do the following:

• Perform common “simple” tasks: redirect to a different page and render a given template.

• Display list and detail pages for a single object. If we were creating an application to manage conferences then
a talk_list view and a registered_user_list view would be examples of list views. A single talk
page is an example of what we call a “detail” view.

• Present date-based objects in year/month/day archive pages, associated detail, and “latest” pages. The Django
Weblog’s (http://www.djangoproject.com/weblog/) year, month, and day archives are built with these, as would
be a typical newspaper’s archives.

• Allow users to create, update, and delete objects – with or without authorization.

Taken together, these views provide easy interfaces to perform the most common tasks developers encounter.

3.6.1 Using generic views

All of these views are used by creating configuration dictionaries in your URLconf files and passing those dictionaries
as the third member of the URLconf tuple for a given pattern.

For example, here’s a simple URLconf you could use to present a static “about” page:

from django.conf.urls.defaults import *
from django.views.generic.simple import direct_to_template

urlpatterns = patterns(’’,
(’^about/$’, direct_to_template, {

’template’: ’about.html’
})

)

3.6. Generic views 185

http://www.djangoproject.com/weblog/

Django Documentation, Release 1.2.7

Though this might seem a bit “magical” at first glance – look, a view with no code! –, actually the
direct_to_template view simply grabs information from the extra-parameters dictionary and uses that infor-
mation when rendering the view.

Because this generic view – and all the others – is a regular view function like any other, we can reuse it inside our
own views. As an example, let’s extend our “about” example to map URLs of the form /about/<whatever>/ to
statically rendered about/<whatever>.html. We’ll do this by first modifying the URLconf to point to a view
function:

from django.conf.urls.defaults import *
from django.views.generic.simple import direct_to_template
from books.views import about_pages

urlpatterns = patterns(’’,
(’^about/$’, direct_to_template, {

’template’: ’about.html’
}),
(’^about/(\w+)/$’, about_pages),

)

Next, we’ll write the about_pages view:

from django.http import Http404
from django.template import TemplateDoesNotExist
from django.views.generic.simple import direct_to_template

def about_pages(request, page):
try:

return direct_to_template(request, template="about/%s.html" % page)
except TemplateDoesNotExist:

raise Http404()

Here we’re treating direct_to_template like any other function. Since it returns an HttpResponse, we
can simply return it as-is. The only slightly tricky business here is dealing with missing templates. We don’t want
a nonexistent template to cause a server error, so we catch TemplateDoesNotExist exceptions and return 404
errors instead.

Is there a security vulnerability here?

Sharp-eyed readers may have noticed a possible security hole: we’re constructing the template name using interpolated
content from the browser (template="about/%s.html" % page). At first glance, this looks like a classic
directory traversal vulnerability. But is it really?

Not exactly. Yes, a maliciously crafted value of page could cause directory traversal, but although page is taken
from the request URL, not every value will be accepted. The key is in the URLconf: we’re using the regular expression
\w+ to match the page part of the URL, and \w only accepts letters and numbers. Thus, any malicious characters
(dots and slashes, here) will be rejected by the URL resolver before they reach the view itself.

3.6.2 Generic views of objects

The direct_to_template certainly is useful, but Django’s generic views really shine when it comes to presenting
views on your database content. Because it’s such a common task, Django comes with a handful of built-in generic
views that make generating list and detail views of objects incredibly easy.

Let’s take a look at one of these generic views: the “object list” view. We’ll be using these models:

186 Chapter 3. Using Django

Django Documentation, Release 1.2.7

models.py
from django.db import models

class Publisher(models.Model):
name = models.CharField(max_length=30)
address = models.CharField(max_length=50)
city = models.CharField(max_length=60)
state_province = models.CharField(max_length=30)
country = models.CharField(max_length=50)
website = models.URLField()

def __unicode__(self):
return self.name

class Meta:
ordering = ["-name"]

class Book(models.Model):
title = models.CharField(max_length=100)
authors = models.ManyToManyField(’Author’)
publisher = models.ForeignKey(Publisher)
publication_date = models.DateField()

To build a list page of all publishers, we’d use a URLconf along these lines:

from django.conf.urls.defaults import *
from django.views.generic import list_detail
from books.models import Publisher

publisher_info = {
"queryset" : Publisher.objects.all(),

}

urlpatterns = patterns(’’,
(r’^publishers/$’, list_detail.object_list, publisher_info)

)

That’s all the Python code we need to write. We still need to write a template, however. We could explicitly tell the
object_list view which template to use by including a template_name key in the extra arguments dictionary,
but in the absence of an explicit template Django will infer one from the object’s name. In this case, the inferred
template will be "books/publisher_list.html" – the “books” part comes from the name of the app that
defines the model, while the “publisher” bit is just the lowercased version of the model’s name.

This template will be rendered against a context containing a variable called object_list that contains all the
publisher objects. A very simple template might look like the following:

{% extends "base.html" %}

{% block content %}
<h2>Publishers</h2>

{% for publisher in object_list %}
{{ publisher.name }}

{% endfor %}

{% endblock %}

That’s really all there is to it. All the cool features of generic views come from changing the “info” dictionary passed
to the generic view. The generic views reference documents all the generic views and all their options in detail; the

3.6. Generic views 187

Django Documentation, Release 1.2.7

rest of this document will consider some of the common ways you might customize and extend generic views.

3.6.3 Extending generic views

There’s no question that using generic views can speed up development substantially. In most projects, however, there
comes a moment when the generic views no longer suffice. Indeed, the most common question asked by new Django
developers is how to make generic views handle a wider array of situations.

Luckily, in nearly every one of these cases, there are ways to simply extend generic views to handle a larger array of
use cases. These situations usually fall into a handful of patterns dealt with in the sections that follow.

Making “friendly” template contexts

You might have noticed that our sample publisher list template stores all the books in a variable named
object_list. While this works just fine, it isn’t all that “friendly” to template authors: they have to “just know”
that they’re dealing with publishers here. A better name for that variable would be publisher_list; that variable’s
content is pretty obvious.

We can change the name of that variable easily with the template_object_name argument:

publisher_info = {
"queryset" : Publisher.objects.all(),
"template_object_name" : "publisher",

}

urlpatterns = patterns(’’,
(r’^publishers/$’, list_detail.object_list, publisher_info)

)

Providing a useful template_object_name is always a good idea. Your coworkers who design templates will
thank you.

Adding extra context

Often you simply need to present some extra information beyond that provided by the generic view. For example,
think of showing a list of all the books on each publisher detail page. The object_detail generic view provides
the publisher to the context, but it seems there’s no way to get additional information in that template.

But there is: all generic views take an extra optional parameter, extra_context. This is a dictionary of extra
objects that will be added to the template’s context. So, to provide the list of all books on the detail detail view, we’d
use an info dict like this:

from books.models import Publisher, Book

publisher_info = {
"queryset" : Publisher.objects.all(),
"template_object_name" : "publisher",
"extra_context" : {"book_list" : Book.objects.all()}

}

This would populate a {{ book_list }} variable in the template context. This pattern can be used to pass any
information down into the template for the generic view. It’s very handy.

However, there’s actually a subtle bug here – can you spot it?

The problem has to do with when the queries in extra_context are evaluated. Because this example puts
Book.objects.all() in the URLconf, it will be evaluated only once (when the URLconf is first loaded). Once

188 Chapter 3. Using Django

Django Documentation, Release 1.2.7

you add or remove books, you’ll notice that the generic view doesn’t reflect those changes until you reload the Web
server (see Caching and QuerySets for more information about when QuerySets are cached and evaluated).

Note: This problem doesn’t apply to the queryset generic view argument. Since Django knows that particular
QuerySet should never be cached, the generic view takes care of clearing the cache when each view is rendered.

The solution is to use a callback in extra_context instead of a value. Any callable (i.e., a function) that’s passed
to extra_context will be evaluated when the view is rendered (instead of only once). You could do this with an
explicitly defined function:

def get_books():
return Book.objects.all()

publisher_info = {
"queryset" : Publisher.objects.all(),
"template_object_name" : "publisher",
"extra_context" : {"book_list" : get_books}

}

or you could use a less obvious but shorter version that relies on the fact that Book.objects.all is itself a callable:

publisher_info = {
"queryset" : Publisher.objects.all(),
"template_object_name" : "publisher",
"extra_context" : {"book_list" : Book.objects.all}

}

Notice the lack of parentheses after Book.objects.all; this references the function without actually calling it
(which the generic view will do later).

Viewing subsets of objects

Now let’s take a closer look at this queryset key we’ve been using all along. Most generic views take one of
these queryset arguments – it’s how the view knows which set of objects to display (see Making queries for more
information about QuerySet objects, and see the generic views reference for the complete details).

To pick a simple example, we might want to order a list of books by publication date, with the most recent first:

book_info = {
"queryset" : Book.objects.all().order_by("-publication_date"),

}

urlpatterns = patterns(’’,
(r’^publishers/$’, list_detail.object_list, publisher_info),
(r’^books/$’, list_detail.object_list, book_info),

)

That’s a pretty simple example, but it illustrates the idea nicely. Of course, you’ll usually want to do more than just
reorder objects. If you want to present a list of books by a particular publisher, you can use the same technique:

acme_books = {
"queryset": Book.objects.filter(publisher__name="Acme Publishing"),
"template_name" : "books/acme_list.html"

}

urlpatterns = patterns(’’,

3.6. Generic views 189

Django Documentation, Release 1.2.7

(r’^publishers/$’, list_detail.object_list, publisher_info),
(r’^books/acme/$’, list_detail.object_list, acme_books),

)

Notice that along with a filtered queryset, we’re also using a custom template name. If we didn’t, the generic view
would use the same template as the “vanilla” object list, which might not be what we want.

Also notice that this isn’t a very elegant way of doing publisher-specific books. If we want to add another publisher
page, we’d need another handful of lines in the URLconf, and more than a few publishers would get unreasonable.
We’ll deal with this problem in the next section.

Note: If you get a 404 when requesting /books/acme/, check to ensure you actually have a Publisher with the
name ‘ACME Publishing’. Generic views have an allow_empty parameter for this case. See the generic views
reference for more details.

Complex filtering with wrapper functions

Another common need is to filter down the objects given in a list page by some key in the URL. Earlier we hard-coded
the publisher’s name in the URLconf, but what if we wanted to write a view that displayed all the books by some
arbitrary publisher? We can “wrap” the object_list generic view to avoid writing a lot of code by hand. As usual,
we’ll start by writing a URLconf:

from books.views import books_by_publisher

urlpatterns = patterns(’’,
(r’^publishers/$’, list_detail.object_list, publisher_info),
(r’^books/(\w+)/$’, books_by_publisher),

)

Next, we’ll write the books_by_publisher view itself:

from django.http import Http404
from django.views.generic import list_detail
from books.models import Book, Publisher

def books_by_publisher(request, name):

Look up the publisher (and raise a 404 if it can’t be found).
try:

publisher = Publisher.objects.get(name__iexact=name)
except Publisher.DoesNotExist:

raise Http404

Use the object_list view for the heavy lifting.
return list_detail.object_list(

request,
queryset = Book.objects.filter(publisher=publisher),
template_name = "books/books_by_publisher.html",
template_object_name = "books",
extra_context = {"publisher" : publisher}

)

This works because there’s really nothing special about generic views – they’re just Python functions. Like any view
function, generic views expect a certain set of arguments and return HttpResponse objects. Thus, it’s incredibly
easy to wrap a small function around a generic view that does additional work before (or after; see the next section)
handing things off to the generic view.

190 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Note: Notice that in the preceding example we passed the current publisher being displayed in the extra_context.
This is usually a good idea in wrappers of this nature; it lets the template know which “parent” object is currently being
browsed.

Performing extra work

The last common pattern we’ll look at involves doing some extra work before or after calling the generic view.

Imagine we had a last_accessed field on our Author object that we were using to keep track of the last time
anybody looked at that author:

models.py

class Author(models.Model):
salutation = models.CharField(max_length=10)
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=40)
email = models.EmailField()
headshot = models.ImageField(upload_to=’/tmp’)
last_accessed = models.DateTimeField()

The generic object_detail view, of course, wouldn’t know anything about this field, but once again we could
easily write a custom view to keep that field updated.

First, we’d need to add an author detail bit in the URLconf to point to a custom view:

from books.views import author_detail

urlpatterns = patterns(’’,
#...
(r’^authors/(?P<author_id>\d+)/$’, author_detail),

)

Then we’d write our wrapper function:

import datetime
from books.models import Author
from django.views.generic import list_detail
from django.shortcuts import get_object_or_404

def author_detail(request, author_id):
Look up the Author (and raise a 404 if she’s not found)
author = get_object_or_404(Author, pk=author_id)

Record the last accessed date
author.last_accessed = datetime.datetime.now()
author.save()

Show the detail page
return list_detail.object_detail(

request,
queryset = Author.objects.all(),
object_id = author_id,

)

Note: This code won’t actually work unless you create a books/author_detail.html template.

3.6. Generic views 191

Django Documentation, Release 1.2.7

We can use a similar idiom to alter the response returned by the generic view. If we wanted to provide a downloadable
plain-text version of the list of authors, we could use a view like this:

def author_list_plaintext(request):
response = list_detail.object_list(

request,
queryset = Author.objects.all(),
mimetype = "text/plain",
template_name = "books/author_list.txt"

)
response["Content-Disposition"] = "attachment; filename=authors.txt"
return response

This works because the generic views return simple HttpResponse objects that can be treated like dictionaries to
set HTTP headers. This Content-Disposition business, by the way, instructs the browser to download and save
the page instead of displaying it in the browser.

3.7 Managing files

This document describes Django’s file access APIs.

By default, Django stores files locally, using the MEDIA_ROOT and MEDIA_URL settings. The examples below
assume that you’re using these defaults.

However, Django provides ways to write custom file storage systems that allow you to completely customize where
and how Django stores files. The second half of this document describes how these storage systems work.

3.7.1 Using files in models

When you use a FileField or ImageField, Django provides a set of APIs you can use to deal with that file.

Consider the following model, using an ImageField to store a photo:

class Car(models.Model):
name = models.CharField(max_length=255)
price = models.DecimalField(max_digits=5, decimal_places=2)
photo = models.ImageField(upload_to=’cars’)

Any Car instance will have a photo attribute that you can use to get at the details of the attached photo:

>>> car = Car.objects.get(name="57 Chevy")
>>> car.photo
<ImageFieldFile: chevy.jpg>
>>> car.photo.name
u’cars/chevy.jpg’
>>> car.photo.path
u’/media/cars/chevy.jpg’
>>> car.photo.url
u’http://media.example.com/cars/chevy.jpg’

This object – car.photo in the example – is a File object, which means it has all the methods and attributes
described below.

192 Chapter 3. Using Django

Django Documentation, Release 1.2.7

3.7.2 The File object

Internally, Django uses a django.core.files.File instance any time it needs to represent a file. This object is
a thin wrapper around Python’s built-in file object with some Django-specific additions.

Most of the time you’ll simply use a File that Django’s given you (i.e. a file attached to a model as above, or perhaps
an uploaded file).

If you need to construct a File yourself, the easiest way is to create one using a Python built-in file object:

>>> from django.core.files import File

Create a Python file object using open()
>>> f = open(’/tmp/hello.world’, ’w’)
>>> myfile = File(f)

Now you can use any of the documented attributes and methods of the File class.

3.7.3 File storage

Behind the scenes, Django delegates decisions about how and where to store files to a file storage system. This is the
object that actually understands things like file systems, opening and reading files, etc.

Django’s default file storage is given by the DEFAULT_FILE_STORAGE setting; if you don’t explicitly provide a
storage system, this is the one that will be used.

See below for details of the built-in default file storage system, and see Writing a custom storage system for information
on writing your own file storage system.

Storage objects

Though most of the time you’ll want to use a File object (which delegates to the proper storage for that file), you can
use file storage systems directly. You can create an instance of some custom file storage class, or – often more useful
– you can use the global default storage system:

>>> from django.core.files.storage import default_storage
>>> from django.core.files.base import ContentFile

>>> path = default_storage.save(’/path/to/file’, ContentFile(’new content’))
>>> path
u’/path/to/file’

>>> default_storage.size(path)
11
>>> default_storage.open(path).read()
’new content’

>>> default_storage.delete(path)
>>> default_storage.exists(path)
False

See File storage API for the file storage API.

The built-in filesystem storage class

Django ships with a built-in FileSystemStorage class (defined in django.core.files.storage) which
implements basic local filesystem file storage. Its initializer takes two arguments:

3.7. Managing files 193

http://docs.python.org/library/stdtypes.html#bltin-file-objects

Django Documentation, Release 1.2.7

Argu-
ment

Description

location Optional. Absolute path to the directory that will hold the files. If omitted, it will be set to the value
of your MEDIA_ROOT setting.

base_url Optional. URL that serves the files stored at this location. If omitted, it will default to the value of
your MEDIA_URL setting.

For example, the following code will store uploaded files under /media/photos regardless of what your
MEDIA_ROOT setting is:

from django.db import models
from django.core.files.storage import FileSystemStorage

fs = FileSystemStorage(location=’/media/photos’)

class Car(models.Model):
...
photo = models.ImageField(storage=fs)

Custom storage systems work the same way: you can pass them in as the storage argument to a FileField.

3.8 Testing Django applications

Automated testing is an extremely useful bug-killing tool for the modern Web developer. You can use a collection of
tests – a test suite – to solve, or avoid, a number of problems:

• When you’re writing new code, you can use tests to validate your code works as expected.

• When you’re refactoring or modifying old code, you can use tests to ensure your changes haven’t affected your
application’s behavior unexpectedly.

Testing a Web application is a complex task, because a Web application is made of several layers of logic – from
HTTP-level request handling, to form validation and processing, to template rendering. With Django’s test-execution
framework and assorted utilities, you can simulate requests, insert test data, inspect your application’s output and
generally verify your code is doing what it should be doing.

The best part is, it’s really easy.

This document is split into two primary sections. First, we explain how to write tests with Django. Then, we explain
how to run them.

3.8.1 Writing tests

There are two primary ways to write tests with Django, corresponding to the two test frameworks that ship in the
Python standard library. The two frameworks are:

• Unit tests – tests that are expressed as methods on a Python class that subclasses unittest.TestCase. For
example:

import unittest

class MyFuncTestCase(unittest.TestCase):
def testBasic(self):

a = [’larry’, ’curly’, ’moe’]
self.assertEqual(my_func(a, 0), ’larry’)
self.assertEqual(my_func(a, 1), ’curly’)

194 Chapter 3. Using Django

Django Documentation, Release 1.2.7

• Doctests – tests that are embedded in your functions’ docstrings and are written in a way that emulates a session
of the Python interactive interpreter. For example:

def my_func(a_list, idx):
"""
>>> a = [’larry’, ’curly’, ’moe’]
>>> my_func(a, 0)
’larry’
>>> my_func(a, 1)
’curly’
"""
return a_list[idx]

We’ll discuss choosing the appropriate test framework later, however, most experienced developers prefer unit tests.
You can also use any other Python test framework, as we’ll explain in a bit.

Writing unit tests

Django’s unit tests use a Python standard library module: unittest. This module defines tests in class-based approach.

For a given Django application, the test runner looks for unit tests in two places:

• The models.py file. The test runner looks for any subclass of unittest.TestCase in this module.

• A file called tests.py in the application directory – i.e., the directory that holds models.py. Again, the
test runner looks for any subclass of unittest.TestCase in this module.

Here is an example unittest.TestCase subclass:

import unittest
from myapp.models import Animal

class AnimalTestCase(unittest.TestCase):
def setUp(self):

self.lion = Animal.objects.create(name="lion", sound="roar")
self.cat = Animal.objects.create(name="cat", sound="meow")

def testSpeaking(self):
self.assertEqual(self.lion.speak(), ’The lion says "roar"’)
self.assertEqual(self.cat.speak(), ’The cat says "meow"’)

When you run your tests, the default behavior of the test utility is to find all the test cases (that is, subclasses of
unittest.TestCase) in models.py and tests.py, automatically build a test suite out of those test cases,
and run that suite.

There is a second way to define the test suite for a module: if you define a function called suite() in either
models.py or tests.py, the Django test runner will use that function to construct the test suite for that module.
This follows the suggested organization for unit tests. See the Python documentation for more details on how to
construct a complex test suite.

For more details about unittest, see the standard library unittest documentation.

Writing doctests

Doctests use Python’s standard doctest module, which searches your docstrings for statements that resemble a session
of the Python interactive interpreter. A full explanation of how doctest works is out of the scope of this document;
read Python’s official documentation for the details.

3.8. Testing Django applications 195

http://docs.python.org/library/unittest.html
http://docs.python.org/library/unittest.html#organizing-tests
http://docs.python.org/library/unittest.html
http://docs.python.org/library/doctest.html

Django Documentation, Release 1.2.7

What’s a docstring?

A good explanation of docstrings (and some guidelines for using them effectively) can be found in PEP 257:

A docstring is a string literal that occurs as the first statement in a module, function, class, or method
definition. Such a docstring becomes the __doc__ special attribute of that object.

For example, this function has a docstring that describes what it does:

def add_two(num):
"Return the result of adding two to the provided number."
return num + 2

Because tests often make great documentation, putting tests directly in your docstrings is an effective way to document
and test your code.

As with unit tests, for a given Django application, the test runner looks for doctests in two places:

• The models.py file. You can define module-level doctests and/or a doctest for individual models. It’s com-
mon practice to put application-level doctests in the module docstring and model-level doctests in the model
docstrings.

• A file called tests.py in the application directory – i.e., the directory that holds models.py. This file is a
hook for any and all doctests you want to write that aren’t necessarily related to models.

This example doctest is equivalent to the example given in the unittest section above:

models.py

from django.db import models

class Animal(models.Model):
"""
An animal that knows how to make noise

Create some animals
>>> lion = Animal.objects.create(name="lion", sound="roar")
>>> cat = Animal.objects.create(name="cat", sound="meow")

Make ’em speak
>>> lion.speak()
’The lion says "roar"’
>>> cat.speak()
’The cat says "meow"’
"""
name = models.CharField(max_length=20)
sound = models.CharField(max_length=20)

def speak(self):
return ’The %s says "%s"’ % (self.name, self.sound)

When you run your tests, the test runner will find this docstring, notice that portions of it look like an interactive
Python session, and execute those lines while checking that the results match.

In the case of model tests, note that the test runner takes care of creating its own test database. That is, any test that
accesses a database – by creating and saving model instances, for example – will not affect your production database.
However, the database is not refreshed between doctests, so if your doctest requires a certain state you should consider
flushing the database or loading a fixture. (See the section on fixtures, below, for more on this.) Note that to use this
feature, the database user Django is connecting as must have CREATE DATABASE rights.

For more details about how doctest works, see the standard library documentation for doctest.

196 Chapter 3. Using Django

http://www.python.org/dev/peps/pep-0257
http://docs.python.org/library/doctest.html

Django Documentation, Release 1.2.7

Which should I use?

Because Django supports both of the standard Python test frameworks, it’s up to you and your tastes to decide which
one to use. You can even decide to use both.

For developers new to testing, however, this choice can seem confusing. Here, then, are a few key differences to help
you decide which approach is right for you:

• If you’ve been using Python for a while, doctest will probably feel more “pythonic”. It’s designed to make
writing tests as easy as possible, so it requires no overhead of writing classes or methods. You simply put tests
in docstrings. This has the added advantage of serving as documentation (and correct documentation, at that!).
However, while doctests are good for some simple example code, they are not very good if you want to produce
either high quality, comprehensive tests or high quality documentation. Test failures are often difficult to debug
as it can be unclear exactly why the test failed. Thus, doctests should generally be avoided and used primarily
for documentation examples only.

• The unittest framework will probably feel very familiar to developers coming from Java. unittest is
inspired by Java’s JUnit, so you’ll feel at home with this method if you’ve used JUnit or any test framework
inspired by JUnit.

• If you need to write a bunch of tests that share similar code, then you’ll appreciate the unittest framework’s
organization around classes and methods. This makes it easy to abstract common tasks into common methods.
The framework also supports explicit setup and/or cleanup routines, which give you a high level of control over
the environment in which your test cases are run.

• If you’re writing tests for Django itself, you should use unittest.

3.8.2 Running tests

Once you’ve written tests, run them using the test command of your project’s manage.py utility:

$./manage.py test

By default, this will run every test in every application in INSTALLED_APPS. If you only want to run tests for
a particular application, add the application name to the command line. For example, if your INSTALLED_APPS
contains ’myproject.polls’ and ’myproject.animals’, you can run the myproject.animals unit
tests alone with this command:

$./manage.py test animals

Note that we used animals, not myproject.animals.

You can be even more specific by naming an individual test case. To run a single test case in an application (for
example, the AnimalTestCase described in the “Writing unit tests” section), add the name of the test case to the
label on the command line:

$./manage.py test animals.AnimalTestCase

And it gets even more granular than that! To run a single test method inside a test case, add the name of the test method
to the label:

$./manage.py test animals.AnimalTestCase.testFluffyAnimals

New in version 1.2: The ability to select individual doctests was added. You can use the same rules if you’re using
doctests. Django will use the test label as a path to the test method or class that you want to run. If your models.py
or tests.py has a function with a doctest, or class with a class-level doctest, you can invoke that test by appending
the name of the test method or class to the label:

3.8. Testing Django applications 197

Django Documentation, Release 1.2.7

$./manage.py test animals.classify

If you want to run the doctest for a specific method in a class, add the name of the method to the label:

$./manage.py test animals.Classifier.run

If you’re using a __test__ dictionary to specify doctests for a module, Django will use the label as a key in the
__test__ dictionary for defined in models.py and tests.py. New in version 1.2: You can now trigger a
graceful exit from a test run by pressing Ctrl-C. If you press Ctrl-C while the tests are running, the test runner
will wait for the currently running test to complete and then exit gracefully. During a graceful exit the test runner
will output details of any test failures, report on how many tests were run and how many errors and failures were
encountered, and destroy any test databases as usual. Thus pressing Ctrl-C can be very useful if you forget to
pass the --failfast option, notice that some tests are unexpectedly failing, and want to get details on the failures
without waiting for the full test run to complete.

If you do not want to wait for the currently running test to finish, you can press Ctrl-C a second time and the test
run will halt immediately, but not gracefully. No details of the tests run before the interruption will be reported, and
any test databases created by the run will not be destroyed.

Test with warnings enabled

It is a good idea to run your tests with python -Wall manage.py test. This will allow you to catch any
deprecation warnings that might be in your code. Django (as well as many other libraries) use warnings to flag when
features are deprecated. It can also flag areas in your code that are not strictly wrong, but may benefit from a better
implementation.

Running tests outside the test runner

If you want to run tests outside of ./manage.py test – for example, from a shell prompt – you will need to set
up the test environment first. Django provides a convenience method to do this:

>>> from django.test.utils import setup_test_environment
>>> setup_test_environment()

This convenience method sets up the test database, and puts other Django features into modes that allow for repeatable
testing.

The call to setup_test_environment() is made automatically as part of the setup of ./manage.py test. You
only need to manually invoke this method if you’re not using running your tests via Django’s test runner.

The test database

Tests that require a database (namely, model tests) will not use your “real” (production) database. Separate, blank
databases are created for the tests.

Regardless of whether the tests pass or fail, the test databases are destroyed when all the tests have been executed.

By default the test databases get their names by prepending test_ to the value of the NAME settings for the databases
defined in DATABASES. When using the SQLite database engine the tests will by default use an in-memory database
(i.e., the database will be created in memory, bypassing the filesystem entirely!). If you want to use a different database
name, specify TEST_NAME in the dictionary for any given database in DATABASES.

Aside from using a separate database, the test runner will otherwise use all of the same database settings you have in
your settings file: ENGINE, USER, HOST, etc. The test database is created by the user specified by USER, so you’ll
need to make sure that the given user account has sufficient privileges to create a new database on the system.

198 Chapter 3. Using Django

Django Documentation, Release 1.2.7

For fine-grained control over the character encoding of your test database, use the TEST_CHARSET option. If you’re
using MySQL, you can also use the TEST_COLLATION option to control the particular collation used by the test
database. See the settings documentation for details of these advanced settings.

Testing master/slave configurations

New in version 1.2: Please, see the release notes If you’re testing a multiple database configuration with master/slave
replication, this strategy of creating test databases poses a problem. When the test databases are created, there won’t
be any replication, and as a result, data created on the master won’t be seen on the slave.

To compensate for this, Django allows you to define that a database is a test mirror. Consider the following (simplified)
example database configuration:

DATABASES = {
’default’: {

’ENGINE’: ’django.db.backends.mysql’,
’NAME’: ’myproject’,
’HOST’: ’dbmaster’,
... plus some other settings

},
’slave’: {

’ENGINE’: ’django.db.backends.mysql’,
’NAME’: ’myproject’,
’HOST’: ’dbslave’,
’TEST_MIRROR’: ’default’
... plus some other settings

}
}

In this setup, we have two database servers: dbmaster, described by the database alias default, and dbslave
described by the alias slave. As you might expect, dbslave has been configured by the database administrator as
a read slave of dbmaster, so in normal activity, any write to default will appear on slave.

If Django created two independent test databases, this would break any tests that expected replication to occur. How-
ever, the slave database has been configured as a test mirror (using the TEST_MIRROR setting), indicating that
under testing, slave should be treated as a mirror of default.

When the test environment is configured, a test version of slavewill not be created. Instead the connection to slave
will be redirected to point at default. As a result, writes to default will appear on slave – but because they are
actually the same database, not because there is data replication between the two databases.

Controlling creation order for test databases

New in version 1.2.4: Please, see the release notes By default, Django will always create the default database first.
However, no guarantees are made on the creation order of any other databases in your test setup.

If your database configuration requires a specific creation order, you can specify the dependencies that exist using the
TEST_DEPENDENCIES setting. Consider the following (simplified) example database configuration:

DATABASES = {
’default’: {

... db settings
’TEST_DEPENDENCIES’: [’diamonds’]

},
’diamonds’: {

... db settings
},

3.8. Testing Django applications 199

Django Documentation, Release 1.2.7

’clubs’: {
... db settings
’TEST_DEPENDENCIES’: [’diamonds’]

},
’spades’: {

... db settings
’TEST_DEPENDENCIES’: [’diamonds’,’hearts’]

},
’hearts’: {

... db settings
’TEST_DEPENDENCIES’: [’diamonds’,’clubs’]

}
}

Under this configuration, the diamonds database will be created first, as it is the only database alias without de-
pendencies. The default‘ and clubs alias will be created next (although the order of creation of this pair is not
guaranteed); then hearts; and finally spades.

If there are any circular dependencies in the TEST_DEPENDENCIES definition, an ImproperlyConfigured
exception will be raised.

Other test conditions

Regardless of the value of the DEBUG setting in your configuration file, all Django tests run with DEBUG=False. This
is to ensure that the observed output of your code matches what will be seen in a production setting.

Understanding the test output

When you run your tests, you’ll see a number of messages as the test runner prepares itself. You can control the level
of detail of these messages with the verbosity option on the command line:

Creating test database...
Creating table myapp_animal
Creating table myapp_mineral
Loading ’initial_data’ fixtures...
No fixtures found.

This tells you that the test runner is creating a test database, as described in the previous section.

Once the test database has been created, Django will run your tests. If everything goes well, you’ll see something like
this:

--
Ran 22 tests in 0.221s

OK

If there are test failures, however, you’ll see full details about which tests failed:

==
FAIL: Doctest: ellington.core.throttle.models
--
Traceback (most recent call last):

File "/dev/django/test/doctest.py", line 2153, in runTest
raise self.failureException(self.format_failure(new.getvalue()))

AssertionError: Failed doctest test for myapp.models
File "/dev/myapp/models.py", line 0, in models

200 Chapter 3. Using Django

Django Documentation, Release 1.2.7

--
File "/dev/myapp/models.py", line 14, in myapp.models
Failed example:

throttle.check("actor A", "action one", limit=2, hours=1)
Expected:

True
Got:

False

--
Ran 2 tests in 0.048s

FAILED (failures=1)

A full explanation of this error output is beyond the scope of this document, but it’s pretty intuitive. You can consult
the documentation of Python’s unittest library for details.

Note that the return code for the test-runner script is the total number of failed and erroneous tests. If all the tests pass,
the return code is 0. This feature is useful if you’re using the test-runner script in a shell script and need to test for
success or failure at that level.

3.8.3 Testing tools

Django provides a small set of tools that come in handy when writing tests.

The test client

The test client is a Python class that acts as a dummy Web browser, allowing you to test your views and interact with
your Django-powered application programmatically.

Some of the things you can do with the test client are:

• Simulate GET and POST requests on a URL and observe the response – everything from low-level HTTP (result
headers and status codes) to page content.

• Test that the correct view is executed for a given URL.

• Test that a given request is rendered by a given Django template, with a template context that contains certain
values.

Note that the test client is not intended to be a replacement for Twill, Selenium, or other “in-browser” frameworks.
Django’s test client has a different focus. In short:

• Use Django’s test client to establish that the correct view is being called and that the view is collecting the
correct context data.

• Use in-browser frameworks such as Twill and Selenium to test rendered HTML and the behavior of Web pages,
namely JavaScript functionality.

A comprehensive test suite should use a combination of both test types.

Overview and a quick example

To use the test client, instantiate django.test.client.Client and retrieve Web pages:

3.8. Testing Django applications 201

http://twill.idyll.org/
http://seleniumhq.org/

Django Documentation, Release 1.2.7

>>> from django.test.client import Client
>>> c = Client()
>>> response = c.post(’/login/’, {’username’: ’john’, ’password’: ’smith’})
>>> response.status_code
200
>>> response = c.get(’/customer/details/’)
>>> response.content
’<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 ...’

As this example suggests, you can instantiate Client from within a session of the Python interactive interpreter.

Note a few important things about how the test client works:

• The test client does not require the Web server to be running. In fact, it will run just fine with no Web server
running at all! That’s because it avoids the overhead of HTTP and deals directly with the Django framework.
This helps make the unit tests run quickly.

• When retrieving pages, remember to specify the path of the URL, not the whole domain. For example, this is
correct:

>>> c.get(’/login/’)

This is incorrect:

>>> c.get(’http://www.example.com/login/’)

The test client is not capable of retrieving Web pages that are not powered by your Django project. If you need
to retrieve other Web pages, use a Python standard library module such as urllib or urllib2.

• To resolve URLs, the test client uses whatever URLconf is pointed-to by your ROOT_URLCONF setting.

• Although the above example would work in the Python interactive interpreter, some of the test client’s function-
ality, notably the template-related functionality, is only available while tests are running.

The reason for this is that Django’s test runner performs a bit of black magic in order to determine which
template was loaded by a given view. This black magic (essentially a patching of Django’s template system in
memory) only happens during test running.

• By default, the test client will disable any CSRF checks performed by your site. New in version 1.2.2: Please,
see the release notes If, for some reason, you want the test client to perform CSRF checks, you can create
an instance of the test client that enforces CSRF checks. To do this, pass in the enforce_csrf_checks
argument when you construct your client:

>>> from django.test import Client
>>> csrf_client = Client(enforce_csrf_checks=True)

Making requests

Use the django.test.client.Client class to make requests. It requires no arguments at time of construction:

class Client
Once you have a Client instance, you can call any of the following methods:

get(path, data={}, follow=False, **extra)
Makes a GET request on the provided path and returns a Response object, which is documented below.

The key-value pairs in the data dictionary are used to create a GET data payload. For example:

202 Chapter 3. Using Django

http://docs.python.org/library/urllib.html
http://docs.python.org/library/urllib2.html

Django Documentation, Release 1.2.7

>>> c = Client()
>>> c.get(’/customers/details/’, {’name’: ’fred’, ’age’: 7})

...will result in the evaluation of a GET request equivalent to:

/customers/details/?name=fred&age=7

The extra keyword arguments parameter can be used to specify headers to be sent in the request. For
example:

>>> c = Client()
>>> c.get(’/customers/details/’, {’name’: ’fred’, ’age’: 7},
... HTTP_X_REQUESTED_WITH=’XMLHttpRequest’)

...will send the HTTP header HTTP_X_REQUESTED_WITH to the details view, which is a good way to
test code paths that use the django.http.HttpRequest.is_ajax() method. New in version 1.1:
Please, see the release notes If you already have the GET arguments in URL-encoded form, you can use
that encoding instead of using the data argument. For example, the previous GET request could also be
posed as:

>>> c = Client()
>>> c.get(’/customers/details/?name=fred&age=7’)

If you provide a URL with both an encoded GET data and a data argument, the data argument will take
precedence.

If you set follow to True the client will follow any redirects and a redirect_chain attribute will
be set in the response object containing tuples of the intermediate urls and status codes.

If you had an url /redirect_me/ that redirected to /next/, that redirected to /final/, this is what
you’d see:

>>> response = c.get(’/redirect_me/’, follow=True)
>>> response.redirect_chain
[(u’http://testserver/next/’, 302), (u’http://testserver/final/’, 302)]

post(path, data={}, content_type=MULTIPART_CONTENT, follow=False, **extra)
Makes a POST request on the provided path and returns a Response object, which is documented
below.

The key-value pairs in the data dictionary are used to submit POST data. For example:

>>> c = Client()
>>> c.post(’/login/’, {’name’: ’fred’, ’passwd’: ’secret’})

...will result in the evaluation of a POST request to this URL:

/login/

...with this POST data:

name=fred&passwd=secret

If you provide content_type (e.g., text/xml for an XML payload), the contents of data will be
sent as-is in the POST request, using content_type in the HTTP Content-Type header.

If you don’t provide a value for content_type, the values in data will be transmitted with a con-
tent type of multipart/form-data. In this case, the key-value pairs in data will be encoded as a
multipart message and used to create the POST data payload.

3.8. Testing Django applications 203

Django Documentation, Release 1.2.7

To submit multiple values for a given key – for example, to specify the selections for a <select
multiple> – provide the values as a list or tuple for the required key. For example, this value of data
would submit three selected values for the field named choices:

{’choices’: (’a’, ’b’, ’d’)}

Submitting files is a special case. To POST a file, you need only provide the file field name as a key, and a
file handle to the file you wish to upload as a value. For example:

>>> c = Client()
>>> f = open(’wishlist.doc’)
>>> c.post(’/customers/wishes/’, {’name’: ’fred’, ’attachment’: f})
>>> f.close()

(The name attachment here is not relevant; use whatever name your file-processing code expects.)

Note that if you wish to use the same file handle for multiple post() calls then you will need to manually
reset the file pointer between posts. The easiest way to do this is to manually close the file after it has been
provided to post(), as demonstrated above.

You should also ensure that the file is opened in a way that allows the data to be read. If your file contains
binary data such as an image, this means you will need to open the file in rb (read binary) mode.

The extra argument acts the same as for Client.get(). Changed in version 1.1: Please, see the
release notes If the URL you request with a POST contains encoded parameters, these parameters will be
made available in the request.GET data. For example, if you were to make the request:

>>> c.post(’/login/?visitor=true’, {’name’: ’fred’, ’passwd’: ’secret’})

... the view handling this request could interrogate request.POST to retrieve the username and password,
and could interrogate request.GET to determine if the user was a visitor.

If you set follow to True the client will follow any redirects and a redirect_chain attribute will
be set in the response object containing tuples of the intermediate urls and status codes.

head(path, data={}, follow=False, **extra)
New in version 1.1: Please, see the release notes Makes a HEAD request on the provided path and returns
a Response object. Useful for testing RESTful interfaces. Acts just like Client.get() except it does
not return a message body.

If you set follow to True the client will follow any redirects and a redirect_chain attribute will
be set in the response object containing tuples of the intermediate urls and status codes.

options(path, data={}, follow=False, **extra)
New in version 1.1: Please, see the release notes Makes an OPTIONS request on the provided path and
returns a Response object. Useful for testing RESTful interfaces.

If you set follow to True the client will follow any redirects and a redirect_chain attribute will
be set in the response object containing tuples of the intermediate urls and status codes.

The extra argument acts the same as for Client.get().

put(path, data={}, content_type=MULTIPART_CONTENT, follow=False, **extra)
New in version 1.1: Please, see the release notes Makes a PUT request on the provided path and returns
a Response object. Useful for testing RESTful interfaces. Acts just like Client.post() except with
the PUT request method.

If you set follow to True the client will follow any redirects and a redirect_chain attribute will
be set in the response object containing tuples of the intermediate urls and status codes.

204 Chapter 3. Using Django

Django Documentation, Release 1.2.7

delete(path, follow=False, **extra)
New in version 1.1: Please, see the release notes Makes an DELETE request on the provided path and
returns a Response object. Useful for testing RESTful interfaces.

If you set follow to True the client will follow any redirects and a redirect_chain attribute will
be set in the response object containing tuples of the intermediate urls and status codes.

The extra argument acts the same as for Client.get().

login(**credentials)
If your site uses Django’s authentication system and you deal with logging in users, you can use the test
client’s login() method to simulate the effect of a user logging into the site.

After you call this method, the test client will have all the cookies and session data required to pass any
login-based tests that may form part of a view.

The format of the credentials argument depends on which authentication backend you’re using
(which is configured by your AUTHENTICATION_BACKENDS setting). If you’re using the standard
authentication backend provided by Django (ModelBackend), credentials should be the user’s
username and password, provided as keyword arguments:

>>> c = Client()
>>> c.login(username=’fred’, password=’secret’)

Now you can access a view that’s only available to logged-in users.

If you’re using a different authentication backend, this method may require different credentials. It requires
whichever credentials are required by your backend’s authenticate() method.

login() returns True if it the credentials were accepted and login was successful.

Finally, you’ll need to remember to create user accounts before you can use this method. As we explained
above, the test runner is executed using a test database, which contains no users by default. As a result,
user accounts that are valid on your production site will not work under test conditions. You’ll need to
create users as part of the test suite – either manually (using the Django model API) or with a test fixture.
Remember that if you want your test user to have a password, you can’t set the user’s password by setting
the password attribute directly – you must use the set_password() function to store a correctly hashed
password. Alternatively, you can use the create_user() helper method to create a new user with a
correctly hashed password.

logout()
If your site uses Django’s authentication system, the logout() method can be used to simulate the effect
of a user logging out of your site.

After you call this method, the test client will have all the cookies and session data cleared to defaults.
Subsequent requests will appear to come from an AnonymousUser.

Testing responses

The get() and post() methods both return a Response object. This Response object is not the same as the
HttpResponse object returned Django views; the test response object has some additional data useful for test code
to verify.

Specifically, a Response object has the following attributes:

class Response

client
The test client that was used to make the request that resulted in the response.

3.8. Testing Django applications 205

Django Documentation, Release 1.2.7

content
The body of the response, as a string. This is the final page content as rendered by the view, or any error
message.

context
The template Context instance that was used to render the template that produced the response content.

If the rendered page used multiple templates, then context will be a list of Context objects, in the
order in which they were rendered. New in version 1.1: Please, see the release notes Regardless of the
number of templates used during rendering, you can retrieve context values using the [] operator. For
example, the context variable name could be retrieved using:

>>> response = client.get(’/foo/’)
>>> response.context[’name’]
’Arthur’

request
The request data that stimulated the response.

status_code
The HTTP status of the response, as an integer. See RFC2616 for a full list of HTTP status codes.

template
The Template instance that was used to render the final content. Use template.name to get
the template’s file name, if the template was loaded from a file. (The name is a string such as
’admin/index.html’.)

If the rendered page used multiple templates – e.g., using template inheritance – then template will be
a list of Template instances, in the order in which they were rendered.

You can also use dictionary syntax on the response object to query the value of any settings in the HTTP headers. For
example, you could determine the content type of a response using response[’Content-Type’].

Exceptions

If you point the test client at a view that raises an exception, that exception will be visible in the test case. You can
then use a standard try...except block or unittest.TestCase.assertRaises() to test for exceptions.

The only exceptions that are not visible to the test client are Http404, PermissionDenied and SystemExit.
Django catches these exceptions internally and converts them into the appropriate HTTP response codes. In these
cases, you can check response.status_code in your test.

Persistent state

The test client is stateful. If a response returns a cookie, then that cookie will be stored in the test client and sent with
all subsequent get() and post() requests.

Expiration policies for these cookies are not followed. If you want a cookie to expire, either delete it manually or
create a new Client instance (which will effectively delete all cookies).

A test client has two attributes that store persistent state information. You can access these properties as part of a test
condition.

Client.cookies
A Python SimpleCookie object, containing the current values of all the client cookies. See the Cookie
module documentation for more.

206 Chapter 3. Using Django

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://docs.python.org/library/cookie.html
http://docs.python.org/library/cookie.html

Django Documentation, Release 1.2.7

Client.session
A dictionary-like object containing session information. See the session documentation for full details.

To modify the session and then save it, it must be stored in a variable first (because a new SessionStore is
created every time this property is accessed):

def test_something(self):
session = self.client.session
session[’somekey’] = ’test’
session.save()

Example

The following is a simple unit test using the test client:

import unittest
from django.test.client import Client

class SimpleTest(unittest.TestCase):
def setUp(self):

Every test needs a client.
self.client = Client()

def test_details(self):
Issue a GET request.
response = self.client.get(’/customer/details/’)

Check that the response is 200 OK.
self.failUnlessEqual(response.status_code, 200)

Check that the rendered context contains 5 customers.
self.failUnlessEqual(len(response.context[’customers’]), 5)

TestCase

Normal Python unit test classes extend a base class of unittest.TestCase. Django provides an extension of this
base class:

class TestCase

This class provides some additional capabilities that can be useful for testing Web sites.

Converting a normal unittest.TestCase to a Django TestCase is easy: just change the base class of your
test from unittest.TestCase to django.test.TestCase. All of the standard Python unit test functionality
will continue to be available, but it will be augmented with some useful additions. New in version 1.1: Please, see the
release notes

class TransactionTestCase

Django TestCase classes make use of database transaction facilities, if available, to speed up the process of resetting
the database to a known state at the beginning of each test. A consequence of this, however, is that the effects of
transaction commit and rollback cannot be tested by a Django TestCase class. If your test requires testing of such
transactional behavior, you should use a Django TransactionTestCase.

TransactionTestCase and TestCase are identical except for the manner in which the database is reset to
a known state and the ability for test code to test the effects of commit and rollback. A TransactionTestCase
resets the database before the test runs by truncating all tables and reloading initial data. A TransactionTestCase
may call commit and rollback and observe the effects of these calls on the database.

3.8. Testing Django applications 207

Django Documentation, Release 1.2.7

A TestCase, on the other hand, does not truncate tables and reload initial data at the beginning of a test. Instead, it
encloses the test code in a database transaction that is rolled back at the end of the test. It also prevents the code under
test from issuing any commit or rollback operations on the database, to ensure that the rollback at the end of the test
restores the database to its initial state. In order to guarantee that all TestCase code starts with a clean database,
the Django test runner runs all TestCase tests first, before any other tests (e.g. doctests) that may alter the database
without restoring it to its original state.

When running on a database that does not support rollback (e.g. MySQL with the MyISAM storage engine),
TestCase falls back to initializing the database by truncating tables and reloading initial data.

Note: The TestCase use of rollback to un-do the effects of the test code may reveal previously-undetected errors
in test code. For example, test code that assumes primary keys values will be assigned starting at one may find
that assumption no longer holds true when rollbacks instead of table truncation are being used to reset the database.
Similarly, the reordering of tests so that all TestCase classes run first may reveal unexpected dependencies on test
case ordering. In such cases a quick fix is to switch the TestCase to a TransactionTestCase. A better
long-term fix, that allows the test to take advantage of the speed benefit of TestCase, is to fix the underlying test
problem.

Default test client

TestCase.client

Every test case in a django.test.TestCase instance has access to an instance of a Django test client. This client
can be accessed as self.client. This client is recreated for each test, so you don’t have to worry about state (such
as cookies) carrying over from one test to another.

This means, instead of instantiating a Client in each test:

import unittest
from django.test.client import Client

class SimpleTest(unittest.TestCase):
def test_details(self):

client = Client()
response = client.get(’/customer/details/’)
self.failUnlessEqual(response.status_code, 200)

def test_index(self):
client = Client()
response = client.get(’/customer/index/’)
self.failUnlessEqual(response.status_code, 200)

...you can just refer to self.client, like so:

from django.test import TestCase

class SimpleTest(TestCase):
def test_details(self):

response = self.client.get(’/customer/details/’)
self.failUnlessEqual(response.status_code, 200)

def test_index(self):
response = self.client.get(’/customer/index/’)
self.failUnlessEqual(response.status_code, 200)

208 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Fixture loading

TestCase.fixtures

A test case for a database-backed Web site isn’t much use if there isn’t any data in the database. To make it easy to put
test data into the database, Django’s custom TestCase class provides a way of loading fixtures.

A fixture is a collection of data that Django knows how to import into a database. For example, if your site has user
accounts, you might set up a fixture of fake user accounts in order to populate your database during tests.

The most straightforward way of creating a fixture is to use the manage.py dumpdata command. This assumes
you already have some data in your database. See the dumpdata documentation for more details.

Note: If you’ve ever run manage.py syncdb, you’ve already used a fixture without even knowing it! When you
call syncdb in the database for the first time, Django installs a fixture called initial_data. This gives you a way
of populating a new database with any initial data, such as a default set of categories.

Fixtures with other names can always be installed manually using the manage.py loaddata command.

Initial SQL data and testing

Django provides a second way to insert initial data into models – the custom SQL hook. However, this technique
cannot be used to provide initial data for testing purposes. Django’s test framework flushes the contents of the test
database after each test; as a result, any data added using the custom SQL hook will be lost.

Once you’ve created a fixture and placed it in a fixtures directory in one of your INSTALLED_APPS, you can
use it in your unit tests by specifying a fixtures class attribute on your django.test.TestCase subclass:

from django.test import TestCase
from myapp.models import Animal

class AnimalTestCase(TestCase):
fixtures = [’mammals.json’, ’birds’]

def setUp(self):
Test definitions as before.
call_setup_methods()

def testFluffyAnimals(self):
A test that uses the fixtures.
call_some_test_code()

Here’s specifically what will happen:

• At the start of each test case, before setUp() is run, Django will flush the database, returning the database to
the state it was in directly after syncdb was called.

• Then, all the named fixtures are installed. In this example, Django will install any JSON fixture named
mammals, followed by any fixture named birds. See the loaddata documentation for more details on
defining and installing fixtures.

This flush/load procedure is repeated for each test in the test case, so you can be certain that the outcome of a test will
not be affected by another test, or by the order of test execution.

URLconf configuration

TestCase.urls

3.8. Testing Django applications 209

Django Documentation, Release 1.2.7

If your application provides views, you may want to include tests that use the test client to exercise those views.
However, an end user is free to deploy the views in your application at any URL of their choosing. This means that
your tests can’t rely upon the fact that your views will be available at a particular URL.

In order to provide a reliable URL space for your test, django.test.TestCase provides the ability to customize
the URLconf configuration for the duration of the execution of a test suite. If your TestCase instance defines an
urls attribute, the TestCase will use the value of that attribute as the ROOT_URLCONF for the duration of that
test.

For example:

from django.test import TestCase

class TestMyViews(TestCase):
urls = ’myapp.test_urls’

def testIndexPageView(self):
Here you’d test your view using ‘‘Client‘‘.
call_some_test_code()

This test case will use the contents of myapp.test_urls as the URLconf for the duration of the test case.

Multi-database support

TestCase.multi_db

New in version 1.2: Please, see the release notes Django sets up a test database corresponding to every database that
is defined in the DATABASES definition in your settings file. However, a big part of the time taken to run a Django
TestCase is consumed by the call to flush that ensures that you have a clean database at the start of each test run.
If you have multiple databases, multiple flushes are required (one for each database), which can be a time consuming
activity – especially if your tests don’t need to test multi-database activity.

As an optimization, Django only flushes the default database at the start of each test run. If your setup contains
multiple databases, and you have a test that requires every database to be clean, you can use the multi_db attribute
on the test suite to request a full flush.

For example:

class TestMyViews(TestCase):
multi_db = True

def testIndexPageView(self):
call_some_test_code()

This test case will flush all the test databases before running testIndexPageView.

Emptying the test outbox

If you use Django’s custom TestCase class, the test runner will clear the contents of the test e-mail outbox at the
start of each test case.

For more detail on e-mail services during tests, see E-mail services.

Assertions

Changed in version 1.2: Addded msg_prefix argument. As Python’s normal unittest.TestCase class imple-
ments assertion methods such as assertTrue and assertEquals, Django’s custom TestCase class provides

210 Chapter 3. Using Django

Django Documentation, Release 1.2.7

a number of custom assertion methods that are useful for testing Web applications:

The failure messages given by the assertion methods can be customized with the msg_prefix argument. This string
will be prefixed to any failure message generated by the assertion. This allows you to provide additional details that
may help you to identify the location and cause of an failure in your test suite.

TestCase.assertContains(response, text, count=None, status_code=200, msg_prefix=’‘)
Asserts that a Response instance produced the given status_code and that text appears in the content
of the response. If count is provided, text must occur exactly count times in the response.

TestCase.assertNotContains(response, text, status_code=200, msg_prefix=’‘)
Asserts that a Response instance produced the given status_code and that text does not appears in the
content of the response.

TestCase.assertFormError(response, form, field, errors, msg_prefix=’‘)
Asserts that a field on a form raises the provided list of errors when rendered on the form.

form is the name the Form instance was given in the template context.

field is the name of the field on the form to check. If field has a value of None, non-field errors (errors
you can access via form.non_field_errors()) will be checked.

errors is an error string, or a list of error strings, that are expected as a result of form validation.

TestCase.assertTemplateUsed(response, template_name, msg_prefix=’‘)
Asserts that the template with the given name was used in rendering the response.

The name is a string such as ’admin/index.html’.

TestCase.assertTemplateNotUsed(response, template_name, msg_prefix=’‘)
Asserts that the template with the given name was not used in rendering the response.

TestCase.assertRedirects(response, expected_url, status_code=302, target_status_code=200,
msg_prefix=’‘)

Asserts that the response return a status_code redirect status, it redirected to expected_url (in-
cluding any GET data), and the final page was received with target_status_code. New in version
1.1: Please, see the release notes If your request used the follow argument, the expected_url and
target_status_code will be the url and status code for the final point of the redirect chain.

E-mail services

If any of your Django views send e-mail using Django’s e-mail functionality, you probably don’t want to send e-mail
each time you run a test using that view. For this reason, Django’s test runner automatically redirects all Django-sent
e-mail to a dummy outbox. This lets you test every aspect of sending e-mail – from the number of messages sent to
the contents of each message – without actually sending the messages.

The test runner accomplishes this by transparently replacing the normal email backend with a testing backend. (Don’t
worry – this has no effect on any other e-mail senders outside of Django, such as your machine’s mail server, if you’re
running one.)

django.core.mail.outbox

During test running, each outgoing e-mail is saved in django.core.mail.outbox. This is a simple list of all
EmailMessage instances that have been sent. The outbox attribute is a special attribute that is created only when
the locmem e-mail backend is used. It doesn’t normally exist as part of the django.core.mail module and you
can’t import it directly. The code below shows how to access this attribute correctly.

Here’s an example test that examines django.core.mail.outbox for length and contents:

3.8. Testing Django applications 211

Django Documentation, Release 1.2.7

from django.core import mail
from django.test import TestCase

class EmailTest(TestCase):
def test_send_email(self):

Send message.
mail.send_mail(’Subject here’, ’Here is the message.’,

’from@example.com’, [’to@example.com’],
fail_silently=False)

Test that one message has been sent.
self.assertEquals(len(mail.outbox), 1)

Verify that the subject of the first message is correct.
self.assertEquals(mail.outbox[0].subject, ’Subject here’)

As noted previously, the test outbox is emptied at the start of every test in a Django TestCase. To empty the outbox
manually, assign the empty list to mail.outbox:

from django.core import mail

Empty the test outbox
mail.outbox = []

3.8.4 Using different testing frameworks

Clearly, doctest and unittest are not the only Python testing frameworks. While Django doesn’t provide explicit
support for alternative frameworks, it does provide a way to invoke tests constructed for an alternative framework as
if they were normal Django tests.

When you run ./manage.py test, Django looks at the TEST_RUNNER setting to determine what to do. By
default, TEST_RUNNER points to ’django.test.simple.DjangoTestSuiteRunner’. This class defines
the default Django testing behavior. This behavior involves:

1. Performing global pre-test setup.

2. Looking for unit tests and doctests in the models.py and tests.py files in each installed application.

3. Creating the test databases.

4. Running syncdb to install models and initial data into the test databases.

5. Running the unit tests and doctests that are found.

6. Destroying the test databases.

7. Performing global post-test teardown.

If you define your own test runner class and point TEST_RUNNER at that class, Django will execute your test runner
whenever you run ./manage.py test. In this way, it is possible to use any test framework that can be executed
from Python code, or to modify the Django test execution process to satisfy whatever testing requirements you may
have.

Defining a test runner

Changed in version 1.2: Prior to 1.2, test runners were a single function, not a class. A test runner is a class defining
a run_tests() method. Django ships with a DjangoTestSuiteRunner class that defines the default Django

212 Chapter 3. Using Django

Django Documentation, Release 1.2.7

testing behavior. This class defines the run_tests() entry point, plus a selection of other methods that are used to
by run_tests() to set up, execute and tear down the test suite.

class DjangoTestSuiteRunner(verbosity=1, interactive=True, failfast=True, **kwargs)
verbosity determines the amount of notification and debug information that will be printed to the console;
0 is no output, 1 is normal output, and 2 is verbose output.

If interactive is True, the test suite has permission to ask the user for instructions when the test suite is
executed. An example of this behavior would be asking for permission to delete an existing test database. If
interactive is False, the test suite must be able to run without any manual intervention.

If failfast is True, the test suite will stop running after the first test failure is detected.

Django will, from time to time, extend the capabilities of the test runner by adding new arguments. The
**kwargs declaration allows for this expansion. If you subclass DjangoTestSuiteRunner or write your
own test runner, ensure accept and handle the **kwargs parameter.

DjangoTestSuiteRunner.run_tests(test_labels, extra_tests=None, **kwargs)
Run the test suite.

test_labels is a list of strings describing the tests to be run. A test label can take one of three forms:

•app.TestCase.test_method – Run a single test method in a test case.

•app.TestCase – Run all the test methods in a test case.

•app – Search for and run all tests in the named application.

If test_labels has a value of None, the test runner should run search for tests in all the applications in
INSTALLED_APPS.

extra_tests is a list of extra TestCase instances to add to the suite that is executed by the test runner.
These extra tests are run in addition to those discovered in the modules listed in test_labels.

This method should return the number of tests that failed.

DjangoTestSuiteRunner.setup_test_environment(**kwargs)
Sets up the test environment ready for testing.

DjangoTestSuiteRunner.build_suite(test_labels, extra_tests=None, **kwargs)
Constructs a test suite that matches the test labels provided.

test_labels is a list of strings describing the tests to be run. A test label can take one of three forms:

•app.TestCase.test_method – Run a single test method in a test case.

•app.TestCase – Run all the test methods in a test case.

•app – Search for and run all tests in the named application.

If test_labels has a value of None, the test runner should run search for tests in all the applications in
INSTALLED_APPS.

extra_tests is a list of extra TestCase instances to add to the suite that is executed by the test runner.
These extra tests are run in addition to those discovered in the modules listed in test_labels.

Returns a TestSuite instance ready to be run.

DjangoTestSuiteRunner.setup_databases(**kwargs)
Creates the test databases.

Returns a data structure that provides enough detail to undo the changes that have been made. This data will be
provided to the teardown_databases() function at the conclusion of testing.

3.8. Testing Django applications 213

Django Documentation, Release 1.2.7

DjangoTestSuiteRunner.run_suite(suite, **kwargs)
Runs the test suite.

Returns the result produced by the running the test suite.

DjangoTestSuiteRunner.teardown_databases(old_config, **kwargs)
Destroys the test databases, restoring pre-test conditions.

old_config is a data structure defining the changes in the database configuration that need to be reversed. It
is the return value of the setup_databases() method.

DjangoTestSuiteRunner.teardown_test_environment(**kwargs)
Restores the pre-test environment.

DjangoTestSuiteRunner.suite_result(suite, result, **kwargs)
Computes and returns a return code based on a test suite, and the result from that test suite.

Testing utilities

To assist in the creation of your own test runner, Django provides a number of utility methods in the
django.test.utils module.

setup_test_environment()
Performs any global pre-test setup, such as the installing the instrumentation of the template rendering system
and setting up the dummy SMTPConnection.

teardown_test_environment()
Performs any global post-test teardown, such as removing the black magic hooks into the template system and
restoring normal e-mail services.

The creation module of the database backend (connection.creation) also provides some utilities that can be
useful during testing.

create_test_db(verbosity=1, autoclobber=False)
Creates a new test database and runs syncdb against it.

verbosity has the same behavior as in run_tests().

autoclobber describes the behavior that will occur if a database with the same name as the test database is
discovered:

•If autoclobber is False, the user will be asked to approve destroying the existing database.
sys.exit is called if the user does not approve.

•If autoclobber is True, the database will be destroyed without consulting the user.

Returns the name of the test database that it created.

create_test_db() has the side effect of modifying the value of NAME in DATABASES to match the name
of the test database.

destroy_test_db(old_database_name, verbosity=1)
Destroys the database whose name is in stored in NAME in the DATABASES, and sets NAME to use the provided
name.

verbosity has the same behavior as in run_tests().

214 Chapter 3. Using Django

Django Documentation, Release 1.2.7

3.9 User authentication in Django

Django comes with a user authentication system. It handles user accounts, groups, permissions and cookie-based user
sessions. This document explains how things work.

3.9.1 Overview

The auth system consists of:

• Users

• Permissions: Binary (yes/no) flags designating whether a user may perform a certain task.

• Groups: A generic way of applying labels and permissions to more than one user.

• Messages: A simple way to queue messages for given users.

Deprecated since version 1.2: The Messages component of the auth system will be removed in Django 1.4.

3.9.2 Installation

Authentication support is bundled as a Django application in django.contrib.auth. To install it, do the follow-
ing:

1. Put ’django.contrib.auth’ and ’django.contrib.contenttypes’ in your
INSTALLED_APPS setting. (The Permission model in django.contrib.auth depends on
django.contrib.contenttypes.)

2. Run the command manage.py syncdb.

Note that the default settings.py file created by django-admin.py startproject includes
’django.contrib.auth’ and ’django.contrib.contenttypes’ in INSTALLED_APPS for conve-
nience. If your INSTALLED_APPS already contains these apps, feel free to run manage.py syncdb again; you
can run that command as many times as you’d like, and each time it’ll only install what’s needed.

The syncdb command creates the necessary database tables, creates permission objects for all installed apps that
need ‘em, and prompts you to create a superuser account the first time you run it.

Once you’ve taken those steps, that’s it.

3.9.3 Users

class models.User

API reference

Fields

class models.User
User objects have the following fields:

username
Required. 30 characters or fewer. Alphanumeric characters only (letters, digits and underscores). Changed
in version 1.2: Usernames may now contain @, +, . and - characters.

3.9. User authentication in Django 215

Django Documentation, Release 1.2.7

first_name
Optional. 30 characters or fewer.

last_name
Optional. 30 characters or fewer.

email
Optional. E-mail address.

password
Required. A hash of, and metadata about, the password. (Django doesn’t store the raw password.) Raw
passwords can be arbitrarily long and can contain any character. See the “Passwords” section below.

is_staff
Boolean. Designates whether this user can access the admin site.

is_active
Boolean. Designates whether this user account should be considered active. We recommend that you set
this flag to False instead of deleting accounts; that way, if your applications have any foreign keys to
users, the foreign keys won’t break.

This doesn’t necessarily control whether or not the user can log in. Authentication backends aren’t required
to check for the is_active flag, so if you want to reject a login based on is_active being False,
it’s up to you to check that in your own login view. However, the AuthenticationForm used by the
login() view does perform this check, as do the permission-checking methods such as has_perm()
and the authentication in the Django admin. All of those functions/methods will return False for inactive
users.

is_superuser
Boolean. Designates that this user has all permissions without explicitly assigning them.

last_login
A datetime of the user’s last login. Is set to the current date/time by default.

date_joined
A datetime designating when the account was created. Is set to the current date/time by default when the
account is created.

Methods

class models.User
User objects have two many-to-many fields: models.User. groups and user_permissions. User ob-
jects can access their related objects in the same way as any other Django model:

myuser.groups = [group_list]
myuser.groups.add(group, group, ...)
myuser.groups.remove(group, group, ...)
myuser.groups.clear()
myuser.user_permissions = [permission_list]
myuser.user_permissions.add(permission, permission, ...)
myuser.user_permissions.remove(permission, permission, ...)
myuser.user_permissions.clear()

In addition to those automatic API methods, User objects have the following custom methods:

is_anonymous()
Always returns False. This is a way of differentiating User and AnonymousUser objects. Generally,
you should prefer using is_authenticated() to this method.

216 Chapter 3. Using Django

Django Documentation, Release 1.2.7

is_authenticated()
Always returns True. This is a way to tell if the user has been authenticated. This does not imply any
permissions, and doesn’t check if the user is active - it only indicates that the user has provided a valid
username and password.

get_full_name()
Returns the first_name plus the last_name, with a space in between.

set_password(raw_password)
Sets the user’s password to the given raw string, taking care of the password hashing. Doesn’t save the
User object.

check_password(raw_password)
Returns True if the given raw string is the correct password for the user. (This takes care of the password
hashing in making the comparison.)

set_unusable_password()
Marks the user as having no password set. This isn’t the same as having a blank string for a password.
check_password() for this user will never return True. Doesn’t save the User object.

You may need this if authentication for your application takes place against an existing external source
such as an LDAP directory.

has_usable_password()
Returns False if set_unusable_password() has been called for this user.

get_group_permissions(obj=None)
Returns a set of permission strings that the user has, through his/her groups. New in version 1.2: Please,
see the release notes If obj is passed in, only returns the group permissions for this specific object.

get_all_permissions(obj=None)
Returns a set of permission strings that the user has, both through group and user permissions. New in
version 1.2: Please, see the release notes If obj is passed in, only returns the permissions for this specific
object.

has_perm(perm, obj=None)
Returns True if the user has the specified permission, where perm is in the format "<app
label>.<permission codename>". (see permissions section below). If the user is inactive, this
method will always return False. New in version 1.2: Please, see the release notes If obj is passed in,
this method won’t check for a permission for the model, but for this specific object.

has_perms(perm_list, obj=None)
Returns True if the user has each of the specified permissions, where each perm is in the format "<app
label>.<permission codename>". If the user is inactive, this method will always return False.
New in version 1.2: Please, see the release notes If obj is passed in, this method won’t check for permis-
sions for the model, but for the specific object.

has_module_perms(package_name)
Returns True if the user has any permissions in the given package (the Django app label). If the user is
inactive, this method will always return False.

get_and_delete_messages()
Returns a list of Message objects in the user’s queue and deletes the messages from the queue.

email_user(subject, message, from_email=None)
Sends an e-mail to the user. If from_email is None, Django uses the DEFAULT_FROM_EMAIL.

get_profile()
Returns a site-specific profile for this user. Raises django.contrib.auth.models.SiteProfileNotAvailable
if the current site doesn’t allow profiles. For information on how to define a site-specific user profile, see
the section on storing additional user information below.

3.9. User authentication in Django 217

Django Documentation, Release 1.2.7

Manager functions

class models.UserManager
The User model has a custom manager that has the following helper functions:

create_user(username, email, password=None)
Creates, saves and returns a User.

The username and password are set as given. The domain portion of email is automatically convered
to lowercase, and the returned User object will have is_active set to True.

If no password is provided, set_unusable_password() will be called.

See Creating users for example usage.

make_random_password(length=10, allowed_chars=’abcdefghjkmnpqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ23456789’)
Returns a random password with the given length and given string of allowed characters. (Note that the
default value of allowed_chars doesn’t contain letters that can cause user confusion, including:

•i, l, I, and 1 (lowercase letter i, lowercase letter L, uppercase letter i, and the number one)

•o, O, and 0 (uppercase letter o, lowercase letter o, and zero)

Basic usage

Creating users

The most basic way to create users is to use the create_user() helper function that comes with Django:

>>> from django.contrib.auth.models import User
>>> user = User.objects.create_user(’john’, ’lennon@thebeatles.com’, ’johnpassword’)

At this point, user is a User object that has already been saved
to the database. You can continue to change its attributes
if you want to change other fields.
>>> user.is_staff = True
>>> user.save()

You can also create users using the Django admin site. Assuming you’ve enabled the admin site and hooked it to the
URL /admin/, the “Add user” page is at /admin/auth/user/add/. You should also see a link to “Users” in
the “Auth” section of the main admin index page. The “Add user” admin page is different than standard admin pages
in that it requires you to choose a username and password before allowing you to edit the rest of the user’s fields.

Also note: if you want your own user account to be able to create users using the Django admin site, you’ll need to
give yourself permission to add users and change users (i.e., the “Add user” and “Change user” permissions). If your
account has permission to add users but not to change them, you won’t be able to add users. Why? Because if you
have permission to add users, you have the power to create superusers, which can then, in turn, change other users. So
Django requires add and change permissions as a slight security measure.

Changing passwords

New in version 1.2: The manage.py changepassword command was added. manage.py
changepassword *username* offers a method of changing a User’s password from the command line.
It prompts you to change the password of a given user which you must enter twice. If they both match, the new
password will be changed immediately. If you do not supply a user, the command will attempt to change the password
whose username matches the current user.

218 Chapter 3. Using Django

Django Documentation, Release 1.2.7

You can also change a password programmatically, using set_password():

>>> from django.contrib.auth.models import User
>>> u = User.objects.get(username__exact=’john’)
>>> u.set_password(’new password’)
>>> u.save()

Don’t set the password attribute directly unless you know what you’re doing. This is explained in the next section.

Passwords

The password attribute of a User object is a string in this format:

hashtype$salt$hash

That’s hashtype, salt and hash, separated by the dollar-sign character.

Hashtype is either sha1 (default), md5 or crypt – the algorithm used to perform a one-way hash of the password.
Salt is a random string used to salt the raw password to create the hash. Note that the crypt method is only supported
on platforms that have the standard Python crypt module available.

For example:

sha1$a1976$a36cc8cbf81742a8fb52e221aaeab48ed7f58ab4

The set_password() and check_password() functions handle the setting and checking of these values behind
the scenes.

Previous Django versions, such as 0.90, used simple MD5 hashes without password salts. For backwards compatibility,
those are still supported; they’ll be converted automatically to the new style the first time check_password()
works correctly for a given user.

Anonymous users

class models.AnonymousUser
django.contrib.auth.models.AnonymousUser is a class that implements the
django.contrib.auth.models.User interface, with these differences:

•id is always None.

•is_staff and is_superuser are always False.

•is_active is always False.

•groups and user_permissions are always empty.

•is_anonymous() returns True instead of False.

•is_authenticated() returns False instead of True.

•set_password(), check_password(), save(), delete(), set_groups() and
set_permissions() raise NotImplementedError.

In practice, you probably won’t need to use AnonymousUser objects on your own, but they’re used by Web requests,
as explained in the next section.

3.9. User authentication in Django 219

Django Documentation, Release 1.2.7

Creating superusers

manage.py syncdb prompts you to create a superuser the first time you run it after adding
’django.contrib.auth’ to your INSTALLED_APPS. If you need to create a superuser at a later date,
you can use a command line utility:

manage.py createsuperuser --username=joe --email=joe@example.com

You will be prompted for a password. After you enter one, the user will be created immediately. If you leave off the
--username or the --email options, it will prompt you for those values.

If you’re using an older release of Django, the old way of creating a superuser on the command line still works:

python /path/to/django/contrib/auth/create_superuser.py

...where /path/to is the path to the Django codebase on your filesystem. The manage.py command is preferred
because it figures out the correct path and environment for you.

Storing additional information about users

If you’d like to store additional information related to your users, Django provides a method to specify a site-specific
related model – termed a “user profile” – for this purpose.

To make use of this feature, define a model with fields for the additional information you’d like to store, or additional
methods you’d like to have available, and also add a OneToOneField from your model to the User model. This
will ensure only one instance of your model can be created for each User.

To indicate that this model is the user profile model for a given site, fill in the setting AUTH_PROFILE_MODULE with
a string consisting of the following items, separated by a dot:

1. The name of the application (case sensitive) in which the user profile model is defined (in other words, the name
which was passed to manage.py startapp to create the application).

2. The name of the model (not case sensitive) class.

For example, if the profile model was a class named UserProfile and was defined inside an application named
accounts, the appropriate setting would be:

AUTH_PROFILE_MODULE = ’accounts.UserProfile’

When a user profile model has been defined and specified in this manner, each User object will have a method –
get_profile() – which returns the instance of the user profile model associated with that User.

The method get_profile() does not create the profile, if it does not exist. You need to register a handler for
the signal django.db.models.signals.post_save on the User model, and, in the handler, if created=True,
create the associated user profile.

For more information, see Chapter 12 of the Django book.

3.9.4 Authentication in Web requests

Until now, this document has dealt with the low-level APIs for manipulating authentication-related objects. On a
higher level, Django can hook this authentication framework into its system of request objects.

First, install the SessionMiddleware and AuthenticationMiddleware middlewares by adding them to
your MIDDLEWARE_CLASSES setting. See the session documentation for more information.

Once you have those middlewares installed, you’ll be able to access request.user in views. request.user
will give you a User object representing the currently logged-in user. If a user isn’t currently logged in,

220 Chapter 3. Using Django

http://www.djangobook.com/en/1.0/chapter12/#cn222

Django Documentation, Release 1.2.7

request.user will be set to an instance of AnonymousUser (see the previous section). You can tell them
apart with is_authenticated(), like so:

if request.user.is_authenticated():
Do something for authenticated users.

else:
Do something for anonymous users.

How to log a user in

Django provides two functions in django.contrib.auth: authenticate() and login().

authenticate()
To authenticate a given username and password, use authenticate(). It takes two keyword arguments,
username and password, and it returns a User object if the password is valid for the given username. If
the password is invalid, authenticate() returns None. Example:

from django.contrib.auth import authenticate
user = authenticate(username=’john’, password=’secret’)
if user is not None:

if user.is_active:
print "You provided a correct username and password!"

else:
print "Your account has been disabled!"

else:
print "Your username and password were incorrect."

login()
To log a user in, in a view, use login(). It takes an HttpRequest object and a User object. login()
saves the user’s ID in the session, using Django’s session framework, so, as mentioned above, you’ll need to
make sure to have the session middleware installed.

This example shows how you might use both authenticate() and login():

from django.contrib.auth import authenticate, login

def my_view(request):
username = request.POST[’username’]
password = request.POST[’password’]
user = authenticate(username=username, password=password)
if user is not None:

if user.is_active:
login(request, user)
Redirect to a success page.

else:
Return a ’disabled account’ error message

else:
Return an ’invalid login’ error message.

Calling authenticate() first

When you’re manually logging a user in, you must call authenticate() before you call login().
authenticate() sets an attribute on the User noting which authentication backend successfully authenticated
that user (see the backends documentation for details), and this information is needed later during the login process.

3.9. User authentication in Django 221

Django Documentation, Release 1.2.7

Manually checking a user’s password

check_password()
If you’d like to manually authenticate a user by comparing a plain-text password to the hashed password in
the database, use the convenience function django.contrib.auth.models.check_password(). It
takes two arguments: the plain-text password to check, and the full value of a user’s password field in the
database to check against, and returns True if they match, False otherwise.

How to log a user out

logout()
To log out a user who has been logged in via django.contrib.auth.login(), use
django.contrib.auth.logout() within your view. It takes an HttpRequest object and has
no return value. Example:

from django.contrib.auth import logout

def logout_view(request):
logout(request)
Redirect to a success page.

Note that logout() doesn’t throw any errors if the user wasn’t logged in.

When you call logout(), the session data for the current request is completely cleaned out. All existing data
is removed. This is to prevent another person from using the same Web browser to log in and have access to
the previous user’s session data. If you want to put anything into the session that will be available to the user
immediately after logging out, do that after calling django.contrib.auth.logout().

Limiting access to logged-in users

The raw way

The simple, raw way to limit access to pages is to check request.user.is_authenticated() and either
redirect to a login page:

from django.http import HttpResponseRedirect

def my_view(request):
if not request.user.is_authenticated():

return HttpResponseRedirect(’/login/?next=%s’ % request.path)
...

...or display an error message:

def my_view(request):
if not request.user.is_authenticated():

return render_to_response(’myapp/login_error.html’)
...

The login_required decorator

decorators.login_required([redirect_field_name=REDIRECT_FIELD_NAME])
As a shortcut, you can use the convenient login_required() decorator:

222 Chapter 3. Using Django

Django Documentation, Release 1.2.7

from django.contrib.auth.decorators import login_required

@login_required
def my_view(request):

...

login_required() does the following:

•If the user isn’t logged in, redirect to settings.LOGIN_URL, passing the current absolute path in the
query string. Example: /accounts/login/?next=/polls/3/.

•If the user is logged in, execute the view normally. The view code is free to assume the user is logged in.

By default, the path that the user should be redirected to upon successful authentication is stored in a
query string parameter called "next". If you would prefer to use a different name for this parameter,
login_required() takes an optional redirect_field_name parameter:

from django.contrib.auth.decorators import login_required

@login_required(redirect_field_name=’my_redirect_field’)
def my_view(request):

...

If you provide a value to redirect_field_name, you will most likely need to customize your login
template as well, since the template context variable which stores the redirect path will use the value of
redirect_field_name as it’s key rather than "next" (the default).

Note that you’ll need to map the appropriate Django view to settings.LOGIN_URL. For example, using the
defaults, add the following line to your URLconf:

(r’^accounts/login/$’, ’django.contrib.auth.views.login’),

views.login(request[, template_name, redirect_field_name, authentication_form])
Here’s what django.contrib.auth.views.login does:

•If called via GET, it displays a login form that POSTs to the same URL. More on this in a bit.

•If called via POST, it tries to log the user in. If login is successful, the view redirects to the URL specified
in next. If next isn’t provided, it redirects to settings.LOGIN_REDIRECT_URL (which defaults
to /accounts/profile/). If login isn’t successful, it redisplays the login form.

It’s your responsibility to provide the login form in a template called registration/login.html by
default. This template gets passed four template context variables:

•form: A Form object representing the login form. See the forms documentation for more on Form
objects.

•next: The URL to redirect to after successful login. This may contain a query string, too.

•site: The current Site, according to the SITE_ID setting. If you don’t have the site framework
installed, this will be set to an instance of RequestSite, which derives the site name and domain from
the current HttpRequest.

•site_name: An alias for site.name. If you don’t have the site framework installed, this will be set to
the value of request.META[’SERVER_NAME’]. For more on sites, see The “sites” framework.

If you’d prefer not to call the template registration/login.html, you can pass the template_name
parameter via the extra arguments to the view in your URLconf. For example, this URLconf line would use
myapp/login.html instead:

(r’^accounts/login/$’, ’django.contrib.auth.views.login’, {’template_name’: ’myapp/login.html’}),

3.9. User authentication in Django 223

Django Documentation, Release 1.2.7

You can also specify the name of the GET field which contains the URL to redirect to after login by passing
redirect_field_name to the view. By default, the field is called next.

Here’s a sample registration/login.html template you can use as a starting point. It assumes you
have a base.html template that defines a content block:

{% extends "base.html" %}

{% block content %}

{% if form.errors %}
<p>Your username and password didn’t match. Please try again.</p>
{% endif %}

<form method="post" action="{% url django.contrib.auth.views.login %}">
{% csrf_token %}
<table>
<tr>

<td>{{ form.username.label_tag }}</td>
<td>{{ form.username }}</td>

</tr>
<tr>

<td>{{ form.password.label_tag }}</td>
<td>{{ form.password }}</td>

</tr>
</table>

<input type="submit" value="login" />
<input type="hidden" name="next" value="{{ next }}" />
</form>

{% endblock %}

New in version 1.2: Please, see the release notes If you are using alternate authentication (see Other authentica-
tion sources) you can pass a custom authentication form to the login view via the authentication_form
parameter. This form must accept a request keyword argument in its __init__ method, and provide a
get_user method which returns the authenticated user object (this method is only ever called after successful
form validation).

Other built-in views

In addition to the login() view, the authentication system includes a few other useful built-in views located in
django.contrib.auth.views:

views.logout(request[, next_page, template_name, redirect_field_name])
Logs a user out.

Optional arguments:

•next_page: The URL to redirect to after logout.

•template_name: The full name of a template to display after logging the user out. This will default to
registration/logged_out.html if no argument is supplied.

•redirect_field_name: The name of a GET field containing the URL to redirect to after log out.
Overrides next_page if the given GET parameter is passed.

Template context:

•title: The string “Logged out”, localized.

224 Chapter 3. Using Django

Django Documentation, Release 1.2.7

views.logout_then_login(request[, login_url])
Logs a user out, then redirects to the login page.

Optional arguments:

•login_url: The URL of the login page to redirect to. This will default to settings.LOGIN_URL if
not supplied.

views.password_change(request[, template_name, post_change_redirect, password_change_form])
Allows a user to change their password.

Optional arguments:

•template_name: The full name of a template to use for displaying the password change form. This
will default to registration/password_change_form.html if not supplied.

•post_change_redirect: The URL to redirect to after a successful password change.

•New in version 1.2: Please, see the release notes password_change_form: A custom “change pass-
word” form which must accept a user keyword argument. The form is responsible for actually changing
the user’s password.

Template context:

•form: The password change form.

views.password_change_done(request[, template_name])
The page shown after a user has changed their password.

Optional arguments:

•template_name: The full name of a template to use. This will default to
registration/password_change_done.html if not supplied.

views.password_reset(request[, is_admin_site, template_name, email_template_name, pass-
word_reset_form, token_generator, post_reset_redirect])

Allows a user to reset their password by generating a one-time use link that can be used to reset the password,
and sending that link to the user’s registered e-mail address.

Optional arguments:

•template_name: The full name of a template to use for displaying the password reset form. This will
default to registration/password_reset_form.html if not supplied.

•email_template_name: The full name of a template to use for generating the e-mail with the new
password. This will default to registration/password_reset_email.html if not supplied.

•password_reset_form: Form that will be used to set the password. Defaults to
PasswordResetForm.

•token_generator: Instance of the class to check the password.
This will default to default_token_generator, it’s an instance of
django.contrib.auth.tokens.PasswordResetTokenGenerator.

•post_reset_redirect: The URL to redirect to after a successful password change.

Template context:

•form: The form for resetting the user’s password.

views.password_reset_done(request[, template_name])
The page shown after a user has reset their password.

Optional arguments:

3.9. User authentication in Django 225

Django Documentation, Release 1.2.7

•template_name: The full name of a template to use. This will default to
registration/password_reset_done.html if not supplied.

views.redirect_to_login(next[, login_url, redirect_field_name])
Redirects to the login page, and then back to another URL after a successful login.

Required arguments:

•next: The URL to redirect to after a successful login.

Optional arguments:

•login_url: The URL of the login page to redirect to. This will default to settings.LOGIN_URL if
not supplied.

•redirect_field_name: The name of a GET field containing the URL to redirect to after log out.
Overrides next if the given GET parameter is passed.

password_reset_confirm(request[, uidb36, token, template_name, token_generator,
set_password_form, post_reset_redirect])

Presents a form for entering a new password.

Optional arguments:

•uidb36: The user’s id encoded in base 36. This will default to None.

•token: Token to check that the password is valid. This will default to None.

•template_name: The full name of a template to display the confirm password view. Default value is
registration/password_reset_confirm.html.

•token_generator: Instance of the class to check the password.
This will default to default_token_generator, it’s an instance of
django.contrib.auth.tokens.PasswordResetTokenGenerator.

•set_password_form: Form that will be used to set the password. This will default to
SetPasswordForm.

•post_reset_redirect: URL to redirect after the password reset done. This will default to None.

password_reset_complete(request[, template_name])
Presents a view which informs the user that the password has been successfully changed.

Optional arguments:

•template_name: The full name of a template to display the view. This will default to
registration/password_reset_complete.html.

Built-in forms

If you don’t want to use the built-in views, but want the convenience of not having to write forms for this functionality,
the authentication system provides several built-in forms located in django.contrib.auth.forms:

class AdminPasswordChangeForm
A form used in the admin interface to change a user’s password.

class AuthenticationForm
A form for logging a user in.

class PasswordChangeForm
A form for allowing a user to change their password.

class PasswordResetForm
A form for generating and e-mailing a one-time use link to reset a user’s password.

226 Chapter 3. Using Django

Django Documentation, Release 1.2.7

class SetPasswordForm
A form that lets a user change his/her password without entering the old password.

class UserChangeForm
A form used in the admin interface to change a user’s information and permissions.

class UserCreationForm
A form for creating a new user.

Limiting access to logged-in users that pass a test

To limit access based on certain permissions or some other test, you’d do essentially the same thing as described in the
previous section.

The simple way is to run your test on request.user in the view directly. For example, this view checks to make
sure the user is logged in and has the permission polls.can_vote:

def my_view(request):
if not request.user.has_perm(’polls.can_vote’):

return HttpResponse("You can’t vote in this poll.")
...

decorators.user_passes_test()
As a shortcut, you can use the convenient user_passes_test decorator:

from django.contrib.auth.decorators import user_passes_test

@user_passes_test(lambda u: u.has_perm(’polls.can_vote’))
def my_view(request):

...

We’re using this particular test as a relatively simple example. However, if you just want to test whether a
permission is available to a user, you can use the permission_required() decorator, described later in
this document.

user_passes_test() takes a required argument: a callable that takes a User object and returns True if
the user is allowed to view the page. Note that user_passes_test() does not automatically check that the
User is not anonymous.

user_passes_test() takes an optional login_url argument, which lets you specify the URL for your
login page (settings.LOGIN_URL by default).

For example:

from django.contrib.auth.decorators import user_passes_test

@user_passes_test(lambda u: u.has_perm(’polls.can_vote’), login_url=’/login/’)
def my_view(request):

...

The permission_required decorator

decorators.permission_required()
It’s a relatively common task to check whether a user has a particular permission. For that reason, Django
provides a shortcut for that case: the permission_required() decorator. Using this decorator, the earlier
example can be written as:

3.9. User authentication in Django 227

Django Documentation, Release 1.2.7

from django.contrib.auth.decorators import permission_required

@permission_required(’polls.can_vote’)
def my_view(request):

...

As for the User.has_perm() method, permission names take the form "<app label>.<permission
codename>" (i.e. polls.can_vote for a permission on a model in the polls application).

Note that permission_required() also takes an optional login_url parameter. Example:

from django.contrib.auth.decorators import permission_required

@permission_required(’polls.can_vote’, login_url=’/loginpage/’)
def my_view(request):

...

As in the login_required() decorator, login_url defaults to settings.LOGIN_URL.

Limiting access to generic views

To limit access to a generic view, write a thin wrapper around the view, and point your URLconf to your wrapper
instead of the generic view itself. For example:

from django.views.generic.date_based import object_detail

@login_required
def limited_object_detail(*args, **kwargs):

return object_detail(*args, **kwargs)

3.9.5 Permissions

Django comes with a simple permissions system. It provides a way to assign permissions to specific users and groups
of users.

It’s used by the Django admin site, but you’re welcome to use it in your own code.

The Django admin site uses permissions as follows:

• Access to view the “add” form and add an object is limited to users with the “add” permission for that type of
object.

• Access to view the change list, view the “change” form and change an object is limited to users with the “change”
permission for that type of object.

• Access to delete an object is limited to users with the “delete” permission for that type of object.

Permissions are set globally per type of object, not per specific object instance. For example, it’s possible to say “Mary
may change news stories,” but it’s not currently possible to say “Mary may change news stories, but only the ones she
created herself” or “Mary may only change news stories that have a certain status, publication date or ID.” The latter
functionality is something Django developers are currently discussing.

Default permissions

When django.contrib.auth is listed in your INSTALLED_APPS setting, it will ensure that three default per-
missions – add, change and delete – are created for each Django model defined in one of your installed applications.

228 Chapter 3. Using Django

Django Documentation, Release 1.2.7

These permissions will be created when you run manage.py syncdb; the first time you run syncdb after
adding django.contrib.auth to INSTALLED_APPS, the default permissions will be created for all previously-
installed models, as well as for any new models being installed at that time. Afterward, it will create default permis-
sions for new models each time you run manage.py syncdb.

Assuming you have an application with an app_label foo and a model named Bar, to test for basic permissions
you should use:

• add: user.has_perm(’foo.add_bar’)

• change: user.has_perm(’foo.change_bar’)

• delete: user.has_perm(’foo.delete_bar’)

Custom permissions

To create custom permissions for a given model object, use the permissions model Meta attribute.

This example Task model creates three custom permissions, i.e., actions users can or cannot do with Task instances,
specific to your appication:

class Task(models.Model):
...
class Meta:

permissions = (
("can_view", "Can see available tasks"),
("can_change_status", "Can change the status of tasks"),
("can_close", "Can remove a task by setting its status as closed"),

)

The only thing this does is create those extra permissions when you run manage.py syncdb. Your code is in
charge of checking the value of these permissions when an user is trying to access the functionality provided by the
application (viewing tasks, changing the status of tasks, closing tasks.)

API reference

class models.Permission
Just like users, permissions are implemented in a Django model that lives in django/contrib/auth/models.py.

Fields

Permission objects have the following fields:

models.Permission.name
Required. 50 characters or fewer. Example: ’Can vote’.

models.Permission.content_type
Required. A reference to the django_content_type database table, which contains a record for each
installed Django model.

models.Permission.codename
Required. 100 characters or fewer. Example: ’can_vote’.

Methods

Permission objects have the standard data-access methods like any other Django model.

3.9. User authentication in Django 229

http://code.djangoproject.com/browser/django/trunk/django/contrib/auth/models.py

Django Documentation, Release 1.2.7

3.9.6 Authentication data in templates

The currently logged-in user and his/her permissions are made available in the template context when you use
RequestContext.

Technicality

Technically, these variables are only made available in the template context if you
use RequestContext and your TEMPLATE_CONTEXT_PROCESSORS setting contains
"django.contrib.auth.context_processors.auth", which is default. For more, see the Re-
questContext docs.

Users

When rendering a template RequestContext, the currently logged-in user, either a User instance or an
AnonymousUser instance, is stored in the template variable {{ user }}:

{% if user.is_authenticated %}
<p>Welcome, {{ user.username }}. Thanks for logging in.</p>

{% else %}
<p>Welcome, new user. Please log in.</p>

{% endif %}

This template context variable is not available if a RequestContext is not being used.

Permissions

The currently logged-in user’s permissions are stored in the template variable {{ perms }}. This is an instance of
django.core.context_processors.PermWrapper, which is a template-friendly proxy of permissions.

In the {{ perms }} object, single-attribute lookup is a proxy to User.has_module_perms. This example
would display True if the logged-in user had any permissions in the foo app:

{{ perms.foo }}

Two-level-attribute lookup is a proxy to User.has_perm. This example would display True if the logged-in user
had the permission foo.can_vote:

{{ perms.foo.can_vote }}

Thus, you can check permissions in template {% if %} statements:

{% if perms.foo %}
<p>You have permission to do something in the foo app.</p>
{% if perms.foo.can_vote %}

<p>You can vote!</p>
{% endif %}
{% if perms.foo.can_drive %}

<p>You can drive!</p>
{% endif %}

{% else %}
<p>You don’t have permission to do anything in the foo app.</p>

{% endif %}

230 Chapter 3. Using Django

Django Documentation, Release 1.2.7

3.9.7 Groups

Groups are a generic way of categorizing users so you can apply permissions, or some other label, to those users. A
user can belong to any number of groups.

A user in a group automatically has the permissions granted to that group. For example, if the group Site editors
has the permission can_edit_home_page, any user in that group will have that permission.

Beyond permissions, groups are a convenient way to categorize users to give them some label, or extended functional-
ity. For example, you could create a group ’Special users’, and you could write code that could, say, give them
access to a members-only portion of your site, or send them members-only e-mail messages.

3.9.8 Messages

Deprecated since version 1.2: This functionality will be removed in Django 1.4. You should use the messages frame-
work for all new projects and begin to update your existing code immediately. The message system is a lightweight
way to queue messages for given users.

A message is associated with a User. There’s no concept of expiration or timestamps.

Messages are used by the Django admin after successful actions. For example, "The poll Foo was created
successfully." is a message.

The API is simple:

models.User.message_set.create(message)
To create a new message, use user_obj.message_set.create(message=’message_text’).

To retrieve/delete messages, use user_obj.get_and_delete_messages(), which returns a list of
Message objects in the user’s queue (if any) and deletes the messages from the queue.

In this example view, the system saves a message for the user after creating a playlist:

def create_playlist(request, songs):
Create the playlist with the given songs.
...
request.user.message_set.create(message="Your playlist was added successfully.")
return render_to_response("playlists/create.html",

context_instance=RequestContext(request))

When you use RequestContext, the currently logged-in user and his/her messages are made available in the
template context as the template variable {{ messages }}. Here’s an example of template code that displays
messages:

{% if messages %}

{% for message in messages %}
{{ message }}
{% endfor %}

{% endif %}

Changed in version 1.2: The messages template variable uses a backwards compatible method in the messages
framework to retrieve messages from both the user Message model and from the new framework. Unlike in pre-
vious revisions, the messages will not be erased unless they are actually displayed. Finally, note that this messages
framework only works with users in the user database. To send messages to anonymous users, use the messages
framework.

3.9. User authentication in Django 231

Django Documentation, Release 1.2.7

3.9.9 Other authentication sources

The authentication that comes with Django is good enough for most common cases, but you may have the need to hook
into another authentication source – that is, another source of usernames and passwords or authentication methods.

For example, your company may already have an LDAP setup that stores a username and password for every employee.
It’d be a hassle for both the network administrator and the users themselves if users had separate accounts in LDAP
and the Django-based applications.

So, to handle situations like this, the Django authentication system lets you plug in other authentication sources. You
can override Django’s default database-based scheme, or you can use the default system in tandem with other systems.

See the authentication backend reference for information on the authentication backends included with Django.

Specifying authentication backends

Behind the scenes, Django maintains a list of “authentication backends” that it checks for authentication. When
somebody calls django.contrib.auth.authenticate() – as described in How to log a user in above –
Django tries authenticating across all of its authentication backends. If the first authentication method fails, Django
tries the second one, and so on, until all backends have been attempted.

The list of authentication backends to use is specified in the AUTHENTICATION_BACKENDS setting. This should
be a tuple of Python path names that point to Python classes that know how to authenticate. These classes can be
anywhere on your Python path.

By default, AUTHENTICATION_BACKENDS is set to:

(’django.contrib.auth.backends.ModelBackend’,)

That’s the basic authentication scheme that checks the Django users database.

The order of AUTHENTICATION_BACKENDS matters, so if the same username and password is valid in multiple
backends, Django will stop processing at the first positive match.

Note: Once a user has authenticated, Django stores which backend was used to authenticate the user in the user’s
session, and re-uses the same backend for subsequent authentication attempts for that user. This effectively means
that authentication sources are cached, so if you change AUTHENTICATION_BACKENDS, you’ll need to clear out
session data if you need to force users to re-authenticate using different methods. A simple way to do that is simply to
execute Session.objects.all().delete().

Writing an authentication backend

An authentication backend is a class that implements two methods: get_user(user_id) and
authenticate(**credentials).

The get_user method takes a user_id – which could be a username, database ID or whatever – and returns a
User object.

The authenticate method takes credentials as keyword arguments. Most of the time, it’ll just look like this:

class MyBackend:
def authenticate(self, username=None, password=None):

Check the username/password and return a User.

But it could also authenticate a token, like so:

232 Chapter 3. Using Django

Django Documentation, Release 1.2.7

class MyBackend:
def authenticate(self, token=None):

Check the token and return a User.

Either way, authenticate should check the credentials it gets, and it should return a User object that matches
those credentials, if the credentials are valid. If they’re not valid, it should return None.

The Django admin system is tightly coupled to the Django User object described at the beginning of this document.
For now, the best way to deal with this is to create a Django User object for each user that exists for your backend
(e.g., in your LDAP directory, your external SQL database, etc.) You can either write a script to do this in advance, or
your authenticate method can do it the first time a user logs in.

Here’s an example backend that authenticates against a username and password variable defined in your
settings.py file and creates a Django User object the first time a user authenticates:

from django.conf import settings
from django.contrib.auth.models import User, check_password

class SettingsBackend:
"""
Authenticate against the settings ADMIN_LOGIN and ADMIN_PASSWORD.

Use the login name, and a hash of the password. For example:

ADMIN_LOGIN = ’admin’
ADMIN_PASSWORD = ’sha1$4e987$afbcf42e21bd417fb71db8c66b321e9fc33051de’
"""
def authenticate(self, username=None, password=None):

login_valid = (settings.ADMIN_LOGIN == username)
pwd_valid = check_password(password, settings.ADMIN_PASSWORD)
if login_valid and pwd_valid:

try:
user = User.objects.get(username=username)

except User.DoesNotExist:
Create a new user. Note that we can set password
to anything, because it won’t be checked; the password
from settings.py will.
user = User(username=username, password=’get from settings.py’)
user.is_staff = True
user.is_superuser = True
user.save()

return user
return None

def get_user(self, user_id):
try:

return User.objects.get(pk=user_id)
except User.DoesNotExist:

return None

Handling authorization in custom backends

Custom auth backends can provide their own permissions.

The user model will delegate permission lookup functions (get_group_permissions(),
get_all_permissions(), has_perm(), and has_module_perms()) to any authentication backend
that implements these functions.

3.9. User authentication in Django 233

Django Documentation, Release 1.2.7

The permissions given to the user will be the superset of all permissions returned by all backends. That is, Django
grants a permission to a user that any one backend grants.

The simple backend above could implement permissions for the magic admin fairly simply:

class SettingsBackend:

...

def has_perm(self, user_obj, perm):
if user_obj.username == settings.ADMIN_LOGIN:

return True
else:

return False

This gives full permissions to the user granted access in the above example. Notice that the backend auth func-
tions all take the user object as an argument, and they also accept the same arguments given to the associated
django.contrib.auth.models.User functions.

A full authorization implementation can be found in django/contrib/auth/backends.py, which is the default backend
and queries the auth_permission table most of the time.

Authorization for anonymous users

Changed in version 1.2: Please, see the release notes An anonymous user is one that is not authenticated i.e. they
have provided no valid authentication details. However, that does not necessarily mean they are not authorized to do
anything. At the most basic level, most Web sites authorize anonymous users to browse most of the site, and many
allow anonymous posting of comments etc.

Django’s permission framework does not have a place to store permissions for anonymous users. However, it has a
foundation that allows custom authentication backends to specify authorization for anonymous users. This is especially
useful for the authors of re-usable apps, who can delegate all questions of authorization to the auth backend, rather
than needing settings, for example, to control anonymous access.

To enable this in your own backend, you must set the class attribute supports_anonymous_user
to True. (This precaution is to maintain compatibility with backends that assume that all user ob-
jects are actual instances of the django.contrib.auth.models.User class). With this in place,
django.contrib.auth.models.AnonymousUser will delegate all the relevant permission methods to the
authentication backends.

A nonexistent supports_anonymous_user attribute will raise a hidden PendingDeprecationWarning if
used in Django 1.2. In Django 1.3, this warning will be upgraded to a DeprecationWarning, which will be
displayed loudly. Additionally supports_anonymous_user will be set to False. Django 1.4 will assume that
every backend supports anonymous users being passed to the authorization methods.

Handling object permissions

Django’s permission framework has a foundation for object permissions, though there is no implementation for it in
the core. That means that checking for object permissions will always return False or an empty list (depending on
the check performed).

To enable object permissions in your own authentication backend you’ll just have to allow passing an obj parameter
to the permission methods and set the supports_object_permissions class attribute to True.

A nonexistent supports_object_permissions will raise a hidden PendingDeprecationWarning
if used in Django 1.2. In Django 1.3, this warning will be upgraded to a DeprecationWarning,
which will be displayed loudly. Additionally supports_object_permissions will be set to False.

234 Chapter 3. Using Django

http://code.djangoproject.com/browser/django/trunk/django/contrib/auth/backends.py

Django Documentation, Release 1.2.7

Django 1.4 will assume that every backend supports object permissions and won’t check for the existence of
supports_object_permissions, which means not supporting obj as a parameter will raise a TypeError.

3.10 Django’s cache framework

A fundamental trade-off in dynamic Web sites is, well, they’re dynamic. Each time a user requests a page, the Web
server makes all sorts of calculations – from database queries to template rendering to business logic – to create the
page that your site’s visitor sees. This is a lot more expensive, from a processing-overhead perspective, than your
standard read-a-file-off-the-filesystem server arrangement.

For most Web applications, this overhead isn’t a big deal. Most Web applications aren’t washingtonpost.com or
slashdot.org; they’re simply small- to medium-sized sites with so-so traffic. But for medium- to high-traffic sites, it’s
essential to cut as much overhead as possible.

That’s where caching comes in.

To cache something is to save the result of an expensive calculation so that you don’t have to perform the calculation
next time. Here’s some pseudocode explaining how this would work for a dynamically generated Web page:

given a URL, try finding that page in the cache
if the page is in the cache:

return the cached page
else:

generate the page
save the generated page in the cache (for next time)
return the generated page

Django comes with a robust cache system that lets you save dynamic pages so they don’t have to be calculated for
each request. For convenience, Django offers different levels of cache granularity: You can cache the output of specific
views, you can cache only the pieces that are difficult to produce, or you can cache your entire site.

Django also works well with “upstream” caches, such as Squid and browser-based caches. These are the types of
caches that you don’t directly control but to which you can provide hints (via HTTP headers) about which parts of
your site should be cached, and how.

3.10.1 Setting up the cache

The cache system requires a small amount of setup. Namely, you have to tell it where your cached data should live –
whether in a database, on the filesystem or directly in memory. This is an important decision that affects your cache’s
performance; yes, some cache types are faster than others.

Your cache preference goes in the CACHE_BACKEND setting in your settings file. Here’s an explanation of all available
values for CACHE_BACKEND.

Memcached

By far the fastest, most efficient type of cache available to Django, Memcached is an entirely memory-based cache
framework originally developed to handle high loads at LiveJournal.com and subsequently open-sourced by Danga
Interactive. It’s used by sites such as Facebook and Wikipedia to reduce database access and dramatically increase site
performance.

Memcached is available for free at http://memcached.org/. It runs as a daemon and is allotted a specified amount of
RAM. All it does is provide a fast interface for adding, retrieving and deleting arbitrary data in the cache. All data is
stored directly in memory, so there’s no overhead of database or filesystem usage.

3.10. Django’s cache framework 235

http://www.squid-cache.org
http://memcached.org/

Django Documentation, Release 1.2.7

After installing Memcached itself, you’ll need to install python-memcached, which provides Python bindings to
Memcached. This is available at ftp://ftp.tummy.com/pub/python-memcached/ Changed in version 1.2: In Django 1.0
and 1.1, you could also use cmemcache as a binding. However, support for this library was deprecated in 1.2 due
to a lack of maintenance on the cmemcache library itself. Support for cmemcache will be removed completely in
Django 1.4. To use Memcached with Django, set CACHE_BACKEND to memcached://ip:port/, where ip is
the IP address of the Memcached daemon and port is the port on which Memcached is running.

In this example, Memcached is running on localhost (127.0.0.1) port 11211:

CACHE_BACKEND = ’memcached://127.0.0.1:11211/’

One excellent feature of Memcached is its ability to share cache over multiple servers. This means you can run
Memcached daemons on multiple machines, and the program will treat the group of machines as a single cache,
without the need to duplicate cache values on each machine. To take advantage of this feature, include all server
addresses in CACHE_BACKEND, separated by semicolons.

In this example, the cache is shared over Memcached instances running on IP address 172.19.26.240 and
172.19.26.242, both on port 11211:

CACHE_BACKEND = ’memcached://172.19.26.240:11211;172.19.26.242:11211/’

In the following example, the cache is shared over Memcached instances running on the IP addresses 172.19.26.240
(port 11211), 172.19.26.242 (port 11212), and 172.19.26.244 (port 11213):

CACHE_BACKEND = ’memcached://172.19.26.240:11211;172.19.26.242:11212;172.19.26.244:11213/’

A final point about Memcached is that memory-based caching has one disadvantage: Because the cached data is stored
in memory, the data will be lost if your server crashes. Clearly, memory isn’t intended for permanent data storage, so
don’t rely on memory-based caching as your only data storage. Without a doubt, none of the Django caching backends
should be used for permanent storage – they’re all intended to be solutions for caching, not storage – but we point this
out here because memory-based caching is particularly temporary.

Database caching

To use a database table as your cache backend, first create a cache table in your database by running this command:

python manage.py createcachetable [cache_table_name]

...where [cache_table_name] is the name of the database table to create. (This name can be whatever you want,
as long as it’s a valid table name that’s not already being used in your database.) This command creates a single table
in your database that is in the proper format that Django’s database-cache system expects.

Once you’ve created that database table, set your CACHE_BACKEND setting to "db://tablename", where
tablename is the name of the database table. In this example, the cache table’s name is my_cache_table:

CACHE_BACKEND = ’db://my_cache_table’

The database caching backend uses the same database as specified in your settings file. You can’t use a different
database backend for your cache table.

Database caching works best if you’ve got a fast, well-indexed database server.

Database caching and multiple databases

If you use database caching with multiple databases, you’ll also need to set up routing instructions for your database
cache table. For the purposes of routing, the database cache table appears as a model named CacheEntry, in an
application named django_cache. This model won’t appear in the models cache, but the model details can be used
for routing purposes.

236 Chapter 3. Using Django

ftp://ftp.tummy.com/pub/python-memcached/

Django Documentation, Release 1.2.7

For example, the following router would direct all cache read operations to cache_slave, and all write operations
to cache_master. The cache table will only be synchronized onto cache_master:

class CacheRouter(object):
"""A router to control all database cache operations"""

def db_for_read(self, model, **hints):
"All cache read operations go to the slave"
if model._meta.app_label in (’django_cache’,):

return ’cache_slave’
return None

def db_for_write(self, model, **hints):
"All cache write operations go to master"
if model._meta.app_label in (’django_cache’,):

return ’cache_master’
return None

def allow_syncdb(self, db, model):
"Only synchronize the cache model on master"
if model._meta.app_label in (’django_cache’,):

return db == ’cache_master’
return None

If you don’t specify routing directions for the database cache model, the cache backend will use the default
database.

Of course, if you don’t use the database cache backend, you don’t need to worry about providing routing instructions
for the database cache model.

Filesystem caching

To store cached items on a filesystem, use the "file://" cache type for CACHE_BACKEND. For example, to store
cached data in /var/tmp/django_cache, use this setting:

CACHE_BACKEND = ’file:///var/tmp/django_cache’

Note that there are three forward slashes toward the beginning of that example. The first two are for file://, and
the third is the first character of the directory path, /var/tmp/django_cache. If you’re on Windows, put the
drive letter after the file://, like this:

file://c:/foo/bar

The directory path should be absolute – that is, it should start at the root of your filesystem. It doesn’t matter whether
you put a slash at the end of the setting.

Make sure the directory pointed-to by this setting exists and is readable and writable by the system user under which
your Web server runs. Continuing the above example, if your server runs as the user apache, make sure the directory
/var/tmp/django_cache exists and is readable and writable by the user apache.

Each cache value will be stored as a separate file whose contents are the cache data saved in a serialized (“pickled”)
format, using Python’s pickle module. Each file’s name is the cache key, escaped for safe filesystem use.

Local-memory caching

If you want the speed advantages of in-memory caching but don’t have the capability of running Memcached, consider
the local-memory cache backend. This cache is multi-process and thread-safe. To use it, set CACHE_BACKEND to
"locmem://". For example:

3.10. Django’s cache framework 237

Django Documentation, Release 1.2.7

CACHE_BACKEND = ’locmem://’

Note that each process will have its own private cache instance, which means no cross-process caching is possible.
This obviously also means the local memory cache isn’t particularly memory-efficient, so it’s probably not a good
choice for production environments. It’s nice for development.

Dummy caching (for development)

Finally, Django comes with a “dummy” cache that doesn’t actually cache – it just implements the cache interface
without doing anything.

This is useful if you have a production site that uses heavy-duty caching in various places but a development/test
environment where you don’t want to cache and don’t want to have to change your code to special-case the latter. To
activate dummy caching, set CACHE_BACKEND like so:

CACHE_BACKEND = ’dummy://’

Using a custom cache backend

While Django includes support for a number of cache backends out-of-the-box, sometimes you might want to use a
customized cache backend. To use an external cache backend with Django, use a Python import path as the scheme
portion (the part before the initial colon) of the CACHE_BACKEND URI, like so:

CACHE_BACKEND = ’path.to.backend://’

If you’re building your own backend, you can use the standard cache backends as reference implementations. You’ll
find the code in the django/core/cache/backends/ directory of the Django source.

Note: Without a really compelling reason, such as a host that doesn’t support them, you should stick to the cache
backends included with Django. They’ve been well-tested and are easy to use.

CACHE_BACKEND arguments

Each cache backend may take arguments. They’re given in query-string style on the CACHE_BACKEND setting. Valid
arguments are as follows:

• timeout: The default timeout, in seconds, to use for the cache. This argument defaults to 300 seconds (5
minutes).

• max_entries: For the locmem, filesystem and database backends, the maximum number of entries
allowed in the cache before old values are deleted. This argument defaults to 300.

• cull_frequency: The fraction of entries that are culled when max_entries is reached. The actual ratio
is 1/cull_frequency, so set cull_frequency=2 to cull half of the entries when max_entries is
reached.

A value of 0 for cull_frequency means that the entire cache will be dumped when max_entries is
reached. This makes culling much faster at the expense of more cache misses.

In this example, timeout is set to 60:

CACHE_BACKEND = "memcached://127.0.0.1:11211/?timeout=60"

In this example, timeout is 30 and max_entries is 400:

CACHE_BACKEND = "locmem://?timeout=30&max_entries=400"

Invalid arguments are silently ignored, as are invalid values of known arguments.

238 Chapter 3. Using Django

Django Documentation, Release 1.2.7

3.10.2 The per-site cache

Once the cache is set up, the simplest way to use caching is to cache your entire site.
You’ll need to add ’django.middleware.cache.UpdateCacheMiddleware’ and
’django.middleware.cache.FetchFromCacheMiddleware’ to your MIDDLEWARE_CLASSES
setting, as in this example:

MIDDLEWARE_CLASSES = (
’django.middleware.cache.UpdateCacheMiddleware’,
’django.middleware.common.CommonMiddleware’,
’django.middleware.cache.FetchFromCacheMiddleware’,

)

Note: No, that’s not a typo: the “update” middleware must be first in the list, and the “fetch” middleware must be
last. The details are a bit obscure, but see Order of MIDDLEWARE_CLASSES below if you’d like the full story.

Then, add the following required settings to your Django settings file:

• CACHE_MIDDLEWARE_SECONDS – The number of seconds each page should be cached.

• CACHE_MIDDLEWARE_KEY_PREFIX – If the cache is shared across multiple sites using the same Django
installation, set this to the name of the site, or some other string that is unique to this Django instance, to prevent
key collisions. Use an empty string if you don’t care.

The cache middleware caches every page that doesn’t have GET or POST parameters. Optionally, if the
CACHE_MIDDLEWARE_ANONYMOUS_ONLY setting is True, only anonymous requests (i.e., not those made by
a logged-in user) will be cached. This is a simple and effective way of disabling caching for any user-specific pages
(include Django’s admin interface). Note that if you use CACHE_MIDDLEWARE_ANONYMOUS_ONLY, you should
make sure you’ve activated AuthenticationMiddleware.

Additionally, the cache middleware automatically sets a few headers in each HttpResponse:

• Sets the Last-Modified header to the current date/time when a fresh (uncached) version of the page is
requested.

• Sets the Expires header to the current date/time plus the defined CACHE_MIDDLEWARE_SECONDS.

• Sets the Cache-Control header to give a max age for the page – again, from the
CACHE_MIDDLEWARE_SECONDS setting.

See Middleware for more on middleware.

If a view sets its own cache expiry time (i.e. it has a max-age section in its Cache-Control header) then the
page will be cached until the expiry time, rather than CACHE_MIDDLEWARE_SECONDS. Using the decorators in
django.views.decorators.cache you can easily set a view’s expiry time (using the cache_control
decorator) or disable caching for a view (using the never_cache decorator). See the using other headers section
for more on these decorators. New in version 1.2: Please, see the release notes If USE_I18N is set to True then the
generated cache key will include the name of the active language. This allows you to easily cache multilingual sites
without having to create the cache key yourself.

See Deployment of translations for more on how Django discovers the active language.

3.10.3 The per-view cache

A more granular way to use the caching framework is by caching the output of individual views.
django.views.decorators.cache defines a cache_page decorator that will automatically cache the view’s
response for you. It’s easy to use:

3.10. Django’s cache framework 239

Django Documentation, Release 1.2.7

from django.views.decorators.cache import cache_page

@cache_page(60 * 15)
def my_view(request):

...

cache_page takes a single argument: the cache timeout, in seconds. In the above example, the result of the
my_view() view will be cached for 15 minutes. (Note that we’ve written it as 60 * 15 for the purpose of read-
ability. 60 * 15 will be evaluated to 900 – that is, 15 minutes multiplied by 60 seconds per minute.)

The per-view cache, like the per-site cache, is keyed off of the URL. If multiple URLs point at the same view, each
URL will be cached separately. Continuing the my_view example, if your URLconf looks like this:

urlpatterns = (’’,
(r’^foo/(\d{1,2})/$’, my_view),

)

then requests to /foo/1/ and /foo/23/ will be cached separately, as you may expect. But once a particular URL
(e.g., /foo/23/) has been requested, subsequent requests to that URL will use the cache.

cache_page can also take an optional keyword argument, key_prefix, which works in the same way as the
CACHE_MIDDLEWARE_KEY_PREFIX setting for the middleware. It can be used like this:

@cache_page(60 * 15, key_prefix="site1")
def my_view(request):

...

Specifying per-view cache in the URLconf

The examples in the previous section have hard-coded the fact that the view is cached, because cache_page alters
the my_view function in place. This approach couples your view to the cache system, which is not ideal for several
reasons. For instance, you might want to reuse the view functions on another, cache-less site, or you might want to
distribute the views to people who might want to use them without being cached. The solution to these problems is to
specify the per-view cache in the URLconf rather than next to the view functions themselves.

Doing so is easy: simply wrap the view function with cache_page when you refer to it in the URLconf. Here’s the
old URLconf from earlier:

urlpatterns = (’’,
(r’^foo/(\d{1,2})/$’, my_view),

)

Here’s the same thing, with my_view wrapped in cache_page:

from django.views.decorators.cache import cache_page

urlpatterns = (’’,
(r’^foo/(\d{1,2})/$’, cache_page(my_view, 60 * 15)),

)

If you take this approach, don’t forget to import cache_page within your URLconf.

3.10.4 Template fragment caching

If you’re after even more control, you can also cache template fragments using the cache template tag. To give your
template access to this tag, put {% load cache %} near the top of your template.

240 Chapter 3. Using Django

Django Documentation, Release 1.2.7

The {% cache %} template tag caches the contents of the block for a given amount of time. It takes at least two
arguments: the cache timeout, in seconds, and the name to give the cache fragment. For example:

{% load cache %}
{% cache 500 sidebar %}

.. sidebar ..
{% endcache %}

Sometimes you might want to cache multiple copies of a fragment depending on some dynamic data that appears
inside the fragment. For example, you might want a separate cached copy of the sidebar used in the previous example
for every user of your site. Do this by passing additional arguments to the {% cache %} template tag to uniquely
identify the cache fragment:

{% load cache %}
{% cache 500 sidebar request.user.username %}

.. sidebar for logged in user ..
{% endcache %}

It’s perfectly fine to specify more than one argument to identify the fragment. Simply pass as many arguments to {%
cache %} as you need.

If USE_I18N is set to True the per-site middleware cache will respect the active language. For the cache template
tag you could use one of the translation-specific variables available in templates to archieve the same result:

{% load i18n %}
{% load cache %}

{% get_current_language as LANGUAGE_CODE %}

{% cache 600 welcome LANGUAGE_CODE %}
{% trans "Welcome to example.com" %}

{% endcache %}

The cache timeout can be a template variable, as long as the template variable resolves to an integer value. For example,
if the template variable my_timeout is set to the value 600, then the following two examples are equivalent:

{% cache 600 sidebar %} ... {% endcache %}
{% cache my_timeout sidebar %} ... {% endcache %}

This feature is useful in avoiding repetition in templates. You can set the timeout in a variable, in one place, and just
reuse that value.

3.10.5 The low-level cache API

Sometimes, caching an entire rendered page doesn’t gain you very much and is, in fact, inconvenient overkill.

Perhaps, for instance, your site includes a view whose results depend on several expensive queries, the results of which
change at different intervals. In this case, it would not be ideal to use the full-page caching that the per-site or per-view
cache strategies offer, because you wouldn’t want to cache the entire result (since some of the data changes often), but
you’d still want to cache the results that rarely change.

For cases like this, Django exposes a simple, low-level cache API. You can use this API to store objects in the cache
with any level of granularity you like. You can cache any Python object that can be pickled safely: strings, dictionaries,
lists of model objects, and so forth. (Most common Python objects can be pickled; refer to the Python documentation
for more information about pickling.)

The cache module, django.core.cache, has a cache object that’s automatically created from the
CACHE_BACKEND setting:

3.10. Django’s cache framework 241

Django Documentation, Release 1.2.7

>>> from django.core.cache import cache

The basic interface is set(key, value, timeout) and get(key):

>>> cache.set(’my_key’, ’hello, world!’, 30)
>>> cache.get(’my_key’)
’hello, world!’

The timeout argument is optional and defaults to the timeout argument in the CACHE_BACKEND setting (ex-
plained above). It’s the number of seconds the value should be stored in the cache.

If the object doesn’t exist in the cache, cache.get() returns None:

Wait 30 seconds for ’my_key’ to expire...

>>> cache.get(’my_key’)
None

We advise against storing the literal value None in the cache, because you won’t be able to distinguish between your
stored None value and a cache miss signified by a return value of None.

cache.get() can take a default argument. This specifies which value to return if the object doesn’t exist in the
cache:

>>> cache.get(’my_key’, ’has expired’)
’has expired’

To add a key only if it doesn’t already exist, use the add() method. It takes the same parameters as set(), but it
will not attempt to update the cache if the key specified is already present:

>>> cache.set(’add_key’, ’Initial value’)
>>> cache.add(’add_key’, ’New value’)
>>> cache.get(’add_key’)
’Initial value’

If you need to know whether add() stored a value in the cache, you can check the return value. It will return True
if the value was stored, False otherwise.

There’s also a get_many() interface that only hits the cache once. get_many() returns a dictionary with all the
keys you asked for that actually exist in the cache (and haven’t expired):

>>> cache.set(’a’, 1)
>>> cache.set(’b’, 2)
>>> cache.set(’c’, 3)
>>> cache.get_many([’a’, ’b’, ’c’])
{’a’: 1, ’b’: 2, ’c’: 3}

New in version 1.2: Please, see the release notes To set multiple values more efficiently, use set_many() to pass a
dictionary of key-value pairs:

>>> cache.set_many({’a’: 1, ’b’: 2, ’c’: 3})
>>> cache.get_many([’a’, ’b’, ’c’])
{’a’: 1, ’b’: 2, ’c’: 3}

Like cache.set(), set_many() takes an optional timeout parameter.

You can delete keys explicitly with delete(). This is an easy way of clearing the cache for a particular object:

>>> cache.delete(’a’)

New in version 1.2: Please, see the release notes If you want to clear a bunch of keys at once, delete_many() can
take a list of keys to be cleared:

242 Chapter 3. Using Django

Django Documentation, Release 1.2.7

>>> cache.delete_many([’a’, ’b’, ’c’])

New in version 1.2: Please, see the release notes Finally, if you want to delete all the keys in the cache, use
cache.clear(). Be careful with this; clear() will remove everything from the cache, not just the keys set
by your application.

>>> cache.clear()

New in version 1.1: Please, see the release notes You can also increment or decrement a key that already exists using
the incr() or decr() methods, respectively. By default, the existing cache value will incremented or decremented
by 1. Other increment/decrement values can be specified by providing an argument to the increment/decrement call.
A ValueError will be raised if you attempt to increment or decrement a nonexistent cache key.:

>>> cache.set(’num’, 1)
>>> cache.incr(’num’)
2
>>> cache.incr(’num’, 10)
12
>>> cache.decr(’num’)
11
>>> cache.decr(’num’, 5)
6

Note: incr()/decr() methods are not guaranteed to be atomic. On those backends that support atomic in-
crement/decrement (most notably, the memcached backend), increment and decrement operations will be atomic.
However, if the backend doesn’t natively provide an increment/decrement operation, it will be implemented using a
two-step retrieve/update.

Cache key warnings

New in version Development version. Memcached, the most commonly-used production cache backend, does not
allow cache keys longer than 250 characters or containing whitespace or control characters, and using such keys will
cause an exception. To encourage cache-portable code and minimize unpleasant surprises, the other built-in cache
backends issue a warning (django.core.cache.backends.base.CacheKeyWarning) if a key is used that
would cause an error on memcached.

If you are using a production backend that can accept a wider range of keys (a custom backend, or one of
the non-memcached built-in backends), and want to use this wider range without warnings, you can silence
CacheKeyWarning with this code in the management module of one of your INSTALLED_APPS:

import warnings

from django.core.cache import CacheKeyWarning

warnings.simplefilter("ignore", CacheKeyWarning)

If you want to instead provide custom key validation logic for one of the built-in backends, you can subclass it, override
just the validate_key method, and follow the instructions for using a custom cache backend. For instance, to do
this for the locmem backend, put this code in a module:

from django.core.cache.backends.locmem import CacheClass as LocMemCacheClass

class CacheClass(LocMemCacheClass):
def validate_key(self, key):

"""Custom validation, raising exceptions or warnings as needed."""
...

3.10. Django’s cache framework 243

Django Documentation, Release 1.2.7

...and use the dotted Python path to this module as the scheme portion of your CACHE_BACKEND.

3.10.6 Upstream caches

So far, this document has focused on caching your own data. But another type of caching is relevant to Web devel-
opment, too: caching performed by “upstream” caches. These are systems that cache pages for users even before the
request reaches your Web site.

Here are a few examples of upstream caches:

• Your ISP may cache certain pages, so if you requested a page from http://example.com/, your ISP would send
you the page without having to access example.com directly. The maintainers of example.com have no knowl-
edge of this caching; the ISP sits between example.com and your Web browser, handling all of the caching
transparently.

• Your Django Web site may sit behind a proxy cache, such as Squid Web Proxy Cache (http://www.squid-
cache.org/), that caches pages for performance. In this case, each request first would be handled by the proxy,
and it would be passed to your application only if needed.

• Your Web browser caches pages, too. If a Web page sends out the appropriate headers, your browser will use
the local cached copy for subsequent requests to that page, without even contacting the Web page again to see
whether it has changed.

Upstream caching is a nice efficiency boost, but there’s a danger to it: Many Web pages’ contents differ based on
authentication and a host of other variables, and cache systems that blindly save pages based purely on URLs could
expose incorrect or sensitive data to subsequent visitors to those pages.

For example, say you operate a Web e-mail system, and the contents of the “inbox” page obviously depend on which
user is logged in. If an ISP blindly cached your site, then the first user who logged in through that ISP would have his
user-specific inbox page cached for subsequent visitors to the site. That’s not cool.

Fortunately, HTTP provides a solution to this problem. A number of HTTP headers exist to instruct upstream caches to
differ their cache contents depending on designated variables, and to tell caching mechanisms not to cache particular
pages. We’ll look at some of these headers in the sections that follow.

3.10.7 Using Vary headers

The Vary header defines which request headers a cache mechanism should take into account when building its cache
key. For example, if the contents of a Web page depend on a user’s language preference, the page is said to “vary on
language.”

By default, Django’s cache system creates its cache keys using the requested path (e.g.,
"/stories/2005/jun/23/bank_robbed/"). This means every request to that URL will use the same
cached version, regardless of user-agent differences such as cookies or language preferences. However, if this page
produces different content based on some difference in request headers – such as a cookie, or a language, or a
user-agent – you’ll need to use the Vary header to tell caching mechanisms that the page output depends on those
things.

To do this in Django, use the convenient vary_on_headers view decorator, like so:

from django.views.decorators.vary import vary_on_headers

@vary_on_headers(’User-Agent’)
def my_view(request):

...

In this case, a caching mechanism (such as Django’s own cache middleware) will cache a separate version of the page
for each unique user-agent.

244 Chapter 3. Using Django

http://example.com/
http://www.squid-cache.org/
http://www.squid-cache.org/

Django Documentation, Release 1.2.7

The advantage to using the vary_on_headers decorator rather than manually setting the Vary header (using
something like response[’Vary’] = ’user-agent’) is that the decorator adds to the Vary header (which
may already exist), rather than setting it from scratch and potentially overriding anything that was already in there.

You can pass multiple headers to vary_on_headers():

@vary_on_headers(’User-Agent’, ’Cookie’)
def my_view(request):

...

This tells upstream caches to vary on both, which means each combination of user-agent and cookie will get its own
cache value. For example, a request with the user-agent Mozilla and the cookie value foo=bar will be considered
different from a request with the user-agent Mozilla and the cookie value foo=ham.

Because varying on cookie is so common, there’s a vary_on_cookie decorator. These two views are equivalent:

@vary_on_cookie
def my_view(request):

...

@vary_on_headers(’Cookie’)
def my_view(request):

...

The headers you pass to vary_on_headers are not case sensitive; "User-Agent" is the same thing as
"user-agent".

You can also use a helper function, django.utils.cache.patch_vary_headers, directly. This function
sets, or adds to, the Vary header. For example:

from django.utils.cache import patch_vary_headers

def my_view(request):
...
response = render_to_response(’template_name’, context)
patch_vary_headers(response, [’Cookie’])
return response

patch_vary_headers takes an HttpResponse instance as its first argument and a list/tuple of case-insensitive
header names as its second argument.

For more on Vary headers, see the official Vary spec.

3.10.8 Controlling cache: Using other headers

Other problems with caching are the privacy of data and the question of where data should be stored in a cascade of
caches.

A user usually faces two kinds of caches: his or her own browser cache (a private cache) and his or her provider’s
cache (a public cache). A public cache is used by multiple users and controlled by someone else. This poses problems
with sensitive data–you don’t want, say, your bank account number stored in a public cache. So Web applications need
a way to tell caches which data is private and which is public.

The solution is to indicate a page’s cache should be “private.” To do this in Django, use the cache_control view
decorator. Example:

from django.views.decorators.cache import cache_control

@cache_control(private=True)

3.10. Django’s cache framework 245

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44

Django Documentation, Release 1.2.7

def my_view(request):
...

This decorator takes care of sending out the appropriate HTTP header behind the scenes.

There are a few other ways to control cache parameters. For example, HTTP allows applications to do the following:

• Define the maximum time a page should be cached.

• Specify whether a cache should always check for newer versions, only delivering the cached content when there
are no changes. (Some caches might deliver cached content even if the server page changed, simply because the
cache copy isn’t yet expired.)

In Django, use the cache_control view decorator to specify these cache parameters. In this example,
cache_control tells caches to revalidate the cache on every access and to store cached versions for, at most,
3,600 seconds:

from django.views.decorators.cache import cache_control

@cache_control(must_revalidate=True, max_age=3600)
def my_view(request):

...

Any valid Cache-Control HTTP directive is valid in cache_control(). Here’s a full list:

• public=True

• private=True

• no_cache=True

• no_transform=True

• must_revalidate=True

• proxy_revalidate=True

• max_age=num_seconds

• s_maxage=num_seconds

For explanation of Cache-Control HTTP directives, see the Cache-Control spec.

(Note that the caching middleware already sets the cache header’s max-age with the value of the
CACHE_MIDDLEWARE_SECONDS setting. If you use a custom max_age in a cache_control decorator, the
decorator will take precedence, and the header values will be merged correctly.)

If you want to use headers to disable caching altogether, django.views.decorators.cache.never_cache
is a view decorator that adds headers to ensure the response won’t be cached by browsers or other caches. Example:

from django.views.decorators.cache import never_cache

@never_cache
def myview(request):

...

3.10.9 Other optimizations

Django comes with a few other pieces of middleware that can help optimize your site’s performance:

• django.middleware.http.ConditionalGetMiddleware adds support for modern browsers to
conditionally GET responses based on the ETag and Last-Modified headers.

246 Chapter 3. Using Django

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

Django Documentation, Release 1.2.7

• django.middleware.gzip.GZipMiddleware compresses responses for all moderns browsers, saving
bandwidth and transfer time.

3.10.10 Order of MIDDLEWARE_CLASSES

If you use caching middleware, it’s important to put each half in the right place within the MIDDLEWARE_CLASSES
setting. That’s because the cache middleware needs to know which headers by which to vary the cache storage.
Middleware always adds something to the Vary response header when it can.

UpdateCacheMiddleware runs during the response phase, where middleware is run in reverse order, so an item at
the top of the list runs last during the response phase. Thus, you need to make sure that UpdateCacheMiddleware
appears before any other middleware that might add something to the Vary header. The following middleware mod-
ules do so:

• SessionMiddleware adds Cookie

• GZipMiddleware adds Accept-Encoding

• LocaleMiddleware adds Accept-Language

FetchFromCacheMiddleware, on the other hand, runs during the request phase, where middleware is applied
first-to-last, so an item at the top of the list runs first during the request phase. The FetchFromCacheMiddleware
also needs to run after other middleware updates the Vary header, so FetchFromCacheMiddleware must be
after any item that does so.

3.11 Conditional View Processing

New in version 1.1: Please, see the release notes HTTP clients can send a number of headers to tell the server about
copies of a resource that they have already seen. This is commonly used when retrieving a Web page (using an HTTP
GET request) to avoid sending all the data for something the client has already retrieved. However, the same headers
can be used for all HTTP methods (POST, PUT, DELETE, etc).

For each page (response) that Django sends back from a view, it might provide two HTTP headers: the ETag header
and the Last-Modified header. These headers are optional on HTTP responses. They can be set by your view
function, or you can rely on the CommonMiddleware middleware to set the ETag header.

When the client next requests the same resource, it might send along a header such as If-modified-since, containing
the date of the last modification time it was sent, or If-none-match, containing the ETag it was sent. If the current
version of the page matches the ETag sent by the client, or if the resource has not been modified, a 304 status code
can be sent back, instead of a full response, telling the client that nothing has changed.

When you need more fine-grained control you may use per-view conditional processing functions.

3.11.1 The condition decorator

Sometimes (in fact, quite often) you can create functions to rapidly compute the ETag value or the last-modified time
for a resource, without needing to do all the computations needed to construct the full view. Django can then use these
functions to provide an “early bailout” option for the view processing. Telling the client that the content has not been
modified since the last request, perhaps.

These two functions are passed as parameters the django.views.decorators.http.condition decorator.
This decorator uses the two functions (you only need to supply one, if you can’t compute both quantities easily and
quickly) to work out if the headers in the HTTP request match those on the resource. If they don’t match, a new copy
of the resource must be computed and your normal view is called.

The condition decorator’s signature looks like this:

3.11. Conditional View Processing 247

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.11

Django Documentation, Release 1.2.7

condition(etag_func=None, last_modified_func=None)

The two functions, to compute the ETag and the last modified time, will be passed the incoming request object
and the same parameters, in the same order, as the view function they are helping to wrap. The function passed
last_modified_func should return a standard datetime value specifying the last time the resource was modified,
or None if the resource doesn’t exist. The function passed to the etag decorator should return a string representing
the Etag for the resource, or None if it doesn’t exist.

Using this feature usefully is probably best explained with an example. Suppose you have this pair of models, repre-
senting a simple blog system:

import datetime
from django.db import models

class Blog(models.Model):
...

class Entry(models.Model):
blog = models.ForeignKey(Blog)
published = models.DateTimeField(default=datetime.datetime.now)
...

If the front page, displaying the latest blog entries, only changes when you add a new blog entry, you can compute the
last modified time very quickly. You need the latest published date for every entry associated with that blog. One
way to do this would be:

def latest_entry(request, blog_id):
return Entry.objects.filter(blog=blog_id).latest("published").published

You can then use this function to provide early detection of an unchanged page for your front page view:

from django.views.decorators.http import condition

@condition(last_modified_func=latest_entry)
def front_page(request, blog_id):

...

3.11.2 Shortcuts for only computing one value

As a general rule, if you can provide functions to compute both the ETag and the last modified time, you should do
so. You don’t know which headers any given HTTP client will send you, so be prepared to handle both. However,
sometimes only one value is easy to compute and Django provides decorators that handle only ETag or only last-
modified computations.

The django.views.decorators.http.etag and django.views.decorators.http.last_modified
decorators are passed the same type of functions as the condition decorator. Their signatures are:

etag(etag_func)
last_modified(last_modified_func)

We could write the earlier example, which only uses a last-modified function, using one of these decorators:

@last_modified(latest_entry)
def front_page(request, blog_id):

...

...or:

248 Chapter 3. Using Django

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.11

Django Documentation, Release 1.2.7

def front_page(request, blog_id):
...

front_page = last_modified(latest_entry)(front_page)

Use condition when testing both conditions

It might look nicer to some people to try and chain the etag and last_modified decorators if you want to test
both preconditions. However, this would lead to incorrect behavior.

Bad code. Don’t do this!
@etag(etag_func)
@last_modified(last_modified_func)
def my_view(request):

...

End of bad code.

The first decorator doesn’t know anything about the second and might answer that the response is not modified even if
the second decorators would determine otherwise. The condition decorator uses both callback functions simulta-
neously to work out the right action to take.

3.11.3 Using the decorators with other HTTP methods

The condition decorator is useful for more than only GET and HEAD requests (HEAD requests are the same as GET
in this situation). It can be used also to be used to provide checking for POST, PUT and DELETE requests. In these
situations, the idea isn’t to return a “not modified” response, but to tell the client that the resource they are trying to
change has been altered in the meantime.

For example, consider the following exchange between the client and server:

1. Client requests /foo/.

2. Server responds with some content with an ETag of "abcd1234".

3. Client sends an HTTP PUT request to /foo/ to update the resource. It also sends an If-Match:
"abcd1234" header to specify the version it is trying to update.

4. Server checks to see if the resource has changed, by computing the ETag the same way it does for a GET
request (using the same function). If the resource has changed, it will return a 412 status code code, meaning
“precondition failed”.

5. Client sends a GET request to /foo/, after receiving a 412 response, to retrieve an updated version of the
content before updating it.

The important thing this example shows is that the same functions can be used to compute the ETag and last modifi-
cation values in all situations. In fact, you should use the same functions, so that the same values are returned every
time.

3.11.4 Comparison with middleware conditional processing

You may notice that Django already provides simple and straightforward conditional GET handling via the
django.middleware.http.ConditionalGetMiddleware and CommonMiddleware. Whilst certainly
being easy to use and suitable for many situations, those pieces of middleware functionality have limitations for ad-
vanced usage:

• They are applied globally to all views in your project

3.11. Conditional View Processing 249

Django Documentation, Release 1.2.7

• They don’t save you from generating the response itself, which may be expensive

• They are only appropriate for HTTP GET requests.

You should choose the most appropriate tool for your particular problem here. If you have a way to compute ETags
and modification times quickly and if some view takes a while to generate the content, you should consider using
the condition decorator described in this document. If everything already runs fairly quickly, stick to using the
middleware and the amount of network traffic sent back to the clients will still be reduced if the view hasn’t changed.

3.12 Sending e-mail

Although Python makes sending e-mail relatively easy via the smtplib library, Django provides a couple of light
wrappers over it. These wrappers are provided to make sending e-mail extra quick, to make it easy to test e-mail
sending during development, and to provide support for platforms that can’t use SMTP.

The code lives in the django.core.mail module.

3.12.1 Quick example

In two lines:

from django.core.mail import send_mail

send_mail(’Subject here’, ’Here is the message.’, ’from@example.com’,
[’to@example.com’], fail_silently=False)

Mail is sent using the SMTP host and port specified in the EMAIL_HOST and EMAIL_PORT settings. The
EMAIL_HOST_USER and EMAIL_HOST_PASSWORD settings, if set, are used to authenticate to the SMTP server,
and the EMAIL_USE_TLS setting controls whether a secure connection is used.

Note: The character set of e-mail sent with django.core.mail will be set to the value of your
DEFAULT_CHARSET setting.

3.12.2 send_mail()

send_mail(subject, message, from_email, recipient_list, fail_silently=False, auth_user=None,
auth_password=None, connection=None)

The simplest way to send e-mail is using django.core.mail.send_mail().

The subject, message, from_email and recipient_list parameters are required.

• subject: A string.

• message: A string.

• from_email: A string.

• recipient_list: A list of strings, each an e-mail address. Each member of recipient_list will see
the other recipients in the “To:” field of the e-mail message.

• fail_silently: A boolean. If it’s False, send_mail will raise an smtplib.SMTPException. See
the smtplib docs for a list of possible exceptions, all of which are subclasses of SMTPException.

• auth_user: The optional username to use to authenticate to the SMTP server. If this isn’t provided, Django
will use the value of the EMAIL_HOST_USER setting.

250 Chapter 3. Using Django

http://docs.python.org/library/smtplib.html
http://docs.python.org/library/smtplib.html

Django Documentation, Release 1.2.7

• auth_password: The optional password to use to authenticate to the SMTP server. If this isn’t provided,
Django will use the value of the EMAIL_HOST_PASSWORD setting.

• connection: The optional e-mail backend to use to send the mail. If unspecified, an instance of the default
backend will be used. See the documentation on E-mail backends for more details.

3.12.3 send_mass_mail()

send_mass_mail(datatuple, fail_silently=False, auth_user=None, auth_password=None, connec-
tion=None)

django.core.mail.send_mass_mail() is intended to handle mass e-mailing.

datatuple is a tuple in which each element is in this format:

(subject, message, from_email, recipient_list)

fail_silently, auth_user and auth_password have the same functions as in send_mail().

Each separate element of datatuple results in a separate e-mail message. As in send_mail(), recipients in the
same recipient_list will all see the other addresses in the e-mail messages’ “To:” field.

For example, the following code would send two different messages to two different sets of recipients; however, only
one connection to the mail server would be opened:

message1 = (’Subject here’, ’Here is the message’, ’from@example.com’, [’first@example.com’, ’other@example.com’])
message2 = (’Another Subject’, ’Here is another message’, ’from@example.com’, [’second@test.com’])
send_mass_mail((message1, message2), fail_silently=False)

send_mass_mail() vs. send_mail()

The main difference between send_mass_mail() and send_mail() is that send_mail() opens a connec-
tion to the mail server each time it’s executed, while send_mass_mail() uses a single connection for all of its
messages. This makes send_mass_mail() slightly more efficient.

3.12.4 mail_admins()

mail_admins(subject, message, fail_silently=False, connection=None)

django.core.mail.mail_admins() is a shortcut for sending an e-mail to the site admins, as defined in the
ADMINS setting.

mail_admins() prefixes the subject with the value of the EMAIL_SUBJECT_PREFIX setting, which is
"[Django] " by default.

The “From:” header of the e-mail will be the value of the SERVER_EMAIL setting.

This method exists for convenience and readability.

3.12.5 mail_managers()

mail_managers(subject, message, fail_silently=False, connection=None)

django.core.mail.mail_managers() is just like mail_admins(), except it sends an e-mail to the site
managers, as defined in the MANAGERS setting.

3.12. Sending e-mail 251

Django Documentation, Release 1.2.7

3.12.6 Examples

This sends a single e-mail to john@example.com and jane@example.com, with them both appearing in the “To:”:

send_mail(’Subject’, ’Message.’, ’from@example.com’,
[’john@example.com’, ’jane@example.com’])

This sends a message to john@example.com and jane@example.com, with them both receiving a separate e-mail:

datatuple = (
(’Subject’, ’Message.’, ’from@example.com’, [’john@example.com’]),
(’Subject’, ’Message.’, ’from@example.com’, [’jane@example.com’]),

)
send_mass_mail(datatuple)

3.12.7 Preventing header injection

Header injection is a security exploit in which an attacker inserts extra e-mail headers to control the “To:” and “From:”
in e-mail messages that your scripts generate.

The Django e-mail functions outlined above all protect against header injection by forbidding newlines in header
values. If any subject, from_email or recipient_list contains a newline (in either Unix, Windows or Mac
style), the e-mail function (e.g. send_mail()) will raise django.core.mail.BadHeaderError (a subclass
of ValueError) and, hence, will not send the e-mail. It’s your responsibility to validate all data before passing it to
the e-mail functions.

If a message contains headers at the start of the string, the headers will simply be printed as the first bit of the e-mail
message.

Here’s an example view that takes a subject, message and from_email from the request’s POST data, sends
that to admin@example.com and redirects to “/contact/thanks/” when it’s done:

from django.core.mail import send_mail, BadHeaderError

def send_email(request):
subject = request.POST.get(’subject’, ’’)
message = request.POST.get(’message’, ’’)
from_email = request.POST.get(’from_email’, ’’)
if subject and message and from_email:

try:
send_mail(subject, message, from_email, [’admin@example.com’])

except BadHeaderError:
return HttpResponse(’Invalid header found.’)

return HttpResponseRedirect(’/contact/thanks/’)
else:

In reality we’d use a form class
to get proper validation errors.
return HttpResponse(’Make sure all fields are entered and valid.’)

3.12.8 The EmailMessage class

Django’s send_mail() and send_mass_mail() functions are actually thin wrappers that make use of the
EmailMessage class.

Not all features of the EmailMessage class are available through the send_mail() and related wrapper functions.
If you wish to use advanced features, such as BCC’ed recipients, file attachments, or multi-part e-mail, you’ll need to
create EmailMessage instances directly.

252 Chapter 3. Using Django

mailto:john@example.com
mailto:jane@example.com
mailto:john@example.com
mailto:jane@example.com
http://www.nyphp.org/phundamentals/email_header_injection.php
mailto:admin@example.com

Django Documentation, Release 1.2.7

Note: This is a design feature. send_mail() and related functions were originally the only interface Django
provided. However, the list of parameters they accepted was slowly growing over time. It made sense to move to a
more object-oriented design for e-mail messages and retain the original functions only for backwards compatibility.

EmailMessage is responsible for creating the e-mail message itself. The e-mail backend is then responsible for
sending the e-mail.

For convenience, EmailMessage provides a simple send() method for sending a single e-mail. If you need to
send multiple messages, the e-mail backend API provides an alternative.

EmailMessage Objects

class EmailMessage

The EmailMessage class is initialized with the following parameters (in the given order, if positional arguments are
used). All parameters are optional and can be set at any time prior to calling the send() method.

• subject: The subject line of the e-mail.

• body: The body text. This should be a plain text message.

• from_email: The sender’s address. Both fred@example.com and Fred <fred@example.com>
forms are legal. If omitted, the DEFAULT_FROM_EMAIL setting is used.

• to: A list or tuple of recipient addresses.

• bcc: A list or tuple of addresses used in the “Bcc” header when sending the e-mail.

• connection: An e-mail backend instance. Use this parameter if you want to use the same connection for
multiple messages. If omitted, a new connection is created when send() is called.

• attachments: A list of attachments to put on the message. These can be either
email.MIMEBase.MIMEBase instances, or (filename, content, mimetype) triples.

• headers: A dictionary of extra headers to put on the message. The keys are the header name, values are the
header values. It’s up to the caller to ensure header names and values are in the correct format for an e-mail
message.

For example:

email = EmailMessage(’Hello’, ’Body goes here’, ’from@example.com’,
[’to1@example.com’, ’to2@example.com’], [’bcc@example.com’],
headers = {’Reply-To’: ’another@example.com’})

The class has the following methods:

• send(fail_silently=False) sends the message. If a connection was specified when the e-mail was
constructed, that connection will be used. Otherwise, an instance of the default backend will be instantiated and
used. If the keyword argument fail_silently is True, exceptions raised while sending the message will
be quashed.

• message() constructs a django.core.mail.SafeMIMEText object (a subclass of Python’s
email.MIMEText.MIMEText class) or a django.core.mail.SafeMIMEMultipart object hold-
ing the message to be sent. If you ever need to extend the EmailMessage class, you’ll probably want to
override this method to put the content you want into the MIME object.

• recipients() returns a list of all the recipients of the message, whether they’re recorded in the to or bcc
attributes. This is another method you might need to override when subclassing, because the SMTP server needs

3.12. Sending e-mail 253

Django Documentation, Release 1.2.7

to be told the full list of recipients when the message is sent. If you add another way to specify recipients in
your class, they need to be returned from this method as well.

• attach() creates a new file attachment and adds it to the message. There are two ways to call attach():

– You can pass it a single argument that is an email.MIMEBase.MIMEBase instance. This will be
inserted directly into the resulting message.

– Alternatively, you can pass attach() three arguments: filename, content and mimetype.
filename is the name of the file attachment as it will appear in the e-mail, content is the data that will
be contained inside the attachment and mimetype is the optional MIME type for the attachment. If you
omit mimetype, the MIME content type will be guessed from the filename of the attachment.

For example:

message.attach(’design.png’, img_data, ’image/png’)

• attach_file() creates a new attachment using a file from your filesystem. Call it with the path of the file to
attach and, optionally, the MIME type to use for the attachment. If the MIME type is omitted, it will be guessed
from the filename. The simplest use would be:

message.attach_file(’/images/weather_map.png’)

Sending alternative content types

It can be useful to include multiple versions of the content in an e-mail; the classic example is to send both text and
HTML versions of a message. With Django’s e-mail library, you can do this using the EmailMultiAlternatives
class. This subclass of EmailMessage has an attach_alternative() method for including extra versions of
the message body in the e-mail. All the other methods (including the class initialization) are inherited directly from
EmailMessage.

To send a text and HTML combination, you could write:

from django.core.mail import EmailMultiAlternatives

subject, from_email, to = ’hello’, ’from@example.com’, ’to@example.com’
text_content = ’This is an important message.’
html_content = ’<p>This is an important message.</p>’
msg = EmailMultiAlternatives(subject, text_content, from_email, [to])
msg.attach_alternative(html_content, "text/html")
msg.send()

By default, the MIME type of the body parameter in an EmailMessage is "text/plain". It is good practice
to leave this alone, because it guarantees that any recipient will be able to read the e-mail, regardless of their mail
client. However, if you are confident that your recipients can handle an alternative content type, you can use the
content_subtype attribute on the EmailMessage class to change the main content type. The major type will
always be "text", but you can change the subtype. For example:

msg = EmailMessage(subject, html_content, from_email, [to])
msg.content_subtype = "html" # Main content is now text/html
msg.send()

3.12.9 E-Mail Backends

New in version 1.2: Please, see the release notes The actual sending of an e-mail is handled by the e-mail backend.

The e-mail backend class has the following methods:

254 Chapter 3. Using Django

Django Documentation, Release 1.2.7

• open() instantiates an long-lived e-mail-sending connection.

• close() closes the current e-mail-sending connection.

• send_messages(email_messages) sends a list of EmailMessage objects. If the connection is not
open, this call will implicitly open the connection, and close the connection afterwards. If the connection is
already open, it will be left open after mail has been sent.

Obtaining an instance of an e-mail backend

The get_connection() function in django.core.mail returns an instance of the e-mail backend that you
can use.

get_connection(backend=None, fail_silently=False, *args, **kwargs)

By default, a call to get_connection() will return an instance of the e-mail backend specified in
EMAIL_BACKEND. If you specify the backend argument, an instance of that backend will be instantiated.

The fail_silently argument controls how the backend should handle errors. If fail_silently is True,
exceptions during the e-mail sending process will be silently ignored.

All other arguments are passed directly to the constructor of the e-mail backend.

Django ships with several e-mail sending backends. With the exception of the SMTP backend (which is the default),
these backends are only useful during testing and development. If you have special e-mail sending requirements, you
can write your own e-mail backend.

SMTP backend

This is the default backend. E-mail will be sent through a SMTP server. The server address and authentication
credentials are set in the EMAIL_HOST, EMAIL_PORT, EMAIL_HOST_USER, EMAIL_HOST_PASSWORD and
EMAIL_USE_TLS settings in your settings file.

The SMTP backend is the default configuration inherited by Django. If you want to specify it explicitly, put the
following in your settings:

EMAIL_BACKEND = ’django.core.mail.backends.smtp.EmailBackend’

SMTPConnection objects

Prior to version 1.2, Django provided a SMTPConnection class. This class provided a way to directly control the
use of SMTP to send e-mail. This class has been deprecated in favor of the generic e-mail backend API.

For backwards compatibility SMTPConnection is still available in django.core.mail as an alias for the SMTP
backend. New code should use get_connection() instead.

Console backend

Instead of sending out real e-mails the console backend just writes the e-mails that would be send to the standard
output. By default, the console backend writes to stdout. You can use a different stream-like object by providing
the stream keyword argument when constructing the connection.

To specify this backend, put the following in your settings:

EMAIL_BACKEND = ’django.core.mail.backends.console.EmailBackend’

3.12. Sending e-mail 255

Django Documentation, Release 1.2.7

This backend is not intended for use in production – it is provided as a convenience that can be used during develop-
ment.

File backend

The file backend writes e-mails to a file. A new file is created for each new session that is opened on this backend. The
directory to which the files are written is either taken from the EMAIL_FILE_PATH setting or from the file_path
keyword when creating a connection with get_connection().

To specify this backend, put the following in your settings:

EMAIL_BACKEND = ’django.core.mail.backends.filebased.EmailBackend’
EMAIL_FILE_PATH = ’/tmp/app-messages’ # change this to a proper location

This backend is not intended for use in production – it is provided as a convenience that can be used during develop-
ment.

In-memory backend

The ’locmem’ backend stores messages in a special attribute of the django.core.mail module. The outbox
attribute is created when the first message is sent. It’s a list with an EmailMessage instance for each message that
would be send.

To specify this backend, put the following in your settings:

EMAIL_BACKEND = ’django.core.mail.backends.locmem.EmailBackend’

This backend is not intended for use in production – it is provided as a convenience that can be used during development
and testing.

Dummy backend

As the name suggests the dummy backend does nothing with your messages. To specify this backend, put the following
in your settings:

EMAIL_BACKEND = ’django.core.mail.backends.dummy.EmailBackend’

This backend is not intended for use in production – it is provided as a convenience that can be used during develop-
ment.

Defining a custom e-mail backend

If you need to change how e-mails are sent you can write your own e-mail backend. The EMAIL_BACKEND setting
in your settings file is then the Python import path for your backend class.

Custom e-mail backends should subclass BaseEmailBackend that is located in the
django.core.mail.backends.base module. A custom e-mail backend must implement the
send_messages(email_messages) method. This method receives a list of EmailMessage instances
and returns the number of successfully delivered messages. If your backend has any concept of a persistent session or
connection, you should also implement the open() and close() methods. Refer to smtp.EmailBackend for
a reference implementation.

256 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Sending multiple e-mails

Establishing and closing an SMTP connection (or any other network connection, for that matter) is an expensive
process. If you have a lot of e-mails to send, it makes sense to reuse an SMTP connection, rather than creating and
destroying a connection every time you want to send an e-mail.

There are two ways you tell an e-mail backend to reuse a connection.

Firstly, you can use the send_messages() method. send_messages() takes a list of EmailMessage in-
stances (or subclasses), and sends them all using a single connection.

For example, if you have a function called get_notification_email() that returns a list of EmailMessage
objects representing some periodic e-mail you wish to send out, you could send these e-mails using a single call to
send_messages:

from django.core import mail
connection = mail.get_connection() # Use default e-mail connection
messages = get_notification_email()
connection.send_messages(messages)

In this example, the call to send_messages() opens a connection on the backend, sends the list of messages, and
then closes the connection again.

The second approach is to use the open() and close() methods on the e-mail backend to manually control the
connection. send_messages() will not manually open or close the connection if it is already open, so if you
manually open the connection, you can control when it is closed. For example:

from django.core import mail
connection = mail.get_connection()

Manually open the connection
connection.open()

Construct an e-mail message that uses the connection
email1 = mail.EmailMessage(’Hello’, ’Body goes here’, ’from@example.com’,

[’to1@example.com’], connection=connection)
email1.send() # Send the e-mail

Construct two more messages
email2 = mail.EmailMessage(’Hello’, ’Body goes here’, ’from@example.com’,

[’to2@example.com’])
email3 = mail.EmailMessage(’Hello’, ’Body goes here’, ’from@example.com’,

[’to3@example.com’])

Send the two e-mails in a single call -
connection.send_messages([email2, email3])
The connection was already open so send_messages() doesn’t close it.
We need to manually close the connection.
connection.close()

3.12.10 Testing e-mail sending

There are times when you do not want Django to send e-mails at all. For example, while developing a Web site, you
probably don’t want to send out thousands of e-mails – but you may want to validate that e-mails will be sent to the
right people under the right conditions, and that those e-mails will contain the correct content.

The easiest way to test your project’s use of e-mail is to use the console e-mail backend. This backend redirects all
e-mail to stdout, allowing you to inspect the content of mail.

3.12. Sending e-mail 257

Django Documentation, Release 1.2.7

The file e-mail backend can also be useful during development – this backend dumps the contents of every SMTP
connection to a file that can be inspected at your leisure.

Another approach is to use a “dumb” SMTP server that receives the e-mails locally and displays them to the terminal,
but does not actually send anything. Python has a built-in way to accomplish this with a single command:

python -m smtpd -n -c DebuggingServer localhost:1025

This command will start a simple SMTP server listening on port 1025 of localhost. This server simply prints to stan-
dard output all e-mail headers and the e-mail body. You then only need to set the EMAIL_HOST and EMAIL_PORT
accordingly, and you are set.

For a more detailed discussion of testing and processing of e-mails locally, see the Python documentation on the SMTP
Server.

3.12.11 SMTPConnection

class SMTPConnection

Deprecated since version 1.2. The SMTPConnection class has been deprecated in favor of the generic e-mail
backend API.

For backwards compatibility SMTPConnection is still available in django.core.mail as an alias for the SMTP
backend. New code should use get_connection() instead.

3.13 Internationalization and localization

3.13.1 Overview

Django has full support for internationalization of text in code and templates, and format localization of dates and
numbers. Here’s how it works.

Essentially, Django does two things:

• It allows developers and template authors to specify which parts of their apps should be translatable.

• It uses these hooks to translate Web apps for particular users according to their language preferences.

The complete process can be seen as divided in three stages. It is also possible to identify an identical number of roles
with very well defined responsibilities associated with each of these tasks (although it’s perfectly normal if you find
yourself performing more than one of these roles):

• For application authors wishing to make sure their Django apps can be used in different locales: International-
ization.

• For translators wanting to translate Django apps: Localization.

• For system administrators/final users setting up internationalized apps or developers integrating third party apps:
Deployment of translations.

Internationalization

Overview

The goal of internationalization is to allow a single Web application to offer its content and functionality in multiple
languages and locales.

258 Chapter 3. Using Django

http://docs.python.org/library/smtpd.html
http://docs.python.org/library/smtpd.html

Django Documentation, Release 1.2.7

For text translations, you, the Django developer, can accomplish this goal by adding a minimal amount of hooks to your
Python and templates. These hooks are called translation strings. They tell Django: “This text should be translated
into the end user’s language, if a translation for this text is available in that language.” It’s your responsibility to mark
translatable strings; the system can only translate strings it knows about.

Django takes care of using these hooks to translate Web apps, on the fly, according to users’ language preferences.

Specifying translation strings: In Python code

Standard translation Specify a translation string by using the function ugettext(). It’s convention to import
this as a shorter alias, _, to save typing.

Note: Python’s standard library gettext module installs _() into the global namespace, as an alias for
gettext(). In Django, we have chosen not to follow this practice, for a couple of reasons:

1. For international character set (Unicode) support, ugettext() is more useful than gettext(). Sometimes,
you should be using ugettext_lazy() as the default translation method for a particular file. Without _()
in the global namespace, the developer has to think about which is the most appropriate translation function.

2. The underscore character (_) is used to represent “the previous result” in Python’s interactive shell and doctest
tests. Installing a global _() function causes interference. Explicitly importing ugettext() as _() avoids
this problem.

In this example, the text "Welcome to my site." is marked as a translation string:

from django.utils.translation import ugettext as _

def my_view(request):
output = _("Welcome to my site.")
return HttpResponse(output)

Obviously, you could code this without using the alias. This example is identical to the previous one:

from django.utils.translation import ugettext

def my_view(request):
output = ugettext("Welcome to my site.")
return HttpResponse(output)

Translation works on computed values. This example is identical to the previous two:

def my_view(request):
words = [’Welcome’, ’to’, ’my’, ’site.’]
output = _(’ ’.join(words))
return HttpResponse(output)

Translation works on variables. Again, here’s an identical example:

def my_view(request):
sentence = ’Welcome to my site.’
output = _(sentence)
return HttpResponse(output)

(The caveat with using variables or computed values, as in the previous two examples, is that Django’s translation-
string-detecting utility, django-admin.py makemessages, won’t be able to find these strings. More on
makemessages later.)

3.13. Internationalization and localization 259

Django Documentation, Release 1.2.7

The strings you pass to _() or ugettext() can take placeholders, specified with Python’s standard named-string
interpolation syntax. Example:

def my_view(request, m, d):
output = _(’Today is %(month)s %(day)s.’) % {’month’: m, ’day’: d}
return HttpResponse(output)

This technique lets language-specific translations reorder the placeholder text. For example, an English translation
may be "Today is November 26.", while a Spanish translation may be "Hoy es 26 de Noviembre."
– with the the month and the day placeholders swapped.

For this reason, you should use named-string interpolation (e.g., %(day)s) instead of positional interpolation (e.g.,
%s or %d) whenever you have more than a single parameter. If you used positional interpolation, translations wouldn’t
be able to reorder placeholder text.

Marking strings as no-op Use the function django.utils.translation.ugettext_noop() to mark a
string as a translation string without translating it. The string is later translated from a variable.

Use this if you have constant strings that should be stored in the source language because they are exchanged over
systems or users – such as strings in a database – but should be translated at the last possible point in time, such as
when the string is presented to the user.

Pluralization Use the function django.utils.translation.ungettext() to specify pluralized mes-
sages.

ungettext takes three arguments: the singular translation string, the plural translation string and the number of
objects.

This function is useful when you need your Django application to be localizable to languages where the number and
complexity of plural forms is greater than the two forms used in English (‘object’ for the singular and ‘objects’ for all
the cases where count is different from zero, irrespective of its value.)

For example:

from django.utils.translation import ungettext
def hello_world(request, count):

page = ungettext(’there is %(count)d object’, ’there are %(count)d objects’, count) % {
’count’: count,

}
return HttpResponse(page)

In this example the number of objects is passed to the translation languages as the count variable.

Lets see a slightly more complex usage example:

from django.utils.translation import ungettext

count = Report.objects.count()
if count == 1:

name = Report._meta.verbose_name
else:

name = Report._meta.verbose_name_plural

text = ungettext(
’There is %(count)d %(name)s available.’,
’There are %(count)d %(name)s available.’,
count

) % {
’count’: count,

260 Chapter 3. Using Django

http://www.gnu.org/software/gettext/manual/gettext.html#Plural-forms

Django Documentation, Release 1.2.7

’name’: name
}

Here we reuse localizable, hopefully already translated literals (contained in the verbose_name and
verbose_name_plural model Meta options) for other parts of the sentence so all of it is consistently based
on the cardinality of the elements at play.

Note: When using this technique, make sure you use a single name for every extrapolated variable included in the
literal. In the example above note how we used the name Python variable in both translation strings. This example
would fail:

from django.utils.translation import ungettext
from myapp.models import Report

count = Report.objects.count()
d = {

’count’: count,
’name’: Report._meta.verbose_name,
’plural_name’: Report._meta.verbose_name_plural

}
text = ungettext(

’There is %(count)d %(name)s available.’,
’There are %(count)d %(plural_name)s available.’,
count

) % d

You would get a a format specification for argument ’name’, as in ’msgstr[0]’,
doesn’t exist in ’msgid’ error when running django-admin.py compilemessages.

Lazy translation Use the function django.utils.translation.ugettext_lazy() to translate strings
lazily – when the value is accessed rather than when the ugettext_lazy() function is called.

For example, to translate a model’s help_text, do the following:

from django.utils.translation import ugettext_lazy

class MyThing(models.Model):
name = models.CharField(help_text=ugettext_lazy(’This is the help text’))

In this example, ugettext_lazy() stores a lazy reference to the string – not the actual translation. The translation
itself will be done when the string is used in a string context, such as template rendering on the Django admin site.

The result of a ugettext_lazy() call can be used wherever you would use a unicode string (an object with type
unicode) in Python. If you try to use it where a bytestring (a str object) is expected, things will not work as
expected, since a ugettext_lazy() object doesn’t know how to convert itself to a bytestring. You can’t use a
unicode string inside a bytestring, either, so this is consistent with normal Python behavior. For example:

This is fine: putting a unicode proxy into a unicode string.
u"Hello %s" % ugettext_lazy("people")

This will not work, since you cannot insert a unicode object
into a bytestring (nor can you insert our unicode proxy there)
"Hello %s" % ugettext_lazy("people")

If you ever see output that looks like "hello <django.utils.functional...>", you have tried to insert
the result of ugettext_lazy() into a bytestring. That’s a bug in your code.

3.13. Internationalization and localization 261

Django Documentation, Release 1.2.7

If you don’t like the verbose name ugettext_lazy, you can just alias it as _ (underscore), like so:

from django.utils.translation import ugettext_lazy as _

class MyThing(models.Model):
name = models.CharField(help_text=_(’This is the help text’))

Always use lazy translations in Django models. Field names and table names should be marked for translation
(otherwise, they won’t be translated in the admin interface). This means writing explicit verbose_name and
verbose_name_plural options in the Meta class, though, rather than relying on Django’s default determina-
tion of verbose_name and verbose_name_plural by looking at the model’s class name:

from django.utils.translation import ugettext_lazy as _

class MyThing(models.Model):
name = models.CharField(_(’name’), help_text=_(’This is the help text’))
class Meta:

verbose_name = _(’my thing’)
verbose_name_plural = _(’mythings’)

Notes on model classes translation Your model classes may not only contain normal fields: you may have relations
(with a ForeignKey field) or additional model methods you may use for columns in the Django admin site.

If you have models with foreign keys and you use the Django admin site, you can provide translations for the relation
itself by using the verbose_name parameter on the ForeignKey object:

class MyThing(models.Model):
kind = models.ForeignKey(ThingKind, related_name=’kinds’,

verbose_name=_(’kind’))

As you would do for the verbose_name and verbose_name_plural settings of a model Meta class, you should
provide a lowercase verbose name text for the relation as Django will automatically titlecase it when required.

For model methods, you can provide translations to Django and the admin site with the short_description
parameter set on the corresponding method:

class MyThing(models.Model):
kind = models.ForeignKey(ThingKind, related_name=’kinds’,

verbose_name=_(’kind’))

def is_mouse(self):
return self.kind.type == MOUSE_TYPE

is_mouse.short_description = _(’Is it a mouse?’)

As always with model classes translations, don’t forget to use the lazy translation method!

Working with lazy translation objects Using ugettext_lazy() and ungettext_lazy() to mark strings
in models and utility functions is a common operation. When you’re working with these objects elsewhere in your
code, you should ensure that you don’t accidentally convert them to strings, because they should be converted as late
as possible (so that the correct locale is in effect). This necessitates the use of a couple of helper functions.

Joining strings: string_concat() Standard Python string joins (”.join([...])) will not work on lists contain-
ing lazy translation objects. Instead, you can use django.utils.translation.string_concat(), which
creates a lazy object that concatenates its contents and converts them to strings only when the result is included in a
string. For example:

262 Chapter 3. Using Django

Django Documentation, Release 1.2.7

from django.utils.translation import string_concat
...
name = ugettext_lazy(u’John Lennon’)
instrument = ugettext_lazy(u’guitar’)
result = string_concat(name, ’: ’, instrument)

In this case, the lazy translations in result will only be converted to strings when result itself is used in a string
(usually at template rendering time).

The allow_lazy() decorator Django offers many utility functions (particularly in django.utils) that take a
string as their first argument and do something to that string. These functions are used by template filters as well as
directly in other code.

If you write your own similar functions and deal with translations, you’ll face the problem of what to do when the first
argument is a lazy translation object. You don’t want to convert it to a string immediately, because you might be using
this function outside of a view (and hence the current thread’s locale setting will not be correct).

For cases like this, use the django.utils.functional.allow_lazy() decorator. It modifies the function
so that if it’s called with a lazy translation as the first argument, the function evaluation is delayed until it needs to be
converted to a string.

For example:

from django.utils.functional import allow_lazy

def fancy_utility_function(s, ...):
Do some conversion on string ’s’
...

fancy_utility_function = allow_lazy(fancy_utility_function, unicode)

The allow_lazy() decorator takes, in addition to the function to decorate, a number of extra arguments (*args)
specifying the type(s) that the original function can return. Usually, it’s enough to include unicode here and ensure
that your function returns only Unicode strings.

Using this decorator means you can write your function and assume that the input is a proper string, then add support
for lazy translation objects at the end.

Specifying translation strings: In template code

Translations in Django templates uses two template tags and a slightly different syntax than in Python code. To give
your template access to these tags, put {% load i18n %} toward the top of your template.

trans template tag The {% trans %} template tag translates either a constant string (enclosed in single or
double quotes) or variable content:

<title>{% trans "This is the title." %}</title>
<title>{% trans myvar %}</title>

If the noop option is present, variable lookup still takes place but the translation is skipped. This is useful when
“stubbing out” content that will require translation in the future:

<title>{% trans "myvar" noop %}</title>

Internally, inline translations use an ugettext call.

In case a template var (myvar above) is passed to the tag, the tag will first resolve such variable to a string at run-time
and then look up that string in the message catalogs.

3.13. Internationalization and localization 263

Django Documentation, Release 1.2.7

It’s not possible to mix a template variable inside a string within {% trans %}. If your translations require strings
with variables (placeholders), use {% blocktrans %} instead.

blocktrans template tag Contrarily to the trans tag, the blocktrans tag allows you to mark complex
sentences consisting of literals and variable content for translation by making use of placeholders:

{% blocktrans %}This string will have {{ value }} inside.{% endblocktrans %}

To translate a template expression – say, accessing object attributes or using template filters – you need to bind the
expression to a local variable for use within the translation block. Examples:

{% blocktrans with article.price as amount %}
That will cost $ {{ amount }}.
{% endblocktrans %}

{% blocktrans with value|filter as myvar %}
This will have {{ myvar }} inside.
{% endblocktrans %}

If you need to bind more than one expression inside a blocktrans tag, separate the pieces with and:

{% blocktrans with book|title as book_t and author|title as author_t %}
This is {{ book_t }} by {{ author_t }}
{% endblocktrans %}

This tag also provides for pluralization. To use it:

• Designate and bind a counter value with the name count. This value will be the one used to select the right
plural form.

• Specify both the singular and plural forms separating them with the {% plural %} tag within the {%
blocktrans %} and {% endblocktrans %} tags.

An example:

{% blocktrans count list|length as counter %}
There is only one {{ name }} object.
{% plural %}
There are {{ counter }} {{ name }} objects.
{% endblocktrans %}

A more complex example:

{% blocktrans with article.price as amount count i.length as years %}
That will cost $ {{ amount }} per year.
{% plural %}
That will cost $ {{ amount }} per {{ years }} years.
{% endblocktrans %}

When you use both the pluralization feature and bind values to local variables in addition to the counter value, keep
in mind that the blocktrans construct is internally converted to an ungettext call. This means the same notes
regarding ungettext variables apply.

Reverse URL lookups cannot be carried out within the blocktrans and should be retrieved (and stored) beforehand:

{% url path.to.view arg arg2 as the_url %}
{% blocktrans %}
This is a URL: {{ the_url }}
{% endblocktrans %}

264 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Other tags Each RequestContext has access to three translation-specific variables:

• LANGUAGES is a list of tuples in which the first element is the language code and the second is the language
name (translated into the currently active locale).

• LANGUAGE_CODE is the current user’s preferred language, as a string. Example: en-us. (See How Django
discovers language preference.)

• LANGUAGE_BIDI is the current locale’s direction. If True, it’s a right-to-left language, e.g.: Hebrew, Arabic.
If False it’s a left-to-right language, e.g.: English, French, German etc.

If you don’t use the RequestContext extension, you can get those values with three tags:

{% get_current_language as LANGUAGE_CODE %}
{% get_available_languages as LANGUAGES %}
{% get_current_language_bidi as LANGUAGE_BIDI %}

These tags also require a {% load i18n %}.

Translation hooks are also available within any template block tag that accepts constant strings. In those cases, just
use _() syntax to specify a translation string:

{% some_special_tag _("Page not found") value|yesno:_("yes,no") %}

In this case, both the tag and the filter will see the already-translated string, so they don’t need to be aware of transla-
tions.

Note: In this example, the translation infrastructure will be passed the string "yes,no", not the individual strings
"yes" and "no". The translated string will need to contain the comma so that the filter parsing code knows how
to split up the arguments. For example, a German translator might translate the string "yes,no" as "ja,nein"
(keeping the comma intact).

Specifying translation strings: In JavaScript code

Adding translations to JavaScript poses some problems:

• JavaScript code doesn’t have access to a gettext implementation.

• JavaScript code doesn’t have access to .po or .mo files; they need to be delivered by the server.

• The translation catalogs for JavaScript should be kept as small as possible.

Django provides an integrated solution for these problems: It passes the translations into JavaScript, so you can call
gettext, etc., from within JavaScript.

The javascript_catalog view
javascript_catalog(request, domain=’djangojs’, packages=None)
The main solution to these problems is the django.views.i18n.javascript_catalog() view, which sends
out a JavaScript code library with functions that mimic the gettext interface, plus an array of translation strings.
Those translation strings are taken from the application, project or Django core, according to what you specify in either
the info_dict or the URL.

You hook it up like this:

js_info_dict = {
’packages’: (’your.app.package’,),

}

3.13. Internationalization and localization 265

Django Documentation, Release 1.2.7

urlpatterns = patterns(’’,
(r’^jsi18n/$’, ’django.views.i18n.javascript_catalog’, js_info_dict),

)

Each string in packages should be in Python dotted-package syntax (the same format as the strings in
INSTALLED_APPS) and should refer to a package that contains a locale directory. If you specify multiple pack-
ages, all those catalogs are merged into one catalog. This is useful if you have JavaScript that uses strings from
different applications.

By default, the view uses the djangojs gettext domain. This can be changed by altering the domain argument.

You can make the view dynamic by putting the packages into the URL pattern:

urlpatterns = patterns(’’,
(r’^jsi18n/(?P<packages>\S+?)/$’, ’django.views.i18n.javascript_catalog’),

)

With this, you specify the packages as a list of package names delimited by ‘+’ signs in the URL. This is especially use-
ful if your pages use code from different apps and this changes often and you don’t want to pull in one big catalog file.
As a security measure, these values can only be either django.conf or any package from the INSTALLED_APPS
setting.

Using the JavaScript translation catalog To use the catalog, just pull in the dynamically generated script like this:

<script type="text/javascript" src="{% url django.views.i18n.javascript_catalog %}"></script>

This uses reverse URL lookup to find the URL of the JavaScript catalog view. When the catalog is loaded, your
JavaScript code can use the standard gettext interface to access it:

document.write(gettext(’this is to be translated’));

There is also an ngettext interface:

var object_cnt = 1 // or 0, or 2, or 3, ...
s = ngettext(’literal for the singular case’,

’literal for the plural case’, object_cnt);

and even a string interpolation function:

function interpolate(fmt, obj, named);

The interpolation syntax is borrowed from Python, so the interpolate function supports both positional and named
interpolation:

• Positional interpolation: obj contains a JavaScript Array object whose elements values are then sequentially
interpolated in their corresponding fmt placeholders in the same order they appear. For example:

fmts = ngettext(’There is %s object. Remaining: %s’,
’There are %s objects. Remaining: %s’, 11);

s = interpolate(fmts, [11, 20]);
// s is ’There are 11 objects. Remaining: 20’

• Named interpolation: This mode is selected by passing the optional boolean named parameter as true. obj
contains a JavaScript object or associative array. For example:

d = {
count: 10,
total: 50

};

266 Chapter 3. Using Django

Django Documentation, Release 1.2.7

fmts = ngettext(’Total: %(total)s, there is %(count)s object’,
’there are %(count)s of a total of %(total)s objects’, d.count);
s = interpolate(fmts, d, true);

You shouldn’t go over the top with string interpolation, though: this is still JavaScript, so the code has to make repeated
regular-expression substitutions. This isn’t as fast as string interpolation in Python, so keep it to those cases where you
really need it (for example, in conjunction with ngettext to produce proper pluralizations).

The set_language redirect view

set_language(request)

As a convenience, Django comes with a view, django.views.i18n.set_language(), that sets a user’s lan-
guage preference and redirects back to the previous page.

Activate this view by adding the following line to your URLconf:

(r’^i18n/’, include(’django.conf.urls.i18n’)),

(Note that this example makes the view available at /i18n/setlang/.)

The view expects to be called via the POST method, with a language parameter set in request. If session support is
enabled, the view saves the language choice in the user’s session. Otherwise, it saves the language choice in a cookie
that is by default named django_language. (The name can be changed through the LANGUAGE_COOKIE_NAME
setting.)

After setting the language choice, Django redirects the user, following this algorithm:

• Django looks for a next parameter in the POST data.

• If that doesn’t exist, or is empty, Django tries the URL in the Referrer header.

• If that’s empty – say, if a user’s browser suppresses that header – then the user will be redirected to / (the site
root) as a fallback.

Here’s example HTML template code:

<form action="/i18n/setlang/" method="post">
{% csrf_token %}
<input name="next" type="hidden" value="/next/page/" />
<select name="language">
{% for lang in LANGUAGES %}
<option value="{{ lang.0 }}">{{ lang.1 }}</option>
{% endfor %}
</select>
<input type="submit" value="Go" />
</form>

Localization

This document covers two localization-related topics: Creating language files and locale aware date, time and numbers
input/output in forms

See Also:

The Using internationalization in your own projects document included with the Django HOW-TO documents collec-
tion.

3.13. Internationalization and localization 267

Django Documentation, Release 1.2.7

How to create language files

Once the string literals of an application have been tagged for later translation, the translation themselves need to be
written (or obtained). Here’s how that works.

Locale restrictions

Django does not support localizing your application into a locale for which Django itself has not been translated. In
this case, it will ignore your translation files. If you were to try this and Django supported it, you would inevitably see
a mixture of translated strings (from your application) and English strings (from Django itself). If you want to support
a locale for your application that is not already part of Django, you’ll need to make at least a minimal translation of
the Django core.

A good starting point is to copy the Django English .po file and to translate at least some translation strings.

Message files The first step is to create a message file for a new language. A message file is a plain-text file,
representing a single language, that contains all available translation strings and how they should be represented in the
given language. Message files have a .po file extension.

Django comes with a tool, django-admin.py makemessages, that automates the creation and upkeep of these
files.

A note to Django veterans

The old tool bin/make-messages.py has been moved to the command django-admin.py makemessages
to provide consistency throughout Django.

Gettext utilities

The makemessages command (and compilemessages discussed later) use commands from the GNU gettext
toolset: xgettext, msgfmt, msgmerge and msguniq. Changed in version 1.2: Please, see the release notes The
minimum version of the gettext utilities supported is 0.15.

To create or update a message file, run this command:

django-admin.py makemessages -l de

...where de is the language code for the message file you want to create. The language code, in this case, is in locale
format. For example, it’s pt_BR for Brazilian Portuguese and de_AT for Austrian German.

The script should be run from one of two places:

• The root directory of your Django project.

• The root directory of your Django app.

The script runs over your project source tree or your application source tree and pulls out all strings marked for trans-
lation. It creates (or updates) a message file in the directory locale/LANG/LC_MESSAGES. In the de example,
the file will be locale/de/LC_MESSAGES/django.po.

By default django-admin.py makemessages examines every file that has the .html file extension. In case
you want to override that default, use the --extension or -e option to specify the file extensions to examine:

django-admin.py makemessages -l de -e txt

Separate multiple extensions with commas and/or use -e or --extension multiple times:

268 Chapter 3. Using Django

Django Documentation, Release 1.2.7

django-admin.py makemessages -l de -e html,txt -e xml

When creating message files from JavaScript source code you need to use the special ‘djangojs’ domain, not -e js.

No gettext?

If you don’t have the gettext utilities installed, django-admin.py makemessages will create empty
files. If that’s the case, either install the gettext utilities or just copy the English message file
(locale/en/LC_MESSAGES/django.po) if available and use it as a starting point; it’s just an empty translation
file.

Working on Windows?

If you’re using Windows and need to install the GNU gettext utilities so django-admin makemessages works
see gettext on Windows for more information.

The format of .po files is straightforward. Each .po file contains a small bit of metadata, such as the translation
maintainer’s contact information, but the bulk of the file is a list of messages – simple mappings between translation
strings and the actual translated text for the particular language.

For example, if your Django app contained a translation string for the text "Welcome to my site.", like so:

_("Welcome to my site.")

...then django-admin.py makemessages will have created a .po file containing the following snippet – a
message:

#: path/to/python/module.py:23
msgid "Welcome to my site."
msgstr ""

A quick explanation:

• msgid is the translation string, which appears in the source. Don’t change it.

• msgstr is where you put the language-specific translation. It starts out empty, so it’s your responsibility to
change it. Make sure you keep the quotes around your translation.

• As a convenience, each message includes, in the form of a comment line prefixed with # and located above the
msgid line, the filename and line number from which the translation string was gleaned.

Long messages are a special case. There, the first string directly after the msgstr (or msgid) is an empty string. Then
the content itself will be written over the next few lines as one string per line. Those strings are directly concatenated.
Don’t forget trailing spaces within the strings; otherwise, they’ll be tacked together without whitespace!

Mind your charset

When creating a PO file with your favorite text editor, first edit the charset line (search for "CHARSET") and set it to
the charset you’ll be using to edit the content. Due to the way the gettext tools work internally and because we want
to allow non-ASCII source strings in Django’s core and your applications, you must use UTF-8 as the encoding for
your PO file. This means that everybody will be using the same encoding, which is important when Django processes
the PO files.

To reexamine all source code and templates for new translation strings and update all message files for all languages,
run this:

3.13. Internationalization and localization 269

Django Documentation, Release 1.2.7

django-admin.py makemessages -a

Compiling message files After you create your message file – and each time you make changes to it – you’ll
need to compile it into a more efficient form, for use by gettext. Do this with the django-admin.py
compilemessages utility.

This tool runs over all available .po files and creates .mo files, which are binary files optimized for use by gettext.
In the same directory from which you ran django-admin.py makemessages, run django-admin.py
compilemessages like this:

django-admin.py compilemessages

That’s it. Your translations are ready for use.

A note to Django veterans

The old tool bin/compile-messages.py has been moved to the command django-admin.py
compilemessages to provide consistency throughout Django.

Working on Windows?

If you’re using Windows and need to install the GNU gettext utilities so django-admin compilemessages
works see gettext on Windows for more information.

.po files: Encoding and BOM usage.

Django only supports .po files encoded in UTF-8 and without any BOM (Byte Order Mark) so if your text editor
adds such marks to the beginning of files by default then you will need to reconfigure it.

Creating message files from JavaScript source code

You create and update the message files the same way as the other Django message files – with the
django-admin.py makemessages tool. The only difference is you need to provide a -d djangojs pa-
rameter, like this:

django-admin.py makemessages -d djangojs -l de

This would create or update the message file for JavaScript for German. After updating message files, just run
django-admin.py compilemessages the same way as you do with normal Django message files.

gettext on Windows

This is only needed for people who either want to extract message IDs or compile message files (.po). Translation
work itself just involves editing existing files of this type, but if you want to create your own message files, or want to
test or compile a changed message file, you will need the gettext utilities:

• Download the following zip files from the GNOME servers http://ftp.gnome.org/pub/gnome/binaries/win32/dependencies/
or from one of its mirrors

– gettext-runtime-X.zip

– gettext-tools-X.zip

270 Chapter 3. Using Django

http://ftp.gnome.org/pub/gnome/binaries/win32/dependencies/
http://ftp.gnome.org/pub/GNOME/MIRRORS

Django Documentation, Release 1.2.7

X is the version number, we are requiring 0.15 or higher.

• Extract the contents of the bin\ directories in both files to the same folder on your system (i.e. C:\Program
Files\gettext-utils)

• Update the system PATH:

– Control Panel > System > Advanced > Environment Variables.

– In the System variables list, click Path, click Edit.

– Add ;C:\Program Files\gettext-utils\bin at the end of the Variable value field.

You may also use gettext binaries you have obtained elsewhere, so long as the xgettext --version com-
mand works properly. Do not attempt to use Django translation utilities with a gettext package if the command
xgettext --version entered at a Windows command prompt causes a popup window saying “xgettext.exe has
generated errors and will be closed by Windows”.

Format localization

New in version 1.2: Please, see the release notes Django’s formatting system is disabled by default. To enable it, it’s
necessary to set USE_L10N = True in your settings file.

Note: The default settings.py file created by django-admin.py startproject includes USE_L10N =
True for convenience.

When using Django’s formatting system, dates and numbers on templates will be displayed using the format specified
for the current locale. Two users accessing the same content, but in different language, will see date and number fields
formatted in different ways, depending on the format for their current locale.

Django will also use localized formats when parsing data in forms. That means Django uses different formats for
different locales when guessing the format used by the user when inputting data on forms.

Note: Django uses different formats for displaying data to those it uses for parsing data. Most notably, the formats for
parsing dates can’t use the %a (abbreviated weekday name), %A (full weekday name), %b (abbreviated month name),
%B (full month name), or %p (AM/PM).

To enable a form field to localize input and output data simply use its localize argument:

class CashRegisterForm(forms.Form):
product = forms.CharField()
revenue = forms.DecimalField(max_digits=4, decimal_places=2, localize=True)

Creating custom format files Django provides format definitions for many locales, but sometimes you might want
to create your own, because a format files doesn’t exist for your locale, or because you want to overwrite some of the
values.

To use custom formats, first thing to do, is to specify the path where you’ll place format files. To do that, just set your
FORMAT_MODULE_PATH setting to the path (in the format ’foo.bar.baz) where format files will exists.

Files are not placed directly in this directory, but in a directory named as the locale, and must be named formats.py.

To customize the English formats, a structure like this would be needed:

3.13. Internationalization and localization 271

Django Documentation, Release 1.2.7

mysite/
formats/

__init__.py
en/

__init__.py
formats.py

where formats.py contains custom format definitions. For example:

THOUSAND_SEPARATOR = ’ ’

to use a space as a thousand separator, instead of the default for English, a comma.

Deployment of translations

If you don’t need internationalization

Django’s internationalization hooks are on by default, and that means there’s a bit of i18n-related overhead in certain
places of the framework. If you don’t use internationalization, you should take the two seconds to set USE_I18N =
False in your settings file. If USE_I18N is set to False, then Django will make some optimizations so as not to
load the internationalization machinery.

You’ll probably also want to remove ’django.core.context_processors.i18n’ from your
TEMPLATE_CONTEXT_PROCESSORS setting.

Note: There is also an independent but related USE_L10N setting that controls if Django should implement format
localization.

If USE_L10N is set to True, Django will handle numbers times, and dates in the format of the current locale. That
includes representation of these field types on templates and allowed input formats for dates, times on model forms.

See Format localization for more details.

If you do need internationalization

How Django discovers language preference Once you’ve prepared your translations – or, if you just want to use
the translations that come with Django – you’ll just need to activate translation for your app.

Behind the scenes, Django has a very flexible model of deciding which language should be used – installation-wide,
for a particular user, or both.

To set an installation-wide language preference, set LANGUAGE_CODE. Django uses this language as the default
translation – the final attempt if no other translator finds a translation.

If all you want to do is run Django with your native language, and a language file is available for it, all you need to do
is set LANGUAGE_CODE.

If you want to let each individual user specify which language he or she prefers, use LocaleMiddleware.
LocaleMiddleware enables language selection based on data from the request. It customizes content for each
user.

To use LocaleMiddleware, add ’django.middleware.locale.LocaleMiddleware’ to your
MIDDLEWARE_CLASSES setting. Because middleware order matters, you should follow these guidelines:

• Make sure it’s one of the first middlewares installed.

• It should come after SessionMiddleware, because LocaleMiddleware makes use of session data.

272 Chapter 3. Using Django

Django Documentation, Release 1.2.7

• If you use CacheMiddleware, put LocaleMiddleware after it.

For example, your MIDDLEWARE_CLASSES might look like this:

MIDDLEWARE_CLASSES = (
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.middleware.locale.LocaleMiddleware’,
’django.middleware.common.CommonMiddleware’,

)

(For more on middleware, see the middleware documentation.)

LocaleMiddleware tries to determine the user’s language preference by following this algorithm:

• First, it looks for a django_language key in the current user’s session.

• Failing that, it looks for a cookie.

The name of the cookie used is set by the LANGUAGE_COOKIE_NAME setting. (The default name is
django_language.)

• Failing that, it looks at the Accept-Language HTTP header. This header is sent by your browser and tells
the server which language(s) you prefer, in order by priority. Django tries each language in the header until it
finds one with available translations.

• Failing that, it uses the global LANGUAGE_CODE setting.

Notes:

• In each of these places, the language preference is expected to be in the standard language format, as a string.
For example, Brazilian Portuguese is pt-br.

• If a base language is available but the sublanguage specified is not, Django uses the base language. For example,
if a user specifies de-at (Austrian German) but Django only has de available, Django uses de.

• Only languages listed in the LANGUAGES setting can be selected. If you want to restrict the language selection to
a subset of provided languages (because your application doesn’t provide all those languages), set LANGUAGES
to a list of languages. For example:

LANGUAGES = (
(’de’, _(’German’)),
(’en’, _(’English’)),

)

This example restricts languages that are available for automatic selection to German and English (and any
sublanguage, like de-ch or en-us).

• If you define a custom LANGUAGES setting, as explained in the previous bullet, it’s OK to mark
the languages as translation strings – but use a “dummy” ugettext() function, not the one in
django.utils.translation. You should never import django.utils.translation from within
your settings file, because that module in itself depends on the settings, and that would cause a circular import.

The solution is to use a “dummy” ugettext() function. Here’s a sample settings file:

ugettext = lambda s: s

LANGUAGES = (
(’de’, ugettext(’German’)),
(’en’, ugettext(’English’)),

)

3.13. Internationalization and localization 273

Django Documentation, Release 1.2.7

With this arrangement, django-admin.py makemessages will still find and mark these strings for trans-
lation, but the translation won’t happen at runtime – so you’ll have to remember to wrap the languages in the
real ugettext() in any code that uses LANGUAGES at runtime.

• The LocaleMiddleware can only select languages for which there is a Django-provided base translation.
If you want to provide translations for your application that aren’t already in the set of translations in Django’s
source tree, you’ll want to provide at least a basic one as described in the Locale restrictions note.

Once LocaleMiddleware determines the user’s preference, it makes this preference available as
request.LANGUAGE_CODE for each HttpRequest. Feel free to read this value in your view code. Here’s a
simple example:

def hello_world(request, count):
if request.LANGUAGE_CODE == ’de-at’:

return HttpResponse("You prefer to read Austrian German.")
else:

return HttpResponse("You prefer to read another language.")

Note that, with static (middleware-less) translation, the language is in settings.LANGUAGE_CODE, while with
dynamic (middleware) translation, it’s in request.LANGUAGE_CODE.

How Django discovers translations As described in Using internationalization in your own projects, at runtime,
Django looks for translations by following this algorithm:

• First, it looks for a locale directory in the directory containing your settings file.

• Second, it looks for a locale directory in the project directory.

• Third, it looks for a locale directory in each of the installed apps. It does this in the reverse order of IN-
STALLED_APPS

• Finally, it checks the Django-provided base translation in django/conf/locale.

In all cases the name of the directory containing the translation is expected to be named using locale name notation.
E.g. de, pt_BR, es_AR, etc.

For more general information about the topic, see the GNU gettext documentation and the Wikipedia article.

3.13.2 Glossary

First lets define some terms that will help us to handle a common language:

locale name A locale name, either a language specification of the form ll or a combined language and country
specification of the form ll_CC. Examples: it, de_AT, es, pt_BR. Note the underscore in some of them
and the case of the part located to its right.

language code Represents the name of a language. Browsers send the names of the languages they accept in the
Accept-Language HTTP header using this format. Examples: it, de-at, es, pt-br. Note the - separa-
tor.

message file A message file is a plain-text file, representing a single language, that contains all available translation
strings and how they should be represented in the given language. Message files have a .po file extension.

translation string A literal that can be translated.

3.13.3 Specialties of Django translation

Django’s translation machinery uses the standard gettext module that comes with Python. If you know gettext,
you might note these specialties in the way Django does translation:

274 Chapter 3. Using Django

http://www.gnu.org/software/gettext/manual/gettext.html#Concepts
http://en.wikipedia.org/wiki/Internationalization_and_localization

Django Documentation, Release 1.2.7

• The string domain is django or djangojs. This string domain is used to differentiate between different pro-
grams that store their data in a common message-file library (usually /usr/share/locale/). The django
domain is used for python and template translation strings and is loaded into the global translation catalogs.
The djangojs domain is only used for JavaScript translation catalogs to make sure that those are as small as
possible.

• Django doesn’t use xgettext alone. It uses Python wrappers around xgettext and msgfmt. This is mostly
for convenience.

Django technical message IDs

Changed in version 1.2: Starting with Django 1.2, technical message IDs are being replaced by Format localization
Django uses technical message IDs to translate date formats and time formats. Technical message IDs are translation
strings and can be easily recognized; they’re all upper case. You don’t translate the message ID as with other translation
strings, you provide the correct local variant on the provided English value. The format is identical to the format strings
used by the now template tag.

For example, with DATETIME_FORMAT (or DATE_FORMAT or TIME_FORMAT), this would be the format string
that you want to use in your language. A Django contributor localizing it to Spanish probably would provide a "j N
Y P" “translation” for it in the relevant django.po file:

msgid "DATETIME_FORMAT"
msgstr "j N Y P"

3.14 Pagination

Django provides a few classes that help you manage paginated data – that is, data that’s split across several pages, with
“Previous/Next” links. These classes live in django/core/paginator.py.

3.14.1 Example

Give Paginator a list of objects, plus the number of items you’d like to have on each page, and it gives you methods
for accessing the items for each page:

>>> from django.core.paginator import Paginator
>>> objects = [’john’, ’paul’, ’george’, ’ringo’]
>>> p = Paginator(objects, 2)

>>> p.count
4
>>> p.num_pages
2
>>> p.page_range
[1, 2]

>>> page1 = p.page(1)
>>> page1
<Page 1 of 2>
>>> page1.object_list
[’john’, ’paul’]

>>> page2 = p.page(2)
>>> page2.object_list
[’george’, ’ringo’]

3.14. Pagination 275

Django Documentation, Release 1.2.7

>>> page2.has_next()
False
>>> page2.has_previous()
True
>>> page2.has_other_pages()
True
>>> page2.next_page_number()
3
>>> page2.previous_page_number()
1
>>> page2.start_index() # The 1-based index of the first item on this page
3
>>> page2.end_index() # The 1-based index of the last item on this page
4

>>> p.page(0)
Traceback (most recent call last):
...
EmptyPage: That page number is less than 1
>>> p.page(3)
Traceback (most recent call last):
...
EmptyPage: That page contains no results

Note: Note that you can give Paginator a list/tuple, a Django QuerySet, or any other object with a count()
or __len__() method. When determining the number of objects contained in the passed object, Paginator will
first try calling count(), then fallback to using len() if the passed object has no count() method. This allows
objects such as Django’s QuerySet to use a more efficient count() method when available.

3.14.2 Using Paginator in a view

Here’s a slightly more complex example using Paginator in a view to paginate a queryset. We give both the
view and the accompanying template to show how you can display the results. This example assumes you have a
Contacts model that has already been imported.

The view function looks like this:

from django.core.paginator import Paginator, InvalidPage, EmptyPage

def listing(request):
contact_list = Contacts.objects.all()
paginator = Paginator(contact_list, 25) # Show 25 contacts per page

Make sure page request is an int. If not, deliver first page.
try:

page = int(request.GET.get(’page’, ’1’))
except ValueError:

page = 1

If page request (9999) is out of range, deliver last page of results.
try:

contacts = paginator.page(page)
except (EmptyPage, InvalidPage):

contacts = paginator.page(paginator.num_pages)

276 Chapter 3. Using Django

Django Documentation, Release 1.2.7

return render_to_response(’list.html’, {"contacts": contacts})

In the template list.html, you’ll want to include navigation between pages along with any interesting information
from the objects themselves:

{% for contact in contacts.object_list %}
{# Each "contact" is a Contact model object. #}
{{ contact.full_name|upper }}

...

{% endfor %}

<div class="pagination">

{% if contacts.has_previous %}
previous

{% endif %}

Page {{ contacts.number }} of {{ contacts.paginator.num_pages }}.

{% if contacts.has_next %}
next

{% endif %}

</div>

3.14.3 Paginator objects

The Paginator class has this constructor:

class Paginator(object_list, per_page, orphans=0, allow_empty_first_page=True)

Required arguments

object_list A list, tuple, Django QuerySet, or other sliceable object with a count() or __len__()method.

per_page The maximum number of items to include on a page, not including orphans (see the orphans optional
argument below).

Optional arguments

orphans The minimum number of items allowed on the last page, defaults to zero. Use this when you don’t want
to have a last page with very few items. If the last page would normally have a number of items less than or
equal to orphans, then those items will be added to the previous page (which becomes the last page) instead
of leaving the items on a page by themselves. For example, with 23 items, per_page=10, and orphans=3,
there will be two pages; the first page with 10 items and the second (and last) page with 13 items.

allow_empty_first_page Whether or not the first page is allowed to be empty. If False and object_list
is empty, then an EmptyPage error will be raised.

3.14. Pagination 277

Django Documentation, Release 1.2.7

Methods

Paginator.page(number)
Returns a Page object with the given 1-based index. Raises InvalidPage if the given page number doesn’t
exist.

Attributes

Paginator.count
The total number of objects, across all pages.

Note: When determining the number of objects contained in object_list, Paginatorwill first try calling
object_list.count(). If object_list has no count() method, then Paginator will fallback to
using object_list.__len__(). This allows objects, such as Django’s QuerySet, to use a more efficient
count() method when available.

Paginator.num_pages
The total number of pages.

Paginator.page_range
A 1-based range of page numbers, e.g., [1, 2, 3, 4].

3.14.4 InvalidPage exceptions

The page()method raises InvalidPage if the requested page is invalid (i.e., not an integer) or contains no objects.
Generally, it’s enough to trap the InvalidPage exception, but if you’d like more granularity, you can trap either of
the following exceptions:

PageNotAnInteger Raised when page() is given a value that isn’t an integer.

EmptyPage Raised when page() is given a valid value but no objects exist on that page.

Both of the exceptions are subclasses of InvalidPage, so you can handle them both with a simple except
InvalidPage.

3.14.5 Page objects

class Page(object_list, number, paginator)

You usually won’t construct Pages by hand – you’ll get them using Paginator.page().

Methods

Page.has_next()
Returns True if there’s a next page.

Page.has_previous()
Returns True if there’s a previous page.

Page.has_other_pages()
Returns True if there’s a next or previous page.

278 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Page.next_page_number()
Returns the next page number. Note that this is “dumb” and will return the next page number regardless of
whether a subsequent page exists.

Page.previous_page_number()
Returns the previous page number. Note that this is “dumb” and will return the previous page number regardless
of whether a previous page exists.

Page.start_index()
Returns the 1-based index of the first object on the page, relative to all of the objects in the paginator’s list.
For example, when paginating a list of 5 objects with 2 objects per page, the second page’s start_index()
would return 3.

Page.end_index()
Returns the 1-based index of the last object on the page, relative to all of the objects in the paginator’s list. For
example, when paginating a list of 5 objects with 2 objects per page, the second page’s end_index() would
return 4.

Attributes

Page.object_list
The list of objects on this page.

Page.number
The 1-based page number for this page.

Page.paginator
The associated Paginator object.

3.15 Serializing Django objects

Django’s serialization framework provides a mechanism for “translating” Django objects into other formats. Usually
these other formats will be text-based and used for sending Django objects over a wire, but it’s possible for a serializer
to handle any format (text-based or not).

See Also:

If you just want to get some data from your tables into a serialized form, you could use the dumpdata management
command.

3.15.1 Serializing data

At the highest level, serializing data is a very simple operation:

from django.core import serializers
data = serializers.serialize("xml", SomeModel.objects.all())

The arguments to the serialize function are the format to serialize the data to (see Serialization formats) and a
QuerySet to serialize. (Actually, the second argument can be any iterator that yields Django objects, but it’ll almost
always be a QuerySet).

You can also use a serializer object directly:

3.15. Serializing Django objects 279

Django Documentation, Release 1.2.7

XMLSerializer = serializers.get_serializer("xml")
xml_serializer = XMLSerializer()
xml_serializer.serialize(queryset)
data = xml_serializer.getvalue()

This is useful if you want to serialize data directly to a file-like object (which includes an HttpResponse):

out = open("file.xml", "w")
xml_serializer.serialize(SomeModel.objects.all(), stream=out)

Subset of fields

If you only want a subset of fields to be serialized, you can specify a fields argument to the serializer:

from django.core import serializers
data = serializers.serialize(’xml’, SomeModel.objects.all(), fields=(’name’,’size’))

In this example, only the name and size attributes of each model will be serialized.

Note: Depending on your model, you may find that it is not possible to deserialize a model that only serializes a
subset of its fields. If a serialized object doesn’t specify all the fields that are required by a model, the deserializer will
not be able to save deserialized instances.

Inherited Models

If you have a model that is defined using an abstract base class, you don’t have to do anything special to serialize that
model. Just call the serializer on the object (or objects) that you want to serialize, and the output will be a complete
representation of the serialized object.

However, if you have a model that uses multi-table inheritance, you also need to serialize all of the base classes for the
model. This is because only the fields that are locally defined on the model will be serialized. For example, consider
the following models:

class Place(models.Model):
name = models.CharField(max_length=50)

class Restaurant(Place):
serves_hot_dogs = models.BooleanField()

If you only serialize the Restaurant model:

data = serializers.serialize(’xml’, Restaurant.objects.all())

the fields on the serialized output will only contain the serves_hot_dogs attribute. The name attribute of the base class
will be ignored.

In order to fully serialize your Restaurant instances, you will need to serialize the Place models as well:

all_objects = list(Restaurant.objects.all()) + list(Place.objects.all())
data = serializers.serialize(’xml’, all_objects)

3.15.2 Deserializing data

Deserializing data is also a fairly simple operation:

280 Chapter 3. Using Django

Django Documentation, Release 1.2.7

for obj in serializers.deserialize("xml", data):
do_something_with(obj)

As you can see, the deserialize function takes the same format argument as serialize, a string or stream of
data, and returns an iterator.

However, here it gets slightly complicated. The objects returned by the deserialize iterator aren’t simple Django
objects. Instead, they are special DeserializedObject instances that wrap a created – but unsaved – object and
any associated relationship data.

Calling DeserializedObject.save() saves the object to the database.

This ensures that deserializing is a non-destructive operation even if the data in your serialized representation doesn’t
match what’s currently in the database. Usually, working with these DeserializedObject instances looks some-
thing like:

for deserialized_object in serializers.deserialize("xml", data):
if object_should_be_saved(deserialized_object):

deserialized_object.save()

In other words, the usual use is to examine the deserialized objects to make sure that they are “appropriate” for saving
before doing so. Of course, if you trust your data source you could just save the object and move on.

The Django object itself can be inspected as deserialized_object.object.

3.15.3 Serialization formats

Django supports a number of serialization formats, some of which require you to install third-party Python modules:

Identi-
fier

Information

xml Serializes to and from a simple XML dialect.
json Serializes to and from JSON (using a version of simplejson bundled with Django).
yaml Serializes to YAML (YAML Ain’t a Markup Language). This serializer is only available if PyYAML

is installed.

Notes for specific serialization formats

json

If you’re using UTF-8 (or any other non-ASCII encoding) data with the JSON serializer, you must pass
ensure_ascii=False as a parameter to the serialize() call. Otherwise, the output won’t be encoded cor-
rectly.

For example:

json_serializer = serializers.get_serializer("json")()
json_serializer.serialize(queryset, ensure_ascii=False, stream=response)

The Django source code includes the simplejson module. However, if you’re using Python 2.6 or later (which includes
a builtin version of the module), Django will use the builtin jsonmodule automatically. If you have a system installed
version that includes the C-based speedup extension, or your system version is more recent than the version shipped
with Django (currently, 2.0.7), the system version will be used instead of the version included with Django.

Be aware that if you’re serializing using that module directly, not all Django output can be passed unmodified to
simplejson. In particular, lazy translation objects need a special encoder written for them. Something like this will
work:

3.15. Serializing Django objects 281

http://json.org/
http://undefined.org/python/#simplejson
http://www.pyyaml.org/
http://undefined.org/python/#simplejson
http://svn.red-bean.com/bob/simplejson/tags/simplejson-1.7/docs/index.html

Django Documentation, Release 1.2.7

from django.utils.functional import Promise
from django.utils.encoding import force_unicode

class LazyEncoder(simplejson.JSONEncoder):
def default(self, obj):

if isinstance(obj, Promise):
return force_unicode(obj)

return super(LazyEncoder, self).default(obj)

3.15.4 Natural keys

New in version 1.2: Please, see the release notes The default serialization strategy for foreign keys and many-to-many
relations is to serialize the value of the primary key(s) of the objects in the relation. This strategy works well for most
types of object, but it can cause difficulty in some circumstances.

Consider the case of a list of objects that have foreign key on ContentType. If you’re going to serialize an object
that refers to a content type, you need to have a way to refer to that content type. Content Types are automatically
created by Django as part of the database synchronization process, so you don’t need to include content types in a
fixture or other serialized data. As a result, the primary key of any given content type isn’t easy to predict - it will
depend on how and when syncdb was executed to create the content types.

There is also the matter of convenience. An integer id isn’t always the most convenient way to refer to an object;
sometimes, a more natural reference would be helpful.

It is for these reasons that Django provides natural keys. A natural key is a tuple of values that can be used to uniquely
identify an object instance without using the primary key value.

Deserialization of natural keys

Consider the following two models:

from django.db import models

class Person(models.Model):
first_name = models.CharField(max_length=100)
last_name = models.CharField(max_length=100)

birthdate = models.DateField()

class Meta:
unique_together = ((’first_name’, ’last_name’),)

class Book(models.Model):
name = models.CharField(max_length=100)
author = models.ForeignKey(Person)

Ordinarily, serialized data for Book would use an integer to refer to the author. For example, in JSON, a Book might
be serialized as:
...
{

"pk": 1,
"model": "store.book",
"fields": {

"name": "Mostly Harmless",
"author": 42

}

282 Chapter 3. Using Django

Django Documentation, Release 1.2.7

}
...

This isn’t a particularly natural way to refer to an author. It requires that you know the primary key value for the
author; it also requires that this primary key value is stable and predictable.

However, if we add natural key handling to Person, the fixture becomes much more humane. To add natural key
handling, you define a default Manager for Person with a get_by_natural_key() method. In the case of a
Person, a good natural key might be the pair of first and last name:

from django.db import models

class PersonManager(models.Manager):
def get_by_natural_key(self, first_name, last_name):

return self.get(first_name=first_name, last_name=last_name)

class Person(models.Model):
objects = PersonManager()

first_name = models.CharField(max_length=100)
last_name = models.CharField(max_length=100)

birthdate = models.DateField()

class Meta:
unique_together = ((’first_name’, ’last_name’),)

Now books can use that natural key to refer to Person objects:
...
{

"pk": 1,
"model": "store.book",
"fields": {

"name": "Mostly Harmless",
"author": ["Douglas", "Adams"]

}
}
...

When you try to load this serialized data, Django will use the get_by_natural_key() method to resolve
["Douglas", "Adams"] into the primary key of an actual Person object.

Note: Whatever fields you use for a natural key must be able to uniquely identify an object. This will usually mean
that your model will have a uniqueness clause (either unique=True on a single field, or unique_together over
multiple fields) for the field or fields in your natural key. However, uniqueness doesn’t need to be enforced at the
database level. If you are certain that a set of fields will be effectively unique, you can still use those fields as a natural
key.

Serialization of natural keys

So how do you get Django to emit a natural key when serializing an object? Firstly, you need to add another method
– this time to the model itself:

class Person(models.Model):
objects = PersonManager()

3.15. Serializing Django objects 283

Django Documentation, Release 1.2.7

first_name = models.CharField(max_length=100)
last_name = models.CharField(max_length=100)

birthdate = models.DateField()

def natural_key(self):
return (self.first_name, self.last_name)

class Meta:
unique_together = ((’first_name’, ’last_name’),)

That method should always return a natural key tuple – in this example, (first name, last name). Then,
when you call serializers.serialize(), you provide a use_natural_keys=True argument:

>>> serializers.serialize(’json’, [book1, book2], indent=2, use_natural_keys=True)

When use_natural_keys=True is specified, Django will use the natural_key() method to serialize any
reference to objects of the type that defines the method.

If you are using dumpdata to generate serialized data, you use the –natural command line flag to generate natural
keys.

Note: You don’t need to define both natural_key() and get_by_natural_key(). If you don’t want Django
to output natural keys during serialization, but you want to retain the ability to load natural keys, then you can opt to
not implement the natural_key() method.

Conversely, if (for some strange reason) you want Django to output natural keys during serialization, but not be able
to load those key values, just don’t define the get_by_natural_key() method.

Dependencies during serialization

Since natural keys rely on database lookups to resolve references, it is important that data exists before it is referenced.
You can’t make a forward reference with natural keys - the data you are referencing must exist before you include a
natural key reference to that data.

To accommodate this limitation, calls to dumpdata that use the --natural option will serialize any model with a
natural_key() method before it serializes normal key objects.

However, this may not always be enough. If your natural key refers to another object (by using a foreign key or natural
key to another object as part of a natural key), then you need to be able to ensure that the objects on which a natural
key depends occur in the serialized data before the natural key requires them.

To control this ordering, you can define dependencies on your natural_key() methods. You do this by setting a
dependencies attribute on the natural_key() method itself.

For example, consider the Permission model in contrib.auth. The following is a simplified version of the
Permission model:

class Permission(models.Model):
name = models.CharField(max_length=50)
content_type = models.ForeignKey(ContentType)
codename = models.CharField(max_length=100)
...
def natural_key(self):

return (self.codename,) + self.content_type.natural_key()

284 Chapter 3. Using Django

Django Documentation, Release 1.2.7

The natural key for a Permission is a combination of the codename for the Permission, and the ContentType
to which the Permission applies. This means that ContentType must be serialized before Permission. To
define this dependency, we add one extra line:

class Permission(models.Model):
...
def natural_key(self):

return (self.codename,) + self.content_type.natural_key()
natural_key.dependencies = [’contenttypes.contenttype’]

This definition ensures that ContentType models are serialized before Permission models. In turn, any object
referencing Permission will be serialized after both ContentType and Permission.

3.16 Django settings

A Django settings file contains all the configuration of your Django installation. This document explains how settings
work and which settings are available.

3.16.1 The basics

A settings file is just a Python module with module-level variables.

Here are a couple of example settings:

DEBUG = False
DEFAULT_FROM_EMAIL = ’webmaster@example.com’
TEMPLATE_DIRS = (’/home/templates/mike’, ’/home/templates/john’)

Because a settings file is a Python module, the following apply:

• It doesn’t allow for Python syntax errors.

• It can assign settings dynamically using normal Python syntax. For example:

MY_SETTING = [str(i) for i in range(30)]

• It can import values from other settings files.

3.16.2 Designating the settings

When you use Django, you have to tell it which settings you’re using. Do this by using an environment variable,
DJANGO_SETTINGS_MODULE.

The value of DJANGO_SETTINGS_MODULE should be in Python path syntax, e.g. mysite.settings. Note that
the settings module should be on the Python import search path.

The django-admin.py utility

When using django-admin.py, you can either set the environment variable once, or explicitly pass in the settings
module each time you run the utility.

Example (Unix Bash shell):

export DJANGO_SETTINGS_MODULE=mysite.settings
django-admin.py runserver

3.16. Django settings 285

http://diveintopython.org/getting_to_know_python/everything_is_an_object.html

Django Documentation, Release 1.2.7

Example (Windows shell):

set DJANGO_SETTINGS_MODULE=mysite.settings
django-admin.py runserver

Use the --settings command-line argument to specify the settings manually:

django-admin.py runserver --settings=mysite.settings

On the server (mod_python)

In your live server environment, you’ll need to tell Apache/mod_python which settings file to use. Do that with
SetEnv:

<Location "/mysite/">
SetHandler python-program
PythonHandler django.core.handlers.modpython
SetEnv DJANGO_SETTINGS_MODULE mysite.settings

</Location>

Read the Django mod_python documentation for more information.

3.16.3 Default settings

A Django settings file doesn’t have to define any settings if it doesn’t need to. Each setting has a sensible default value.
These defaults live in the module django/conf/global_settings.py.

Here’s the algorithm Django uses in compiling settings:

• Load settings from global_settings.py.

• Load settings from the specified settings file, overriding the global settings as necessary.

Note that a settings file should not import from global_settings, because that’s redundant.

Seeing which settings you’ve changed

There’s an easy way to view which of your settings deviate from the default settings. The command python
manage.py diffsettings displays differences between the current settings file and Django’s default settings.

For more, see the diffsettings documentation.

3.16.4 Using settings in Python code

In your Django apps, use settings by importing the object django.conf.settings. Example:

from django.conf import settings

if settings.DEBUG:
Do something

Note that django.conf.settings isn’t a module – it’s an object. So importing individual settings is not possible:

from django.conf.settings import DEBUG # This won’t work.

286 Chapter 3. Using Django

Django Documentation, Release 1.2.7

Also note that your code should not import from either global_settings or your own settings file.
django.conf.settings abstracts the concepts of default settings and site-specific settings; it presents a single
interface. It also decouples the code that uses settings from the location of your settings.

3.16.5 Altering settings at runtime

You shouldn’t alter settings in your applications at runtime. For example, don’t do this in a view:

from django.conf import settings

settings.DEBUG = True # Don’t do this!

The only place you should assign to settings is in a settings file.

3.16.6 Security

Because a settings file contains sensitive information, such as the database password, you should make every attempt
to limit access to it. For example, change its file permissions so that only you and your Web server’s user can read it.
This is especially important in a shared-hosting environment.

3.16.7 Available settings

For a full list of available settings, see the settings reference.

3.16.8 Creating your own settings

There’s nothing stopping you from creating your own settings, for your own Django apps. Just follow these conven-
tions:

• Setting names are in all uppercase.

• Don’t reinvent an already-existing setting.

For settings that are sequences, Django itself uses tuples, rather than lists, but this is only a convention.

3.16.9 Using settings without setting DJANGO_SETTINGS_MODULE

In some cases, you might want to bypass the DJANGO_SETTINGS_MODULE environment variable. For example, if
you’re using the template system by itself, you likely don’t want to have to set up an environment variable pointing to
a settings module.

In these cases, you can configure Django’s settings manually. Do this by calling:

django.conf.settings.configure(default_settings, **settings)

Example:

from django.conf import settings

settings.configure(DEBUG=True, TEMPLATE_DEBUG=True,
TEMPLATE_DIRS=(’/home/web-apps/myapp’, ’/home/web-apps/base’))

3.16. Django settings 287

Django Documentation, Release 1.2.7

Pass configure() as many keyword arguments as you’d like, with each keyword argument representing a setting
and its value. Each argument name should be all uppercase, with the same name as the settings described above. If a
particular setting is not passed to configure() and is needed at some later point, Django will use the default setting
value.

Configuring Django in this fashion is mostly necessary – and, indeed, recommended – when you’re using a piece of
the framework inside a larger application.

Consequently, when configured via settings.configure(), Django will not make any modifications to the
process environment variables (see the documentation of TIME_ZONE for why this would normally occur). It’s
assumed that you’re already in full control of your environment in these cases.

Custom default settings

If you’d like default values to come from somewhere other than django.conf.global_settings, you can pass
in a module or class that provides the default settings as the default_settings argument (or as the first positional
argument) in the call to configure().

In this example, default settings are taken from myapp_defaults, and the DEBUG setting is set to True, regardless
of its value in myapp_defaults:

from django.conf import settings
from myapp import myapp_defaults

settings.configure(default_settings=myapp_defaults, DEBUG=True)

The following example, which uses myapp_defaults as a positional argument, is equivalent:

settings.configure(myapp_defaults, DEBUG = True)

Normally, you will not need to override the defaults in this fashion. The Django defaults are sufficiently tame that you
can safely use them. Be aware that if you do pass in a new default module, it entirely replaces the Django defaults,
so you must specify a value for every possible setting that might be used in that code you are importing. Check in
django.conf.settings.global_settings for the full list.

Either configure() or DJANGO_SETTINGS_MODULE is required

If you’re not setting the DJANGO_SETTINGS_MODULE environment variable, you must call configure() at some
point before using any code that reads settings.

If you don’t set DJANGO_SETTINGS_MODULE and don’t call configure(), Django will raise an ImportError
exception the first time a setting is accessed.

If you set DJANGO_SETTINGS_MODULE, access settings values somehow, then call configure(), Django will
raise a RuntimeError indicating that settings have already been configured.

Also, it’s an error to call configure() more than once, or to call configure() after any setting has been
accessed.

It boils down to this: Use exactly one of either configure() or DJANGO_SETTINGS_MODULE. Not both, and
not neither.

3.17 Signals

Django includes a “signal dispatcher” which helps allow decoupled applications get notified when actions occur else-
where in the framework. In a nutshell, signals allow certain senders to notify a set of receivers that some action has

288 Chapter 3. Using Django

Django Documentation, Release 1.2.7

taken place. They’re especially useful when many pieces of code may be interested in the same events.

Django provides a set of built-in signals that let user code get notified by Django itself of certain actions. These include
some useful notifications:

• django.db.models.signals.pre_save & django.db.models.signals.post_save

Sent before or after a model’s save() method is called.

• django.db.models.signals.pre_delete & django.db.models.signals.post_delete

Sent before or after a model’s delete() method is called.

• django.db.models.signals.m2m_changed

Sent when a ManyToManyField on a model is changed.

• django.core.signals.request_started & django.core.signals.request_finished

Sent when Django starts or finishes an HTTP request.

See the built-in signal documentation for a complete list, and a complete explanation of each signal.

You can also define and send your own custom signals; see below.

3.17.1 Listening to signals

To receive a signal, you need to register a receiver function that gets called when the signal is sent by using the
Signal.connect() method:

Signal.connect(receiver[, sender=None, weak=True, dispatch_uid=None])
Parameters

• receiver – The callback function which will be connected to this signal. See Receiver func-
tions for more information.

• sender – Specifies a particular sender to receive signals from. See Connecting to signals
sent by specific senders for more information.

• weak – Django stores signal handlers as weak references by default. Thus, if your receiver
is a local function, it may be garbage collected. To prevent this, pass weak=False when
you call the signal’s connect() method.

• dispatch_uid – A unique identifier for a signal receiver in cases where duplicate signals
may be sent. See Preventing duplicate signals for more information.

Let’s see how this works by registering a signal that gets called after each HTTP request is finished. We’ll be connect-
ing to the request_finished signal.

Receiver functions

First, we need to define a receiver function. A receiver can be any Python function or method:

def my_callback(sender, **kwargs):
print "Request finished!"

Notice that the function takes a sender argument, along with wildcard keyword arguments (**kwargs); all signal
handlers must take these arguments.

We’ll look at senders a bit later, but right now look at the **kwargs argument. All signals send keyword arguments,
and may change those keyword arguments at any time. In the case of request_finished, it’s documented as
sending no arguments, which means we might be tempted to write our signal handling as my_callback(sender).

3.17. Signals 289

Django Documentation, Release 1.2.7

This would be wrong – in fact, Django will throw an error if you do so. That’s because at any point arguments could
get added to the signal and your receiver must be able to handle those new arguments.

Connecting receiver functions

Next, we’ll need to connect our receiver to the signal:

from django.core.signals import request_finished

request_finished.connect(my_callback)

Now, our my_callback function will be called each time a request finishes.

Where should this code live?

You can put signal handling and registration code anywhere you like. However, you’ll need to make sure that the
module it’s in gets imported early on so that the signal handling gets registered before any signals need to be sent. This
makes your app’s models.py a good place to put registration of signal handlers.

Connecting to signals sent by specific senders

Some signals get sent many times, but you’ll only be interested in receiving a certain subset of those signals. For
example, consider the django.db.models.signals.pre_save signal sent before a model gets saved. Most
of the time, you don’t need to know when any model gets saved – just when one specific model is saved.

In these cases, you can register to receive signals sent only by particular senders. In the case of
django.db.models.signals.pre_save, the sender will be the model class being saved, so you can indi-
cate that you only want signals sent by some model:

from django.db.models.signals import pre_save
from myapp.models import MyModel

def my_handler(sender, **kwargs):
...

pre_save.connect(my_handler, sender=MyModel)

The my_handler function will only be called when an instance of MyModel is saved.

Different signals use different objects as their senders; you’ll need to consult the built-in signal documentation for
details of each particular signal.

Preventing duplicate signals

In some circumstances, the module in which you are connecting signals may be imported multiple times. This can
cause your receiver function to be registered more than once, and thus called multiples times for a single signal event.

If this behavior is problematic (such as when using signals to send an e-mail whenever a model is saved), pass a unique
identifier as the dispatch_uid argument to identify your receiver function. This identifier will usually be a string,
although any hashable object will suffice. The end result is that your receiver function will only be bound to the signal
once for each unique dispatch_uid value.

from django.core.signals import request_finished

request_finished.connect(my_callback, dispatch_uid="my_unique_identifier")

290 Chapter 3. Using Django

Django Documentation, Release 1.2.7

3.17.2 Defining and sending signals

Your applications can take advantage of the signal infrastructure and provide its own signals.

Defining signals

class Signal([providing_args=list])
All signals are django.dispatch.Signal instances. The providing_args is a list of the names of argu-
ments the signal will provide to listeners.

For example:

import django.dispatch

pizza_done = django.dispatch.Signal(providing_args=["toppings", "size"])

This declares a pizza_done signal that will provide receivers with toppings and size arguments.

Remember that you’re allowed to change this list of arguments at any time, so getting the API right on the first try isn’t
necessary.

Sending signals

There are two ways to send send signals in Django.

Signal.send(sender, **kwargs)

Signal.send_robust(sender, **kwargs)

To send a signal, call either Signal.send() or Signal.send_robust(). You must provide the sender
argument, and may provide as many other keyword arguments as you like.

For example, here’s how sending our pizza_done signal might look:

class PizzaStore(object):
...

def send_pizza(self, toppings, size):
pizza_done.send(sender=self, toppings=toppings, size=size)
...

Both send() and send_robust() return a list of tuple pairs [(receiver, response), ...], repre-
senting the list of called receiver functions and their response values.

send() differs from send_robust() in how exceptions raised by receiver functions are handled. send() does
not catch any exceptions raised by receivers; it simply allows errors to propagate. Thus not all receivers may be
notified of a signal in the face of an error.

send_robust() catches all errors derived from Python’s Exception class, and ensures all receivers are notified
of the signal. If an error occurs, the error instance is returned in the tuple pair for the receiver that raised the error.

3.17.3 Disconnecting signals

Signal.disconnect([receiver=None, sender=None, weak=True, dispatch_uid=None])

3.17. Signals 291

Django Documentation, Release 1.2.7

To disconnect a receiver from a signal, call Signal.disconnect(). The arguments are as described in
Signal.connect().

The receiver argument indicates the registered receiver to disconnect. It may be None if dispatch_uid is used to
identify the receiver.

292 Chapter 3. Using Django

CHAPTER

FOUR

“HOW-TO” GUIDES

Here you’ll find short answers to “How do I....?” types of questions. These how-to guides don’t cover topics in depth
– you’ll find that material in the Using Django and the API Reference. However, these guides will help you quickly
accomplish common tasks.

4.1 Authenticating against Django’s user database from Apache

Since keeping multiple authentication databases in sync is a common problem when dealing with Apache, you can
configuring Apache to authenticate against Django’s authentication system directly. For example, you could:

• Serve static/media files directly from Apache only to authenticated users.

• Authenticate access to a Subversion repository against Django users with a certain permission.

• Allow certain users to connect to a WebDAV share created with mod_dav.

4.1.1 Configuring Apache

To check against Django’s authorization database from a Apache configuration file, you’ll need to use mod_python’s
PythonAuthenHandler directive along with the standard Auth* and Require directives:

<Location /example/>
AuthType Basic
AuthName "example.com"
Require valid-user

SetEnv DJANGO_SETTINGS_MODULE mysite.settings
PythonAuthenHandler django.contrib.auth.handlers.modpython

</Location>

Using the authentication handler with Apache 2.2

If you’re using Apache 2.2, you’ll need to take a couple extra steps.

You’ll need to ensure that mod_auth_basic and mod_authz_user are loaded. These might be compiled stati-
cally into Apache, or you might need to use LoadModule to load them dynamically (as shown in the example at the
bottom of this note).

You’ll also need to insert configuration directives that prevent Apache from trying to use other authentication modules,
as well as specifying the AuthUserFile directive and pointing it to /dev/null. Depending on which other
authentication modules you have loaded, you might need one or more of the following directives:

293

http://subversion.tigris.org/
http://httpd.apache.org/docs/2.0/mod/mod_dav.html

Django Documentation, Release 1.2.7

AuthBasicAuthoritative Off
AuthDefaultAuthoritative Off
AuthzLDAPAuthoritative Off
AuthzDBMAuthoritative Off
AuthzDefaultAuthoritative Off
AuthzGroupFileAuthoritative Off
AuthzOwnerAuthoritative Off
AuthzUserAuthoritative Off

A complete configuration, with differences between Apache 2.0 and Apache 2.2 marked in bold, would look something
like:

LoadModule auth_basic_module modules/mod_auth_basic.so
LoadModule authz_user_module modules/mod_authz_user.so

...

<Location /example/>
AuthType Basic
AuthName "example.com"
AuthUserFile /dev/null
AuthBasicAuthoritative Off
Require valid-user

SetEnv DJANGO_SETTINGS_MODULE mysite.settings
PythonAuthenHandler django.contrib.auth.handlers.modpython

</Location>

By default, the authentication handler will limit access to the /example/ location to users marked as staff members.
You can use a set of PythonOption directives to modify this behavior:

PythonOption Explanation
DjangoRequireStaffStatusIf set to on only “staff” users (i.e. those with the is_staff flag set) will be allowed.

Defaults to on.
DjangoRequireSuperuserStatusIf set to on only superusers (i.e. those with the is_superuser flag set) will be

allowed.
Defaults to off.

DjangoPermissionNameThe name of a permission to require for access. See custom permissions for more
information.
By default no specific permission will be required.

Note that sometimes SetEnv doesn’t play well in this mod_python configuration, for reasons unknown. If
you’re having problems getting mod_python to recognize your DJANGO_SETTINGS_MODULE, you can set it us-
ing PythonOption instead of SetEnv. Therefore, these two Apache directives are equivalent:

SetEnv DJANGO_SETTINGS_MODULE mysite.settings
PythonOption DJANGO_SETTINGS_MODULE mysite.settings

4.2 Authentication using REMOTE_USER

This document describes how to make use of external authentication sources (where the Web server sets the
REMOTE_USER environment variable) in your Django applications. This type of authentication solution is typically
seen on intranet sites, with single sign-on solutions such as IIS and Integrated Windows Authentication or Apache and
mod_authnz_ldap, CAS, Cosign, WebAuth, mod_auth_sspi, etc.

294 Chapter 4. “How-to” guides

http://httpd.apache.org/docs/2.2/mod/mod_authnz_ldap.html
http://www.jasig.org/cas
http://weblogin.org
http://www.stanford.edu/services/webauth/
http://sourceforge.net/projects/mod-auth-sspi

Django Documentation, Release 1.2.7

When the Web server takes care of authentication it typically sets the REMOTE_USER environment variable for
use in the underlying application. In Django, REMOTE_USER is made available in the request.META attribute.
Django can be configured to make use of the REMOTE_USER value using the RemoteUserMiddleware and
RemoteUserBackend classes found in django.contrib.auth.

4.2.1 Configuration

First, you must add the django.contrib.auth.middleware.RemoteUserMiddleware to the
MIDDLEWARE_CLASSES setting after the django.contrib.auth.middleware.AuthenticationMiddleware:

MIDDLEWARE_CLASSES = (
...
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’django.contrib.auth.middleware.RemoteUserMiddleware’,
...
)

Next, you must replace the ModelBackend with RemoteUserBackend in the AUTHENTICATION_BACKENDS
setting:

AUTHENTICATION_BACKENDS = (
’django.contrib.auth.backends.RemoteUserBackend’,

)

With this setup, RemoteUserMiddleware will detect the username in request.META[’REMOTE_USER’]
and will authenticate and auto-login that user using the RemoteUserBackend.

Note: Since the RemoteUserBackend inherits from ModelBackend, you will still have all of the same permis-
sions checking that is implemented in ModelBackend.

If your authentication mechanism uses a custom HTTP header and not REMOTE_USER, you can subclass
RemoteUserMiddleware and set the header attribute to the desired request.META key. For example:

from django.contrib.auth.middleware import RemoteUserMiddleware

class CustomHeaderMiddleware(RemoteUserMiddleware):
header = ’HTTP_AUTHUSER’

4.2.2 RemoteUserBackend

class django.contrib.auth.backends.RemoteUserBackend

If you need more control, you can create your own authentication backend that inherits from RemoteUserBackend
and overrides certain parts:

Attributes

RemoteUserBackend.create_unknown_user
True or False. Determines whether or not a User object is created if not already in the database. Defaults
to True.

4.2. Authentication using REMOTE_USER 295

Django Documentation, Release 1.2.7

Methods

RemoteUserBackend.clean_username(username)
Performs any cleaning on the username (e.g. stripping LDAP DN information) prior to using it to get or create
a User object. Returns the cleaned username.

RemoteUserBackend.configure_user(user)
Configures a newly created user. This method is called immediately after a new user is created, and can be used
to perform custom setup actions, such as setting the user’s groups based on attributes in an LDAP directory.
Returns the user object.

4.3 How to contribute to Django

Django is developed 100% by the community, and the more people that are actively involved in the code the better
Django will be. We recognize that contributing to Django can be daunting at first and sometimes confusing even to
veterans. While we have our official “Contributing to Django” documentation which spells out the technical details of
triaging tickets and submitting patches, it leaves a lot of room for interpretation. This guide aims to offer more general
advice on issues such as how to interpret the various stages and flags in Trac, and how new contributors can get started.

See Also:

This guide is meant to answer the most common questions about contributing to Django, however it is no substitute
for the Contributing to Django reference. Please make sure to read that document to understand the specific details
involved in reporting issues and submitting patches.

4.3.1 “The Spirit of Contributing”

Django uses Trac for managing our progress, and Trac is a community-tended garden of the bugs people have found
and the features people would like to see added. As in any garden, sometimes there are weeds to be pulled and
sometimes there are flowers and vegetables that need picking. We need your help to sort out one from the other, and
in the end we all benefit together.

Like all gardens, we can aspire to perfection but in reality there’s no such thing. Even in the most pristine garden
there are still snails and insects. In a community garden there are also helpful people who–with the best of intentions–
fertilize the weeds and poison the roses. It’s the job of the community as a whole to self-manage, keep the problems
to a minimum, and educate those coming into the community so that they can become valuable contributing members.

Similarly, while we aim for Trac to be a perfect representation of the state of Django’s progress, we acknowledge that
this simply will not happen. By distributing the load of Trac maintenance to the community, we accept that there will
be mistakes. Trac is “mostly accurate”, and we give allowances for the fact that sometimes it will be wrong. That’s
okay. We’re perfectionists with deadlines.

We rely on the community to keep participating, keep tickets as accurate as possible, and raise issues for discussion
on our mailing lists when there is confusion or disagreement.

Django is a community project, and every contribution helps. We can’t do this without YOU!

4.3.2 Understanding Trac

Trac is Django’s sole official issue tracker. All known bugs, desired features and ideas for changes are logged there.

However, Trac can be quite confusing even to veteran contributors. Having to look at both flags and triage stages isn’t
immediately obvious, and the stages themselves can be misinterpreted.

296 Chapter 4. “How-to” guides

http://code.djangoproject.com/

Django Documentation, Release 1.2.7

What Django’s triage stages “really mean”

Unreviewed

The ticket has not been reviewed by anyone who felt qualified to make a judgment about whether the ticket contained
a valid issue, a viable feature, or ought to be closed for any of the various reasons.

Accepted

The big grey area! The absolute meaning of “accepted” is that the issue described in the ticket is valid and is in some
stage of being worked on. Beyond that there are several considerations

• Accepted + No Flags

The ticket is valid, but no one has submitted a patch for it yet. Often this means you could safely start writing a
patch for it.

• Accepted + Has Patch

The ticket is waiting for people to review the supplied patch. This means downloading the patch and trying it
out, verifying that it contains tests and docs, running the test suite with the included patch, and leaving feedback
on the ticket.

• Accepted + Has Patch + (any other flag)

This means the ticket has been reviewed, and has been found to need further work. “Needs tests” and “Needs
documentation” are self-explanatory. “Patch needs improvement” will generally be accompanied by a comment
on the ticket explaining what is needed to improve the code.

Design Decision Needed

This stage is for issues which may be contentious, may be backwards incompatible, or otherwise involve high-level
design decisions. These decisions are generally made by the core committers, however that is not a requirement. See
the FAQ below for “My ticket has been in DDN forever! What should I do?”

Ready For Checkin

The ticket was reviewed by any member of the community other than the person who supplied the patch and found to
meet all the requirements for a commit-ready patch. A core committer now needs to give the patch a final review prior
to being committed. See the FAQ below for “My ticket has been in RFC forever! What should I do?”

Someday/Maybe?

Generally only used for vague/high-level features or design ideas. These tickets are uncommon and overall less useful
since they don’t describe concrete actionable issues.

Fixed on a branch

Used to indicate that a ticket is resolved as part of a major body of work that will eventually be merged to trunk.
Tickets in this stage generally don’t need further work. This may happen in the case of major features/refactors in each
release cycle, or as part of the annual Google Summer of Code efforts.

4.3. How to contribute to Django 297

Django Documentation, Release 1.2.7

Closing Tickets

When a ticket has completed its useful lifecycle, it’s time for it to be closed. Closing a ticket is a big responsibility,
though. You have to be sure that the issue is really resolved, and you need to keep in mind that the reporter of the
ticket may not be happy to have their ticket closed (unless it’s fixed, of course). If you’re not certain about closing a
ticket, just leave a comment with your thoughts instead.

If you do close a ticket, you should always make sure of the following:

• Be certain that the issue is resolved.

• Leave a comment explaining the decision to close the ticket.

• If there is a way they can improve the ticket to reopen it, let them know.

• If the ticket is a duplicate, reference the original ticket.

• Be polite. No one likes having their ticket closed. It can be frustrating or even discouraging. The best way to
avoid turning people off from contributing to Django is to be polite and friendly and to offer suggestions for
how they could improve this ticket and other tickets in the future.

See Also:

The contributing reference contains a description of each of the available resolutions in Trac.

Example Trac workflow

Here we see the life-cycle of an average ticket:

• Alice creates a ticket, and uploads an incomplete patch (no tests, incorrect implementation).

• Bob reviews the patch, marks it “Accepted”, “needs tests”, and “patch needs improvement”, and leaves a com-
ment telling Alice how the patch could be improved.

• Alice updates the patch, adding tests (but not changing the implementation). She removes the two flags.

• Charlie reviews the patch and resets the “patch needs improvement” flag with another comment about improving
the implementation.

• Alice updates the patch, fixing the implementation. She removes the “patch needs improvement” flag.

• Daisy reviews the patch, and marks it RFC.

• Jacob reviews the RFC patch, applies it to his checkout, and commits it.

Some tickets require much less feedback than this, but then again some tickets require much much more.

4.3.3 Advice for new contributors

New contributor and not sure what to do? Want to help but just don’t know how to get started? This is the section for
you.

• Pick a subject area that you care about, that you are familiar with, or that you want to learn about.

You don’t already have to be an expert on the area you want to work on; you become an expert through your
ongoing contributions to the code.

• Triage tickets.

If a ticket is unreviewed and reports a bug, try and duplicate it. If you can duplicate it and it seems valid, make a
note that you confirmed the bug and accept the ticket. Make sure the ticket is filed under the correct component
area. Consider writing a patch that adds a test for the bug’s behavior, even if you don’t fix the bug itself.

298 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

• Look for tickets that are accepted and review patches to build familiarity with the codebase and the
process.

Mark the appropriate flags if a patch needs docs or tests. Look through the changes a patch makes, and keep
an eye out for syntax that is incompatible with older but still supported versions of Python. Run the tests and
make sure they pass on your system. Where possible and relevant, try them out on a database other than SQLite.
Leave comments and feedback!

• Keep old patches up to date.

Oftentimes the codebase will change between a patch being submitted and the time it gets reviewed. Make sure
it still applies cleanly and functions as expected. Simply updating a patch is both useful and important!

• Trac isn’t an absolute; the context is just as important as the words.

When reading Trac, you need to take into account who says things, and when they were said. Support for an
idea two years ago doesn’t necessarily mean that the idea will still have support. You also need to pay attention
to who hasn’t spoken – for example, if a core team member hasn’t been recently involved in a discussion, then
a ticket may not have the support required to get into trunk.

• Start small.

It’s easier to get feedback on a little issue than on a big one.

• If you’re going to engage in a big task, make sure that your idea has support first.

This means getting someone else to confirm that a bug is real before you fix the issue, and ensuring that the core
team supports a proposed feature before you go implementing it.

• Be bold! Leave feedback!

Sometimes it can be scary to put your opinion out to the world and say “this ticket is correct” or “this patch
needs work”, but it’s the only way the project moves forward. The contributions of the broad Django community
ultimately have a much greater impact than that of the core developers. We can’t do it without YOU!

• Err on the side of caution when marking things Ready For Check-in.

If you’re really not certain if a ticket is ready, don’t mark it as such. Leave a comment instead, letting others
know your thoughts. If you’re mostly certain, but not completely certain, you might also try asking on IRC to
see if someone else can confirm your suspicions.

• Wait for feedback, and respond to feedback that you receive.

Focus on one or two tickets, see them through from start to finish, and repeat. The shotgun approach of taking
on lots of tickets and letting some fall by the wayside ends up doing more harm than good.

• Be rigorous.

When we say “PEP 8, and must have docs and tests”, we mean it. If a patch doesn’t have docs and tests, there
had better be a good reason. Arguments like “I couldn’t find any existing tests of this feature” don’t carry much
weight–while it may be true, that means you have the extra-important job of writing the very first tests for that
feature, not that you get a pass from writing tests altogether.

Note: The Reports page contains links to many useful Trac queries, including several that are useful for triaging
tickets and reviewing patches as suggested above.

4.3.4 FAQs

This ticket I care about has been ignored for days/weeks/months! What can I do to get it committed?

4.3. How to contribute to Django 299

http://www.python.org/dev/peps/pep-0008
http://code.djangoproject.com/wiki/Reports

Django Documentation, Release 1.2.7

• First off, it’s not personal. Django is entirely developed by volunteers (even the core devs), and sometimes folks
just don’t have time. The best thing to do is to send a gentle reminder to the Django Developers mailing list
asking for review on the ticket, or to bring it up in the #django-dev IRC channel.

I’m sure my ticket is absolutely 100% perfect, can I mark it as RFC myself?

• Short answer: No. It’s always better to get another set of eyes on a ticket. If you’re having trouble getting that
second set of eyes, see question 1, above.

My ticket has been in DDN forever! What should I do?

• Design Decision Needed requires consensus about the right solution. At the very least it needs consensus among
the core developers, and ideally it has consensus from the community as well. The best way to accomplish this
is to start a thread on the Django Developers mailing list, and for very complex issues to start a wiki page
summarizing the problem and the possible solutions.

4.4 Writing custom django-admin commands

Applications can register their own actions with manage.py. For example, you might want to add a manage.py ac-
tion for a Django app that you’re distributing. In this document, we will be building a custom closepoll command
for the polls application from the tutorial.

To do this, just add a management/commands directory to the application. Each Python module in that directory
will be auto-discovered and registered as a command that can be executed as an action when you run manage.py:

polls/
__init__.py
models.py
management/

__init__.py
commands/

__init__.py
closepoll.py

tests.py
views.py

In this example, the closepoll command will be made available to any project that includes the polls application
in INSTALLED_APPS.

The closepoll.py module has only one requirement – it must define a class Command that extends
BaseCommand or one of its subclasses.

Standalone scripts

Custom management commands are especially useful for running standalone scripts or for scripts that are periodically
executed from the UNIX crontab or from Windows scheduled tasks control panel.

To implement the command, edit polls/management/commands/closepoll.py to look like this:

from django.core.management.base import BaseCommand, CommandError
from example.polls.models import Poll

class Command(BaseCommand):
args = ’<poll_id poll_id ...>’
help = ’Closes the specified poll for voting’

def handle(self, *args, **options):

300 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

for poll_id in args:
try:

poll = Poll.objects.get(pk=int(poll_id))
except Poll.DoesNotExist:

raise CommandError(’Poll "%s" does not exist’ % poll_id)

poll.opened = False
poll.save()

print ’Successfully closed poll "%s"’ % poll_id

The new custom command can be called using python manage.py closepoll <poll_id>.

The handle() method takes zero or more poll_ids and sets poll.opened to False for each one. If the user
referenced any nonexistant polls, a CommandError is raised. The poll.opened attribute does not exist in the
tutorial and was added to polls.models.Poll for this example.

The same closepoll could be easily modified to delete a given poll instead of closing it by accepting additional
command line options. These custom options must be added to option_list like this:

from optparse import make_option

class Command(BaseCommand):
option_list = BaseCommand.option_list + (

make_option(’--delete’,
action=’store_true’,
dest=’delete’,
default=False,
help=’Delete poll instead of closing it’),

)
...

In addition to being able to add custom command line options, all management commands can accept some default
options such as --verbosity and --traceback.

Management commands and locales

The BaseCommand.execute() method sets the hardcoded en-us locale because the commands shipped with
Django perform several tasks (for example, user-facing content rendering and database population) that require a
system-neutral string language (for which we use en-us).

If your custom management command uses another locale, you should manually activate and deactivate it in your
handle() or handle_noargs() method using the functions provided by the I18N support code:

from django.core.management.base import BaseCommand, CommandError
from django.utils import translation

class Command(BaseCommand):
...
self.can_import_settings = True

def handle(self, *args, **options):

Activate a fixed locale, e.g. Russian
translation.activate(’ru’)

Or you can activate the LANGUAGE_CODE
chosen in the settings:
#

4.4. Writing custom django-admin commands 301

Django Documentation, Release 1.2.7

#from django.conf import settings
#translation.activate(settings.LANGUAGE_CODE)

Your command logic here
...

translation.deactivate()

Take into account though, that system management commands typically have to be very careful about running in
non-uniform locales, so:

• Make sure the USE_I18N setting is always True when running the command (this is one good example of
the potential problems stemming from a dynamic runtime environment that Django commands avoid offhand
by always using a fixed locale).

• Review the code of your command and the code it calls for behavioral differences when locales are changed and
evaluate its impact on predictable behavior of your command.

4.4.1 Command objects

class BaseCommand

The base class from which all management commands ultimately derive.

Use this class if you want access to all of the mechanisms which parse the command-line arguments and work out
what code to call in response; if you don’t need to change any of that behavior, consider using one of its subclasses.

Subclassing the BaseCommand class requires that you implement the handle() method.

Attributes

All attributes can be set in your derived class and can be used in BaseCommand‘s subclasses.

BaseCommand.args
A string listing the arguments accepted by the command, suitable for use in help messages; e.g., a command
which takes a list of application names might set this to ‘<appname appname ...>’.

BaseCommand.can_import_settings
A boolean indicating whether the command needs to be able to import Django settings; if True, execute()
will verify that this is possible before proceeding. Default value is True.

BaseCommand.help
A short description of the command, which will be printed in the help message when the user runs the command
python manage.py help <command>.

BaseCommand.option_list
This is the list of optparse options which will be fed into the command’s OptionParser for parsing
arguments.

BaseCommand.output_transaction
A boolean indicating whether the command outputs SQL statements; if True, the output will automatically be
wrapped with BEGIN; and COMMIT;. Default value is False.

BaseCommand.requires_model_validation
A boolean; if True, validation of installed models will be performed prior to executing the command. De-
fault value is True. To validate an individual application’s models rather than all applications’ models, call
validate() from handle().

302 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

Methods

BaseCommand has a few methods that can be overridden but only the handle() method must be implemented.

Implementing a constructor in a subclass

If you implement __init__ in your subclass of BaseCommand, you must call BaseCommand‘s __init__.

class Command(BaseCommand):
def __init__(self, *args, **kwargs):

super(Command, self).__init__(*args, **kwargs)
...

BaseCommand.get_version()
Return the Django version, which should be correct for all built-in Django commands. User-supplied commands
can override this method to return their own version.

BaseCommand.execute(*args, **options)
Try to execute this command, performing model validation if needed (as controlled by the attribute
requires_model_validation). If the command raises a CommandError, intercept it and print it sen-
sibly to stderr.

BaseCommand.handle(*args, **options)
The actual logic of the command. Subclasses must implement this method.

BaseCommand subclasses

class AppCommand

A management command which takes one or more installed application names as arguments, and does something with
each of them.

Rather than implementing handle(), subclasses must implement handle_app(), which will be called once for
each application.

AppCommand.handle_app(app, **options)
Perform the command’s actions for app, which will be the Python module corresponding to an application
name given on the command line.

class LabelCommand

A management command which takes one or more arbitrary arguments (labels) on the command line, and does some-
thing with each of them.

Rather than implementing handle(), subclasses must implement handle_label(), which will be called once
for each label.

LabelCommand.handle_label(label, **options)
Perform the command’s actions for label, which will be the string as given on the command line.

class NoArgsCommand

A command which takes no arguments on the command line.

Rather than implementing handle(), subclasses must implement handle_noargs(); handle() itself is over-
ridden to ensure no arguments are passed to the command.

NoArgsCommand.handle_noargs(**options)
Perform this command’s actions

4.4. Writing custom django-admin commands 303

Django Documentation, Release 1.2.7

Command exceptions

class CommandError

Exception class indicating a problem while executing a management command.

If this exception is raised during the execution of a management command, it will be caught and turned into a nicely-
printed error message to the appropriate output stream (i.e., stderr); as a result, raising this exception (with a sensible
description of the error) is the preferred way to indicate that something has gone wrong in the execution of a command.

4.5 Writing custom model fields

4.5.1 Introduction

The model reference documentation explains how to use Django’s standard field classes – CharField, DateField,
etc. For many purposes, those classes are all you’ll need. Sometimes, though, the Django version won’t meet your
precise requirements, or you’ll want to use a field that is entirely different from those shipped with Django.

Django’s built-in field types don’t cover every possible database column type – only the common types, such as
VARCHAR and INTEGER. For more obscure column types, such as geographic polygons or even user-created types
such as PostgreSQL custom types, you can define your own Django Field subclasses.

Alternatively, you may have a complex Python object that can somehow be serialized to fit into a standard database
column type. This is another case where a Field subclass will help you use your object with your models.

Our example object

Creating custom fields requires a bit of attention to detail. To make things easier to follow, we’ll use a consistent
example throughout this document: wrapping a Python object representing the deal of cards in a hand of Bridge.
Don’t worry, you don’t have know how to play Bridge to follow this example. You only need to know that 52 cards are
dealt out equally to four players, who are traditionally called north, east, south and west. Our class looks something
like this:

class Hand(object):
"""A hand of cards (bridge style)"""

def __init__(self, north, east, south, west):
Input parameters are lists of cards (’Ah’, ’9s’, etc)
self.north = north
self.east = east
self.south = south
self.west = west

... (other possibly useful methods omitted) ...

This is just an ordinary Python class, with nothing Django-specific about it. We’d like to be able to do things like this
in our models (we assume the hand attribute on the model is an instance of Hand):

example = MyModel.objects.get(pk=1)
print example.hand.north

new_hand = Hand(north, east, south, west)
example.hand = new_hand
example.save()

304 Chapter 4. “How-to” guides

http://www.postgresql.org/docs/8.2/interactive/sql-createtype.html
http://en.wikipedia.org/wiki/Contract_bridge

Django Documentation, Release 1.2.7

We assign to and retrieve from the hand attribute in our model just like any other Python class. The trick is to tell
Django how to handle saving and loading such an object.

In order to use the Hand class in our models, we do not have to change this class at all. This is ideal, because it means
you can easily write model support for existing classes where you cannot change the source code.

Note: You might only be wanting to take advantage of custom database column types and deal with the data as
standard Python types in your models; strings, or floats, for example. This case is similar to our Hand example and
we’ll note any differences as we go along.

4.5.2 Background theory

Database storage

The simplest way to think of a model field is that it provides a way to take a normal Python object – string, boolean,
datetime, or something more complex like Hand – and convert it to and from a format that is useful when dealing
with the database (and serialization, but, as we’ll see later, that falls out fairly naturally once you have the database
side under control).

Fields in a model must somehow be converted to fit into an existing database column type. Different databases
provide different sets of valid column types, but the rule is still the same: those are the only types you have to work
with. Anything you want to store in the database must fit into one of those types.

Normally, you’re either writing a Django field to match a particular database column type, or there’s a fairly straight-
forward way to convert your data to, say, a string.

For our Hand example, we could convert the card data to a string of 104 characters by concatenating all the cards
together in a pre-determined order – say, all the north cards first, then the east, south and west cards. So Hand objects
can be saved to text or character columns in the database.

What does a field class do?

class Field

All of Django’s fields (and when we say fields in this document, we always mean model fields and not form fields) are
subclasses of django.db.models.Field. Most of the information that Django records about a field is common
to all fields – name, help text, uniqueness and so forth. Storing all that information is handled by Field. We’ll get
into the precise details of what Field can do later on; for now, suffice it to say that everything descends from Field
and then customizes key pieces of the class behavior.

It’s important to realize that a Django field class is not what is stored in your model attributes. The model attributes
contain normal Python objects. The field classes you define in a model are actually stored in the Meta class when
the model class is created (the precise details of how this is done are unimportant here). This is because the field
classes aren’t necessary when you’re just creating and modifying attributes. Instead, they provide the machinery for
converting between the attribute value and what is stored in the database or sent to the serializer.

Keep this in mind when creating your own custom fields. The Django Field subclass you write provides the ma-
chinery for converting between your Python instances and the database/serializer values in various ways (there are
differences between storing a value and using a value for lookups, for example). If this sounds a bit tricky, don’t worry
– it will become clearer in the examples below. Just remember that you will often end up creating two classes when
you want a custom field:

• The first class is the Python object that your users will manipulate. They will assign it to the model attribute,
they will read from it for displaying purposes, things like that. This is the Hand class in our example.

4.5. Writing custom model fields 305

Django Documentation, Release 1.2.7

• The second class is the Field subclass. This is the class that knows how to convert your first class back and
forth between its permanent storage form and the Python form.

4.5.3 Writing a field subclass

When planning your Field subclass, first give some thought to which existing Field class your new field is most
similar to. Can you subclass an existing Django field and save yourself some work? If not, you should subclass the
Field class, from which everything is descended.

Initializing your new field is a matter of separating out any arguments that are specific to your case from the common
arguments and passing the latter to the __init__() method of Field (or your parent class).

In our example, we’ll call our field HandField. (It’s a good idea to call your Field subclass
<Something>Field, so it’s easily identifiable as a Field subclass.) It doesn’t behave like any existing field,
so we’ll subclass directly from Field:

from django.db import models

class HandField(models.Field):

description = "A hand of cards (bridge style)"

def __init__(self, *args, **kwargs):
kwargs[’max_length’] = 104
super(HandField, self).__init__(*args, **kwargs)

Our HandField accepts most of the standard field options (see the list below), but we ensure it has a fixed length,
since it only needs to hold 52 card values plus their suits; 104 characters in total.

Note: Many of Django’s model fields accept options that they don’t do anything with. For example, you can pass
both editable and auto_now to a django.db.models.DateField and it will simply ignore the editable
parameter (auto_now being set implies editable=False). No error is raised in this case.

This behavior simplifies the field classes, because they don’t need to check for options that aren’t necessary. They just
pass all the options to the parent class and then don’t use them later on. It’s up to you whether you want your fields to
be more strict about the options they select, or to use the simpler, more permissive behavior of the current fields.

Field.__init__()

The __init__() method takes the following parameters:

• verbose_name

• name

• primary_key

• max_length

• unique

• blank

• null

• db_index

• rel: Used for related fields (like ForeignKey). For advanced use only.

• default

306 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

• editable

• serialize: If False, the field will not be serialized when the model is passed to Django’s serializers.
Defaults to True.

• unique_for_date

• unique_for_month

• unique_for_year

• choices

• help_text

• db_column

• db_tablespace: Currently only used with the Oracle backend and only for index creation. You can usually
ignore this option.

• auto_created: True if the field was automatically created, as for the OneToOneField used by model inheri-
tance. For advanced use only.

All of the options without an explanation in the above list have the same meaning they do for normal Django fields.
See the field documentation for examples and details.

The SubfieldBase metaclass

class django.db.models.SubfieldBase

As we indicated in the introduction, field subclasses are often needed for two reasons: either to take advantage of a
custom database column type, or to handle complex Python types. Obviously, a combination of the two is also possible.
If you’re only working with custom database column types and your model fields appear in Python as standard Python
types direct from the database backend, you don’t need to worry about this section.

If you’re handling custom Python types, such as our Hand class, we need to make sure that when Django initializes
an instance of our model and assigns a database value to our custom field attribute, we convert that value into the
appropriate Python object. The details of how this happens internally are a little complex, but the code you need to
write in your Field class is simple: make sure your field subclass uses a special metaclass:

For example:

class HandField(models.Field):

description = "A hand of cards (bridge style)"

__metaclass__ = models.SubfieldBase

def __init__(self, *args, **kwargs):
...

This ensures that the to_python() method, documented below, will always be called when the attribute is initial-
ized.

ModelForms and custom fields

If you use SubfieldBase, to_python() will be called every time an instance of the field is assigned a value.
This means that whenever a value may be assigned to the field, you need to ensure that it will be of the correct datatype,
or that you handle any exceptions.

4.5. Writing custom model fields 307

Django Documentation, Release 1.2.7

This is especially important if you use ModelForms. When saving a ModelForm, Django will use form values to
instantiate model instances. However, if the cleaned form data can’t be used as valid input to the field, the normal form
validation process will break.

Therefore, you must ensure that the form field used to represent your custom field performs whatever input validation
and data cleaning is necessary to convert user-provided form input into a to_python()-compatible model field value.
This may require writing a custom form field, and/or implementing the formfield() method on your field to return
a form field class whose to_python() returns the correct datatype.

Documenting your custom field

Field.description

As always, you should document your field type, so users will know what it is. In addition to providing a docstring for
it, which is useful for developers, you can also allow users of the admin app to see a short description of the field type
via the django.contrib.admindocs application. To do this simply provide descriptive text in a description class
attribute of your custom field. In the above example, the description displayed by the admindocs application for a
HandField will be ‘A hand of cards (bridge style)’.

Useful methods

Once you’ve created your Field subclass and set up the __metaclass__, you might consider overriding a few
standard methods, depending on your field’s behavior. The list of methods below is in approximately decreasing order
of importance, so start from the top.

Custom database types

Field.db_type(self, connection)

New in version 1.2: The connection argument was added to support multiple databases. Returns the database
column data type for the Field, taking into account the connection object, and the settings associated with it.

Say you’ve created a PostgreSQL custom type called mytype. You can use this field with Django by subclassing
Field and implementing the db_type() method, like so:

from django.db import models

class MytypeField(models.Field):
def db_type(self, connection):

return ’mytype’

Once you have MytypeField, you can use it in any model, just like any other Field type:

class Person(models.Model):
name = models.CharField(max_length=80)
gender = models.CharField(max_length=1)
something_else = MytypeField()

If you aim to build a database-agnostic application, you should account for differences in database column
types. For example, the date/time column type in PostgreSQL is called timestamp, while the same column
in MySQL is called datetime. The simplest way to handle this in a db_type() method is to check the
connection.settings_dict[’ENGINE’] attribute.

For example:

308 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

class MyDateField(models.Field):
def db_type(self, connection):

if connection.settings_dict[’ENGINE’] == ’django.db.backends.mysql’:
return ’datetime’

else:
return ’timestamp’

The db_type() method is only called by Django when the framework constructs the CREATE TABLE statements
for your application – that is, when you first create your tables. It’s not called at any other time, so it can afford to
execute slightly complex code, such as the connection.settings_dict check in the above example.

Some database column types accept parameters, such as CHAR(25), where the parameter 25 represents the max-
imum column length. In cases like these, it’s more flexible if the parameter is specified in the model rather
than being hard-coded in the db_type() method. For example, it wouldn’t make much sense to have a
CharMaxlength25Field, shown here:

This is a silly example of hard-coded parameters.
class CharMaxlength25Field(models.Field):

def db_type(self, connection):
return ’char(25)’

In the model:
class MyModel(models.Model):

...
my_field = CharMaxlength25Field()

The better way of doing this would be to make the parameter specifiable at run time – i.e., when the class is instantiated.
To do that, just implement django.db.models.Field.__init__(), like so:

This is a much more flexible example.
class BetterCharField(models.Field):

def __init__(self, max_length, *args, **kwargs):
self.max_length = max_length
super(BetterCharField, self).__init__(*args, **kwargs)

def db_type(self, connection):
return ’char(%s)’ % self.max_length

In the model:
class MyModel(models.Model):

...
my_field = BetterCharField(25)

Finally, if your column requires truly complex SQL setup, return None from db_type(). This will cause Django’s
SQL creation code to skip over this field. You are then responsible for creating the column in the right table in some
other way, of course, but this gives you a way to tell Django to get out of the way.

Converting database values to Python objects

Field.to_python(self, value)

Converts a value as returned by your database (or a serializer) to a Python object.

The default implementation simply returns value, for the common case in which the database backend already
returns data in the correct format (as a Python string, for example).

If your custom Field class deals with data structures that are more complex than strings, dates, integers or floats, then
you’ll need to override this method. As a general rule, the method should deal gracefully with any of the following

4.5. Writing custom model fields 309

Django Documentation, Release 1.2.7

arguments:

• An instance of the correct type (e.g., Hand in our ongoing example).

• A string (e.g., from a deserializer).

• Whatever the database returns for the column type you’re using.

In our HandField class, we’re storing the data as a VARCHAR field in the database, so we need to be able to process
strings and Hand instances in to_python():

import re

class HandField(models.Field):
...

def to_python(self, value):
if isinstance(value, Hand):

return value

The string case.
p1 = re.compile(’.{26}’)
p2 = re.compile(’..’)
args = [p2.findall(x) for x in p1.findall(value)]
return Hand(*args)

Notice that we always return a Hand instance from this method. That’s the Python object type we want to store in the
model’s attribute.

Remember: If your custom field needs the to_python() method to be called when it is created, you should be
using The SubfieldBase metaclass mentioned earlier. Otherwise to_python() won’t be called automatically.

Converting Python objects to query values

Field.get_prep_value(self, value)

New in version 1.2: This method was factored out of get_db_prep_value() This is the reverse of
to_python() when working with the database backends (as opposed to serialization). The value parameter is
the current value of the model’s attribute (a field has no reference to its containing model, so it cannot retrieve the
value itself), and the method should return data in a format that has been prepared for use as a parameter in a query.

This conversion should not include any database-specific conversions. If database-specific conversions are required,
they should be made in the call to get_db_prep_value().

For example:

class HandField(models.Field):
...

def get_prep_value(self, value):
return ’’.join([’’.join(l) for l in (value.north,

value.east, value.south, value.west)])

Converting query values to database values

Field.get_db_prep_value(self, value, connection, prepared=False)

New in version 1.2: The connection and prepared arguments were added to support multiple databases. Some
data types (for example, dates) need to be in a specific format before they can be used by a database backend.

310 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

get_db_prep_value() is the method where those conversions should be made. The specific connection that
will be used for the query is passed as the connection parameter. This allows you to use backend-specific conver-
sion logic if it is required.

The prepared argument describes whether or not the value has already been passed through get_prep_value()
conversions. When prepared is False, the default implementation of get_db_prep_value() will call
get_prep_value() to do initial data conversions before performing any database-specific processing.

Field.get_db_prep_save(self, value, connection)

New in version 1.2: The connection argument was added to support multiple databases. Same as the
above, but called when the Field value must be saved to the database. As the default implementation just calls
get_db_prep_value(), you shouldn’t need to implement this method unless your custom field needs a spe-
cial conversion when being saved that is not the same as the conversion used for normal query parameters (which is
implemented by get_db_prep_value()).

Preprocessing values before saving

Field.pre_save(self, model_instance, add)

This method is called just prior to get_db_prep_save() and should return the value of the appropriate attribute
from model_instance for this field. The attribute name is in self.attname (this is set up by Field). If the
model is being saved to the database for the first time, the add parameter will be True, otherwise it will be False.

You only need to override this method if you want to preprocess the value somehow, just before saving. For ex-
ample, Django’s DateTimeField uses this method to set the attribute correctly in the case of auto_now or
auto_now_add.

If you do override this method, you must return the value of the attribute at the end. You should also update the model’s
attribute if you make any changes to the value so that code holding references to the model will always see the correct
value.

Preparing values for use in database lookups

As with value conversions, preparing a value for database lookups is a two phase process.

Field.get_prep_lookup(self, lookup_type, value)

New in version 1.2: This method was factored out of get_db_prep_lookup() get_prep_lookup() per-
forms the first phase of lookup preparation, performing generic data validity checks

Prepares the value for passing to the database when used in a lookup (a WHERE constraint in SQL). The
lookup_type will be one of the valid Django filter lookups: exact, iexact, contains, icontains, gt,
gte, lt, lte, in, startswith, istartswith, endswith, iendswith, range, year, month, day,
isnull, search, regex, and iregex.

Your method must be prepared to handle all of these lookup_type values and should raise either a ValueError
if the value is of the wrong sort (a list when you were expecting an object, for example) or a TypeError if your
field does not support that type of lookup. For many fields, you can get by with handling the lookup types that need
special handling for your field and pass the rest to the get_db_prep_lookup() method of the parent class.

If you needed to implement get_db_prep_save(), you will usually need to implement get_prep_lookup().
If you don’t, get_prep_valuewill be called by the default implementation, to manage exact, gt, gte, lt, lte,
in and range lookups.

You may also want to implement this method to limit the lookup types that could be used with your custom field type.

4.5. Writing custom model fields 311

Django Documentation, Release 1.2.7

Note that, for range and in lookups, get_prep_lookup will receive a list of objects (presumably of the right
type) and will need to convert them to a list of things of the right type for passing to the database. Most of the time,
you can reuse get_prep_value(), or at least factor out some common pieces.

For example, the following code implements get_prep_lookup to limit the accepted lookup types to exact and
in:

class HandField(models.Field):
...

def get_prep_lookup(self, lookup_type, value):
We only handle ’exact’ and ’in’. All others are errors.
if lookup_type == ’exact’:

return self.get_prep_value(value)
elif lookup_type == ’in’:

return [self.get_prep_value(v) for v in value]
else:

raise TypeError(’Lookup type %r not supported.’ % lookup_type)

Field.get_db_prep_lookup(self, lookup_type, value, connection, prepared=False)

New in version 1.2: The connection and prepared arguments were added to support multiple databases. Per-
forms any database-specific data conversions required by a lookup. As with get_db_prep_value(), the specific
connection that will be used for the query is passed as the connection parameter. The prepared argument
describes whether the value has already been prepared with get_prep_lookup().

Specifying the form field for a model field

Field.formfield(self, form_class=forms.CharField, **kwargs)

Returns the default form field to use when this field is displayed in a model. This method is called by the ModelForm
helper.

All of the kwargs dictionary is passed directly to the form field’s Field__init__() method. Normally, all you
need to do is set up a good default for the form_class argument and then delegate further handling to the parent
class. This might require you to write a custom form field (and even a form widget). See the forms documentation
for information about this, and take a look at the code in django.contrib.localflavor for some examples of
custom widgets.

Continuing our ongoing example, we can write the formfield() method as:

class HandField(models.Field):
...

def formfield(self, **kwargs):
This is a fairly standard way to set up some defaults
while letting the caller override them.
defaults = {’form_class’: MyFormField}
defaults.update(kwargs)
return super(HandField, self).formfield(**defaults)

This assumes we’ve imported a MyFormField field class (which has its own default widget). This document doesn’t
cover the details of writing custom form fields.

Emulating built-in field types

Field.get_internal_type(self)

312 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

Returns a string giving the name of the Field subclass we are emulating at the database level. This is used to
determine the type of database column for simple cases.

If you have created a db_type() method, you don’t need to worry about get_internal_type() – it won’t be
used much. Sometimes, though, your database storage is similar in type to some other field, so you can use that other
field’s logic to create the right column.

For example:

class HandField(models.Field):
...

def get_internal_type(self):
return ’CharField’

No matter which database backend we are using, this will mean that syncdb and other SQL commands create the
right column type for storing a string.

If get_internal_type() returns a string that is not known to Django for the database backend you are using
– that is, it doesn’t appear in django.db.backends.<db_name>.creation.DATA_TYPES – the string will
still be used by the serializer, but the default db_type() method will return None. See the documentation of
db_type() for reasons why this might be useful. Putting a descriptive string in as the type of the field for the
serializer is a useful idea if you’re ever going to be using the serializer output in some other place, outside of Django.

Converting field data for serialization

Field.value_to_string(self, obj)

This method is used by the serializers to convert the field into a string for output. Calling
Field._get_val_from_obj(obj)() is the best way to get the value to serialize. For example, since our
HandField uses strings for its data storage anyway, we can reuse some existing conversion code:

class HandField(models.Field):
...

def value_to_string(self, obj):
value = self._get_val_from_obj(obj)
return self.get_db_prep_value(value)

Some general advice

Writing a custom field can be a tricky process, particularly if you’re doing complex conversions between your Python
types and your database and serialization formats. Here are a couple of tips to make things go more smoothly:

1. Look at the existing Django fields (in django/db/models/fields/__init__.py) for inspiration. Try
to find a field that’s similar to what you want and extend it a little bit, instead of creating an entirely new field
from scratch.

2. Put a __str__() or __unicode__() method on the class you’re wrapping up as a field. There are a lot of
places where the default behavior of the field code is to call force_unicode() on the value. (In our examples
in this document, valuewould be a Hand instance, not a HandField). So if your __unicode__()method
automatically converts to the string form of your Python object, you can save yourself a lot of work.

4.5. Writing custom model fields 313

Django Documentation, Release 1.2.7

4.5.4 Writing a FileField subclass

In addition to the above methods, fields that deal with files have a few other special requirements which must be
taken into account. The majority of the mechanics provided by FileField, such as controlling database storage and
retrieval, can remain unchanged, leaving subclasses to deal with the challenge of supporting a particular type of file.

Django provides a File class, which is used as a proxy to the file’s contents and operations. This
can be subclassed to customize how the file is accessed, and what methods are available. It lives at
django.db.models.fields.files, and its default behavior is explained in the file documentation.

Once a subclass of File is created, the new FileField subclass must be told to use it. To do so, simply assign the
new File subclass to the special attr_class attribute of the FileField subclass.

A few suggestions

In addition to the above details, there are a few guidelines which can greatly improve the efficiency and readability of
the field’s code.

1. The source for Django’s own ImageField (in django/db/models/fields/files.py) is a great ex-
ample of how to subclass FileField to support a particular type of file, as it incorporates all of the techniques
described above.

2. Cache file attributes wherever possible. Since files may be stored in remote storage systems, retrieving them
may cost extra time, or even money, that isn’t always necessary. Once a file is retrieved to obtain some data
about its content, cache as much of that data as possible to reduce the number of times the file must be retrieved
on subsequent calls for that information.

4.6 Custom template tags and filters

4.6.1 Introduction

Django’s template system comes with a wide variety of built-in tags and filters designed to address the presentation
logic needs of your application. Nevertheless, you may find yourself needing functionality that is not covered by the
core set of template primitives. You can extend the template engine by defining custom tags and filters using Python,
and then make them available to your templates using the {% load %} tag.

Code layout

Custom template tags and filters must live inside a Django app. If they relate to an existing app it makes sense to
bundle them there; otherwise, you should create a new app to hold them.

The app should contain a templatetags directory, at the same level as models.py, views.py, etc. If this
doesn’t already exist, create it - don’t forget the __init__.py file to ensure the directory is treated as a Python
package.

Your custom tags and filters will live in a module inside the templatetags directory. The name of the module file
is the name you’ll use to load the tags later, so be careful to pick a name that won’t clash with custom tags and filters
in another app.

For example, if your custom tags/filters are in a file called poll_extras.py, your app layout might look like this:

polls/
models.py
templatetags/

314 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

__init__.py
poll_extras.py

views.py

And in your template you would use the following:

{% load poll_extras %}

The app that contains the custom tags must be in INSTALLED_APPS in order for the {% load %} tag to work.
This is a security feature: It allows you to host Python code for many template libraries on a single host machine
without enabling access to all of them for every Django installation.

There’s no limit on how many modules you put in the templatetags package. Just keep in mind that a {% load
%} statement will load tags/filters for the given Python module name, not the name of the app.

To be a valid tag library, the module must contain a module-level variable named register that is a
template.Library instance, in which all the tags and filters are registered. So, near the top of your module,
put the following:

from django import template

register = template.Library()

Behind the scenes

For a ton of examples, read the source code for Django’s default filters and tags. They’re in
django/template/defaultfilters.py and django/template/defaulttags.py, respectively.

Writing custom template filters

Custom filters are just Python functions that take one or two arguments:

• The value of the variable (input) – not necessarily a string.

• The value of the argument – this can have a default value, or be left out altogether.

For example, in the filter {{ var|foo:"bar" }}, the filter foo would be passed the variable var and the argu-
ment "bar".

Filter functions should always return something. They shouldn’t raise exceptions. They should fail silently. In case of
error, they should return either the original input or an empty string – whichever makes more sense.

Here’s an example filter definition:

def cut(value, arg):
"Removes all values of arg from the given string"
return value.replace(arg, ’’)

And here’s an example of how that filter would be used:

{{ somevariable|cut:"0" }}

Most filters don’t take arguments. In this case, just leave the argument out of your function. Example:

def lower(value): # Only one argument.
"Converts a string into all lowercase"
return value.lower()

4.6. Custom template tags and filters 315

Django Documentation, Release 1.2.7

Template filters that expect strings

If you’re writing a template filter that only expects a string as the first argument, you should use the decorator
stringfilter. This will convert an object to its string value before being passed to your function:

from django.template.defaultfilters import stringfilter

@stringfilter
def lower(value):

return value.lower()

This way, you’ll be able to pass, say, an integer to this filter, and it won’t cause an AttributeError (because
integers don’t have lower() methods).

Registering custom filters

Once you’ve written your filter definition, you need to register it with your Library instance, to make it available to
Django’s template language:

register.filter(’cut’, cut)
register.filter(’lower’, lower)

The Library.filter() method takes two arguments:

1. The name of the filter – a string.

2. The compilation function – a Python function (not the name of the function as a string).

You can use register.filter() as a decorator instead:

@register.filter(name=’cut’)
@stringfilter
def cut(value, arg):

return value.replace(arg, ’’)

@register.filter
@stringfilter
def lower(value):

return value.lower()

If you leave off the name argument, as in the second example above, Django will use the function’s name as the filter
name.

Filters and auto-escaping

When writing a custom filter, give some thought to how the filter will interact with Django’s auto-escaping behavior.
Note that three types of strings can be passed around inside the template code:

• Raw strings are the native Python str or unicode types. On output, they’re escaped if auto-escaping is in
effect and presented unchanged, otherwise.

• Safe strings are strings that have been marked safe from further escaping at output time. Any necessary escaping
has already been done. They’re commonly used for output that contains raw HTML that is intended to be
interpreted as-is on the client side.

Internally, these strings are of type SafeString or SafeUnicode. They share a common base class of
SafeData, so you can test for them using code like:

316 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

if isinstance(value, SafeData):
Do something with the "safe" string.

• Strings marked as “needing escaping” are always escaped on output, regardless of whether they are in an
autoescape block or not. These strings are only escaped once, however, even if auto-escaping applies.

Internally, these strings are of type EscapeString or EscapeUnicode. Generally you don’t have to worry
about these; they exist for the implementation of the escape filter.

Template filter code falls into one of two situations:

1. Your filter does not introduce any HTML-unsafe characters (<, >, ’, " or &) into the result that were not already
present. In this case, you can let Django take care of all the auto-escaping handling for you. All you need to do
is put the is_safe attribute on your filter function and set it to True, like so:

@register.filter
def myfilter(value):

return value
myfilter.is_safe = True

This attribute tells Django that if a “safe” string is passed into your filter, the result will still be “safe” and if a
non-safe string is passed in, Django will automatically escape it, if necessary.

You can think of this as meaning “this filter is safe – it doesn’t introduce any possibility of unsafe HTML.”

The reason is_safe is necessary is because there are plenty of normal string operations that will turn a
SafeData object back into a normal str or unicode object and, rather than try to catch them all, which
would be very difficult, Django repairs the damage after the filter has completed.

For example, suppose you have a filter that adds the string xx to the end of any input. Since this introduces
no dangerous HTML characters to the result (aside from any that were already present), you should mark your
filter with is_safe:

@register.filter
def add_xx(value):

return ’%sxx’ % value
add_xx.is_safe = True

When this filter is used in a template where auto-escaping is enabled, Django will escape the output whenever
the input is not already marked as “safe”.

By default, is_safe defaults to False, and you can omit it from any filters where it isn’t required.

Be careful when deciding if your filter really does leave safe strings as safe. If you’re removing characters, you
might inadvertently leave unbalanced HTML tags or entities in the result. For example, removing a > from the
input might turn <a> into <a, which would need to be escaped on output to avoid causing problems. Similarly,
removing a semicolon (;) can turn & into &, which is no longer a valid entity and thus needs further
escaping. Most cases won’t be nearly this tricky, but keep an eye out for any problems like that when reviewing
your code.

Marking a filter is_safe will coerce the filter’s return value to a string. If your filter should return a boolean or
other non-string value, marking it is_safe will probably have unintended consequences (such as converting
a boolean False to the string ‘False’).

2. Alternatively, your filter code can manually take care of any necessary escaping. This is necessary when you’re
introducing new HTML markup into the result. You want to mark the output as safe from further escaping so
that your HTML markup isn’t escaped further, so you’ll need to handle the input yourself.

To mark the output as a safe string, use django.utils.safestring.mark_safe().

4.6. Custom template tags and filters 317

Django Documentation, Release 1.2.7

Be careful, though. You need to do more than just mark the output as safe. You need to ensure it really is safe,
and what you do depends on whether auto-escaping is in effect. The idea is to write filters than can operate in
templates where auto-escaping is either on or off in order to make things easier for your template authors.

In order for your filter to know the current auto-escaping state, set the needs_autoescape attribute to True
on your function. (If you don’t specify this attribute, it defaults to False). This attribute tells Django that
your filter function wants to be passed an extra keyword argument, called autoescape, that is True if auto-
escaping is in effect and False otherwise.

For example, let’s write a filter that emphasizes the first character of a string:

from django.utils.html import conditional_escape
from django.utils.safestring import mark_safe

def initial_letter_filter(text, autoescape=None):
first, other = text[0], text[1:]
if autoescape:

esc = conditional_escape
else:

esc = lambda x: x
result = ’%s%s’ % (esc(first), esc(other))
return mark_safe(result)

initial_letter_filter.needs_autoescape = True

The needs_autoescape attribute on the filter function and the autoescape keyword argument mean that
our function will know whether automatic escaping is in effect when the filter is called. We use autoescape to
decide whether the input data needs to be passed through django.utils.html.conditional_escape
or not. (In the latter case, we just use the identity function as the “escape” function.) The
conditional_escape() function is like escape() except it only escapes input that is not a SafeData
instance. If a SafeData instance is passed to conditional_escape(), the data is returned unchanged.

Finally, in the above example, we remember to mark the result as safe so that our HTML is inserted directly into
the template without further escaping.

There’s no need to worry about the is_safe attribute in this case (although including it wouldn’t hurt any-
thing). Whenever you manually handle the auto-escaping issues and return a safe string, the is_safe attribute
won’t change anything either way.

Writing custom template tags

Tags are more complex than filters, because tags can do anything.

A quick overview

Above, this document explained that the template system works in a two-step process: compiling and rendering. To
define a custom template tag, you specify how the compilation works and how the rendering works.

When Django compiles a template, it splits the raw template text into ‘’nodes’‘. Each node is an instance of
django.template.Node and has a render() method. A compiled template is, simply, a list of Node ob-
jects. When you call render() on a compiled template object, the template calls render() on each Node in its
node list, with the given context. The results are all concatenated together to form the output of the template.

Thus, to define a custom template tag, you specify how the raw template tag is converted into a Node (the compilation
function), and what the node’s render() method does.

318 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

Writing the compilation function

For each template tag the template parser encounters, it calls a Python function with the tag contents and the parser
object itself. This function is responsible for returning a Node instance based on the contents of the tag.

For example, let’s write a template tag, {% current_time %}, that displays the current date/time, formatted
according to a parameter given in the tag, in strftime syntax. It’s a good idea to decide the tag syntax before anything
else. In our case, let’s say the tag should be used like this:

<p>The time is {% current_time "%Y-%m-%d %I:%M %p" %}.</p>

The parser for this function should grab the parameter and create a Node object:

from django import template
def do_current_time(parser, token):

try:
split_contents() knows not to split quoted strings.
tag_name, format_string = token.split_contents()

except ValueError:
raise template.TemplateSyntaxError, "%r tag requires a single argument" % token.contents.split()[0]

if not (format_string[0] == format_string[-1] and format_string[0] in (’"’, "’")):
raise template.TemplateSyntaxError, "%r tag’s argument should be in quotes" % tag_name

return CurrentTimeNode(format_string[1:-1])

Notes:

• parser is the template parser object. We don’t need it in this example.

• token.contents is a string of the raw contents of the tag. In our example, it’s ’current_time
"%Y-%m-%d %I:%M %p"’.

• The token.split_contents() method separates the arguments on spaces while keeping quoted
strings together. The more straightforward token.contents.split() wouldn’t be as robust, as it
would naively split on all spaces, including those within quoted strings. It’s a good idea to always use
token.split_contents().

• This function is responsible for raising django.template.TemplateSyntaxError, with helpful mes-
sages, for any syntax error.

• The TemplateSyntaxError exceptions use the tag_name variable. Don’t hard-code the tag’s name in
your error messages, because that couples the tag’s name to your function. token.contents.split()[0]
will ‘’always” be the name of your tag – even when the tag has no arguments.

• The function returns a CurrentTimeNodewith everything the node needs to know about this tag. In this case,
it just passes the argument – "%Y-%m-%d %I:%M %p". The leading and trailing quotes from the template tag
are removed in format_string[1:-1].

• The parsing is very low-level. The Django developers have experimented with writing small frameworks on
top of this parsing system, using techniques such as EBNF grammars, but those experiments made the template
engine too slow. It’s low-level because that’s fastest.

Writing the renderer

The second step in writing custom tags is to define a Node subclass that has a render() method.

Continuing the above example, we need to define CurrentTimeNode:

from django import template
import datetime

4.6. Custom template tags and filters 319

http://docs.python.org/library/time.html#time.strftime

Django Documentation, Release 1.2.7

class CurrentTimeNode(template.Node):
def __init__(self, format_string):

self.format_string = format_string
def render(self, context):

return datetime.datetime.now().strftime(self.format_string)

Notes:

• __init__() gets the format_string from do_current_time(). Always pass any op-
tions/parameters/arguments to a Node via its __init__().

• The render() method is where the work actually happens.

• render() should never raise TemplateSyntaxError or any other exception. It should fail silently, just
as template filters should.

Ultimately, this decoupling of compilation and rendering results in an efficient template system, because a template
can render multiple contexts without having to be parsed multiple times.

Auto-escaping considerations

The output from template tags is not automatically run through the auto-escaping filters. However, there are still a
couple of things you should keep in mind when writing a template tag.

If the render() function of your template stores the result in a context variable (rather than returning the result in a
string), it should take care to call mark_safe() if appropriate. When the variable is ultimately rendered, it will be
affected by the auto-escape setting in effect at the time, so content that should be safe from further escaping needs to
be marked as such.

Also, if your template tag creates a new context for performing some sub-rendering, set the auto-escape attribute to
the current context’s value. The __init__ method for the Context class takes a parameter called autoescape
that you can use for this purpose. For example:

def render(self, context):
...
new_context = Context({’var’: obj}, autoescape=context.autoescape)
... Do something with new_context ...

This is not a very common situation, but it’s useful if you’re rendering a template yourself. For example:

def render(self, context):
t = template.loader.get_template(’small_fragment.html’)
return t.render(Context({’var’: obj}, autoescape=context.autoescape))

If we had neglected to pass in the current context.autoescape value to our new Context in this example, the
results would have always been automatically escaped, which may not be the desired behavior if the template tag is
used inside a {% autoescape off %} block.

Thread-safety considerations

New in version 1.2: Please, see the release notes Once a node is parsed, its render method may be called any
number of times. Since Django is sometimes run in multi-threaded environments, a single node may be simultaneously
rendering with different contexts in response to two separate requests. Therefore, it’s important to make sure your
template tags are thread safe.

To make sure your template tags are thread safe, you should never store state information on the node itself. For ex-
ample, Django provides a builtin cycle template tag that cycles among a list of given strings each time it’s rendered:

320 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

{% for o in some_list %}
<tr class="{% cycle ’row1’ ’row2’ %}>

...
</tr>

{% endfor %}

A naive implementation of CycleNode might look something like this:

class CycleNode(Node):
def __init__(self, cyclevars):

self.cycle_iter = itertools.cycle(cyclevars)
def render(self, context):

return self.cycle_iter.next()

But, suppose we have two templates rendering the template snippet from above at the same time:

1. Thread 1 performs its first loop iteration, CycleNode.render() returns ‘row1’

2. Thread 2 performs its first loop iteration, CycleNode.render() returns ‘row2’

3. Thread 1 performs its second loop iteration, CycleNode.render() returns ‘row1’

4. Thread 2 performs its second loop iteration, CycleNode.render() returns ‘row2’

The CycleNode is iterating, but it’s iterating globally. As far as Thread 1 and Thread 2 are concerned, it’s always
returning the same value. This is obviously not what we want!

To address this problem, Django provides a render_context that’s associated with the context of the template
that is currently being rendered. The render_context behaves like a Python dictionary, and should be used to
store Node state between invocations of the render method.

Let’s refactor our CycleNode implementation to use the render_context:

class CycleNode(Node):
def __init__(self, cyclevars):

self.cyclevars = cyclevars
def render(self, context):

if self not in context.render_context:
context.render_context[self] = itertools.cycle(self.cyclevars)

cycle_iter = context.render_context[self]
return cycle_iter.next()

Note that it’s perfectly safe to store global information that will not change throughout the life of the Node as an
attribute. In the case of CycleNode, the cyclevars argument doesn’t change after the Node is instantiated, so we
don’t need to put it in the render_context. But state information that is specific to the template that is currently
being rendered, like the current iteration of the CycleNode, should be stored in the render_context.

Note: Notice how we used self to scope the CycleNode specific information within the render_context.
There may be multiple CycleNodes in a given template, so we need to be careful not to clobber another node’s state
information. The easiest way to do this is to always use self as the key into render_context. If you’re keeping
track of several state variables, make render_context[self] a dictionary.

Registering the tag

Finally, register the tag with your module’s Library instance, as explained in “Writing custom template filters”
above. Example:

4.6. Custom template tags and filters 321

Django Documentation, Release 1.2.7

register.tag(’current_time’, do_current_time)

The tag() method takes two arguments:

1. The name of the template tag – a string. If this is left out, the name of the compilation function will be used.

2. The compilation function – a Python function (not the name of the function as a string).

As with filter registration, it is also possible to use this as a decorator:

@register.tag(name="current_time")
def do_current_time(parser, token):

...

@register.tag
def shout(parser, token):

...

If you leave off the name argument, as in the second example above, Django will use the function’s name as the tag
name.

Passing template variables to the tag

Although you can pass any number of arguments to a template tag using token.split_contents(), the argu-
ments are all unpacked as string literals. A little more work is required in order to pass dynamic content (a template
variable) to a template tag as an argument.

While the previous examples have formatted the current time into a string and returned the string, suppose you wanted
to pass in a DateTimeField from an object and have the template tag format that date-time:

<p>This post was last updated at {% format_time blog_entry.date_updated "%Y-%m-%d %I:%M %p" %}.</p>

Initially, token.split_contents() will return three values:

1. The tag name format_time.

2. The string “blog_entry.date_updated” (without the surrounding quotes).

3. The formatting string “%Y-%m-%d %I:%M %p”. The return value from split_contents() will include
the leading and trailing quotes for string literals like this.

Now your tag should begin to look like this:

from django import template
def do_format_time(parser, token):

try:
split_contents() knows not to split quoted strings.
tag_name, date_to_be_formatted, format_string = token.split_contents()

except ValueError:
raise template.TemplateSyntaxError, "%r tag requires exactly two arguments" % token.contents.split()[0]

if not (format_string[0] == format_string[-1] and format_string[0] in (’"’, "’")):
raise template.TemplateSyntaxError, "%r tag’s argument should be in quotes" % tag_name

return FormatTimeNode(date_to_be_formatted, format_string[1:-1])

You also have to change the renderer to retrieve the actual contents of the date_updated property of the
blog_entry object. This can be accomplished by using the Variable() class in django.template.

To use the Variable class, simply instantiate it with the name of the variable to be resolved, and then call
variable.resolve(context). So, for example:

322 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

class FormatTimeNode(template.Node):
def __init__(self, date_to_be_formatted, format_string):

self.date_to_be_formatted = template.Variable(date_to_be_formatted)
self.format_string = format_string

def render(self, context):
try:

actual_date = self.date_to_be_formatted.resolve(context)
return actual_date.strftime(self.format_string)

except template.VariableDoesNotExist:
return ’’

Variable resolution will throw a VariableDoesNotExist exception if it cannot resolve the string passed to it in
the current context of the page.

Shortcut for simple tags

Many template tags take a number of arguments – strings or a template variables – and return a string after doing some
processing based solely on the input argument and some external information. For example, the current_time tag
we wrote above is of this variety: we give it a format string, it returns the time as a string.

To ease the creation of the types of tags, Django provides a helper function, simple_tag. This function, which is
a method of django.template.Library, takes a function that accepts any number of arguments, wraps it in a
render function and the other necessary bits mentioned above and registers it with the template system.

Our earlier current_time function could thus be written like this:

def current_time(format_string):
return datetime.datetime.now().strftime(format_string)

register.simple_tag(current_time)

The decorator syntax also works:

@register.simple_tag
def current_time(format_string):

...

A couple of things to note about the simple_tag helper function:

• Checking for the required number of arguments, etc., has already been done by the time our function is called,
so we don’t need to do that.

• The quotes around the argument (if any) have already been stripped away, so we just receive a plain string.

• If the argument was a template variable, our function is passed the current value of the variable, not the variable
itself.

When your template tag does not need access to the current context, writing a function to work with the input values
and using the simple_tag helper is the easiest way to create a new tag.

Inclusion tags

Another common type of template tag is the type that displays some data by rendering another template. For example,
Django’s admin interface uses custom template tags to display the buttons along the bottom of the “add/change” form
pages. Those buttons always look the same, but the link targets change depending on the object being edited – so
they’re a perfect case for using a small template that is filled with details from the current object. (In the admin’s case,
this is the submit_row tag.)

4.6. Custom template tags and filters 323

Django Documentation, Release 1.2.7

These sorts of tags are called “inclusion tags”.

Writing inclusion tags is probably best demonstrated by example. Let’s write a tag that outputs a list of choices for a
given Poll object, such as was created in the tutorials. We’ll use the tag like this:

{% show_results poll %}

...and the output will be something like this:

First choice
Second choice
Third choice

First, define the function that takes the argument and produces a dictionary of data for the result. The important point
here is we only need to return a dictionary, not anything more complex. This will be used as a template context for the
template fragment. Example:

def show_results(poll):
choices = poll.choice_set.all()
return {’choices’: choices}

Next, create the template used to render the tag’s output. This template is a fixed feature of the tag: the tag writer
specifies it, not the template designer. Following our example, the template is very simple:

{% for choice in choices %}

 {{ choice }}
{% endfor %}

Now, create and register the inclusion tag by calling the inclusion_tag() method on a Library object. Fol-
lowing our example, if the above template is in a file called results.html in a directory that’s searched by the
template loader, we’d register the tag like this:

Here, register is a django.template.Library instance, as before
register.inclusion_tag(’results.html’)(show_results)

As always, decorator syntax works as well, so we could have written:

@register.inclusion_tag(’results.html’)
def show_results(poll):

...

...when first creating the function.

Sometimes, your inclusion tags might require a large number of arguments, making it a pain for template authors to
pass in all the arguments and remember their order. To solve this, Django provides a takes_context option for
inclusion tags. If you specify takes_context in creating a template tag, the tag will have no required arguments,
and the underlying Python function will have one argument – the template context as of when the tag was called.

For example, say you’re writing an inclusion tag that will always be used in a context that contains home_link and
home_title variables that point back to the main page. Here’s what the Python function would look like:

The first argument *must* be called "context" here.
def jump_link(context):

return {
’link’: context[’home_link’],
’title’: context[’home_title’],

}

324 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

Register the custom tag as an inclusion tag with takes_context=True.
register.inclusion_tag(’link.html’, takes_context=True)(jump_link)

(Note that the first parameter to the function must be called context.)

In that register.inclusion_tag() line, we specified takes_context=True and the name of the template.
Here’s what the template link.html might look like:

Jump directly to {{ title }}.

Then, any time you want to use that custom tag, load its library and call it without any arguments, like so:

{% jump_link %}

Note that when you’re using takes_context=True, there’s no need to pass arguments to the template tag. It
automatically gets access to the context.

The takes_context parameter defaults to False. When it’s set to True, the tag is passed the context object, as in
this example. That’s the only difference between this case and the previous inclusion_tag example.

Setting a variable in the context

The above examples simply output a value. Generally, it’s more flexible if your template tags set template variables
instead of outputting values. That way, template authors can reuse the values that your template tags create.

To set a variable in the context, just use dictionary assignment on the context object in the render() method. Here’s
an updated version of CurrentTimeNode that sets a template variable current_time instead of outputting it:

class CurrentTimeNode2(template.Node):
def __init__(self, format_string):

self.format_string = format_string
def render(self, context):

context[’current_time’] = datetime.datetime.now().strftime(self.format_string)
return ’’

Note that render() returns the empty string. render() should always return string output. If all the template tag
does is set a variable, render() should return the empty string.

Here’s how you’d use this new version of the tag:

{% current_time "%Y-%M-%d %I:%M %p" %}<p>The time is {{ current_time }}.</p>

Variable scope in context

Any variable set in the context will only be available in the same block of the template in which it was assigned.
This behaviour is intentional; it provides a scope for variables so that they don’t conflict with context in other blocks.

But, there’s a problem with CurrentTimeNode2: The variable name current_time is hard-coded. This
means you’ll need to make sure your template doesn’t use {{ current_time }} anywhere else, because the
{% current_time %} will blindly overwrite that variable’s value. A cleaner solution is to make the template tag
specify the name of the output variable, like so:

{% current_time "%Y-%M-%d %I:%M %p" as my_current_time %}
<p>The current time is {{ my_current_time }}.</p>

To do that, you’ll need to refactor both the compilation function and Node class, like so:

4.6. Custom template tags and filters 325

Django Documentation, Release 1.2.7

class CurrentTimeNode3(template.Node):
def __init__(self, format_string, var_name):

self.format_string = format_string
self.var_name = var_name

def render(self, context):
context[self.var_name] = datetime.datetime.now().strftime(self.format_string)
return ’’

import re
def do_current_time(parser, token):

This version uses a regular expression to parse tag contents.
try:

Splitting by None == splitting by spaces.
tag_name, arg = token.contents.split(None, 1)

except ValueError:
raise template.TemplateSyntaxError, "%r tag requires arguments" % token.contents.split()[0]

m = re.search(r’(.*?) as (\w+)’, arg)
if not m:

raise template.TemplateSyntaxError, "%r tag had invalid arguments" % tag_name
format_string, var_name = m.groups()
if not (format_string[0] == format_string[-1] and format_string[0] in (’"’, "’")):

raise template.TemplateSyntaxError, "%r tag’s argument should be in quotes" % tag_name
return CurrentTimeNode3(format_string[1:-1], var_name)

The difference here is that do_current_time() grabs the format string and the variable name, passing both to
CurrentTimeNode3.

Parsing until another block tag

Template tags can work in tandem. For instance, the standard {% comment %} tag hides everything until {%
endcomment %}. To create a template tag such as this, use parser.parse() in your compilation function.

Here’s how the standard {% comment %} tag is implemented:

def do_comment(parser, token):
nodelist = parser.parse((’endcomment’,))
parser.delete_first_token()
return CommentNode()

class CommentNode(template.Node):
def render(self, context):

return ’’

parser.parse() takes a tuple of names of block tags ‘’to parse until’‘. It returns an instance of
django.template.NodeList, which is a list of all Node objects that the parser encountered ‘’before” it en-
countered any of the tags named in the tuple.

In "nodelist = parser.parse((’endcomment’,))" in the above example, nodelist is a list of
all nodes between the {% comment %} and {% endcomment %}, not counting {% comment %} and {%
endcomment %} themselves.

After parser.parse() is called, the parser hasn’t yet “consumed” the {% endcomment %} tag, so the code
needs to explicitly call parser.delete_first_token().

CommentNode.render() simply returns an empty string. Anything between {% comment %} and {%
endcomment %} is ignored.

326 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

Parsing until another block tag, and saving contents

In the previous example, do_comment() discarded everything between {% comment %} and {% endcomment
%}. Instead of doing that, it’s possible to do something with the code between block tags.

For example, here’s a custom template tag, {% upper %}, that capitalizes everything between itself and {%
endupper %}.

Usage:

{% upper %}This will appear in uppercase, {{ your_name }}.{% endupper %}

As in the previous example, we’ll use parser.parse(). But this time, we pass the resulting nodelist to the
Node:

def do_upper(parser, token):
nodelist = parser.parse((’endupper’,))
parser.delete_first_token()
return UpperNode(nodelist)

class UpperNode(template.Node):
def __init__(self, nodelist):

self.nodelist = nodelist
def render(self, context):

output = self.nodelist.render(context)
return output.upper()

The only new concept here is the self.nodelist.render(context) in UpperNode.render().

For more examples of complex rendering, see the source code for {% if %}, {% for %}, {% ifequal %} and
{% ifchanged %}. They live in django/template/defaulttags.py.

4.7 Writing a custom storage system

If you need to provide custom file storage – a common example is storing files on some remote system – you can do
so by defining a custom storage class. You’ll need to follow these steps:

1. Your custom storage system must be a subclass of django.core.files.storage.Storage:

from django.core.files.storage import Storage

class MyStorage(Storage):
...

2. Django must be able to instantiate your storage system without any arguments. This means that any settings
should be taken from django.conf.settings:

from django.conf import settings
from django.core.files.storage import Storage

class MyStorage(Storage):
def __init__(self, option=None):

if not option:
option = settings.CUSTOM_STORAGE_OPTIONS

...

3. Your storage class must implement the _open() and _save() methods, along with any other methods ap-
propriate to your storage class. See below for more on these methods.

4.7. Writing a custom storage system 327

Django Documentation, Release 1.2.7

In addition, if your class provides local file storage, it must override the path() method.

Your custom storage system may override any of the storage methods explained in File storage API, but you must
implement the following methods:

• Storage.delete()

• Storage.exists()

• Storage.listdir()

• Storage.size()

• Storage.url()

You’ll also usually want to use hooks specifically designed for custom storage objects. These are:

4.7.1 _open(name, mode=’rb’)

Required.

Called by Storage.open(), this is the actual mechanism the storage class uses to open the file. This must return
a File object, though in most cases, you’ll want to return some subclass here that implements logic specific to the
backend storage system.

4.7.2 _save(name, content)

Called by Storage.save(). The name will already have gone through get_valid_name() and
get_available_name(), and the content will be a File object itself.

Should return the actual name of name of the file saved (usually the name passed in, but if the storage needs to change
the file name return the new name instead).

4.7.3 get_valid_name(name)

Returns a filename suitable for use with the underlying storage system. The name argument passed to this method is
the original filename sent to the server, after having any path information removed. Override this to customize how
non-standard characters are converted to safe filenames.

The code provided on Storage retains only alpha-numeric characters, periods and underscores from the original
filename, removing everything else.

4.7.4 get_available_name(name)

Returns a filename that is available in the storage mechanism, possibly taking the provided filename into account. The
name argument passed to this method will have already cleaned to a filename valid for the storage system, according
to the get_valid_name() method described above.

The code provided on Storage simply appends "_1", "_2", etc. to the filename until it finds one that’s available
in the destination directory.

328 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

4.8 Deploying Django

Django’s chock-full of shortcuts to make Web developer’s lives easier, but all those tools are of no use if you can’t
easily deploy your sites. Since Django’s inception, ease of deployment has been a major goal. There’s a number of
good ways to easily deploy Django:

4.8.1 How to use Django with Apache and mod_wsgi

Deploying Django with Apache and mod_wsgi is the recommended way to get Django into production.

mod_wsgi is an Apache module which can be used to host any Python application which supports the Python WSGI
interface, including Django. Django will work with any version of Apache which supports mod_wsgi.

The official mod_wsgi documentation is fantastic; it’s your source for all the details about how to use mod_wsgi.
You’ll probably want to start with the installation and configuration documentation.

Basic configuration

Once you’ve got mod_wsgi installed and activated, edit your httpd.conf file and add:

WSGIScriptAlias / /path/to/mysite/apache/django.wsgi

The first bit above is the url you want to be serving your application at (/ indicates the root url), and the second is the
location of a “WSGI file” – see below – on your system, usually inside of your project. This tells Apache to serve any
request below the given URL using the WSGI application defined by that file.

Next we’ll need to actually create this WSGI application, so create the file mentioned in the second part of
WSGIScriptAlias and add:

import os
import sys

os.environ[’DJANGO_SETTINGS_MODULE’] = ’mysite.settings’

import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()

If your project is not on your PYTHONPATH by default you can add:

path = ’/path/to/mysite’
if path not in sys.path:

sys.path.append(path)

just below the import sys line to place your project on the path. Remember to replace ‘mysite.settings’ with your
correct settings file, and ‘/path/to/mysite’ with your own project’s location.

Serving media files

Django doesn’t serve media files itself; it leaves that job to whichever Web server you choose.

We recommend using a separate Web server – i.e., one that’s not also running Django – for serving media. Here are
some good choices:

• lighttpd

• Nginx

4.8. Deploying Django 329

http://httpd.apache.org/
http://code.google.com/p/modwsgi/
http://www.python.org/dev/peps/pep-0333/
http://www.python.org/dev/peps/pep-0333/
http://code.google.com/p/modwsgi/
http://code.google.com/p/modwsgi/wiki/InstallationInstructions
http://www.lighttpd.net/
http://wiki.nginx.org/Main

Django Documentation, Release 1.2.7

• TUX

• A stripped-down version of Apache

• Cherokee

If, however, you have no option but to serve media files on the same Apache VirtualHost as Django, you can set
up Apache to serve some URLs as static media, and others using the mod_wsgi interface to Django.

This example sets up Django at the site root, but explicitly serves robots.txt, favicon.ico, any CSS file, and
anything in the /media/ URL space as a static file. All other URLs will be served using mod_wsgi:

Alias /robots.txt /usr/local/wsgi/static/robots.txt
Alias /favicon.ico /usr/local/wsgi/static/favicon.ico

AliasMatch ^/([^/]*\.css) /usr/local/wsgi/static/styles/$1

Alias /media/ /usr/local/wsgi/static/media/

<Directory /usr/local/wsgi/static>
Order deny,allow
Allow from all
</Directory>

WSGIScriptAlias / /usr/local/wsgi/scripts/django.wsgi

<Directory /usr/local/wsgi/scripts>
Order allow,deny
Allow from all
</Directory>

More details on configuring a mod_wsgi site to serve static files can be found in the mod_wsgi documentation on
hosting static files.

Details

For more details, see the mod_wsgi documentation on Django integration, which explains the above in more detail,
and walks through all the various options you’ve got when deploying under mod_wsgi.

4.8.2 How to use Django with Apache and mod_python

Warning: Support for mod_python will be deprecated in a future release of Django. If you are configuring a new
deployment, you are strongly encouraged to consider using mod_wsgi or any of the other supported backends.

The mod_python module for Apache can be used to deploy Django to a production server, although it has been mostly
superseded by the simpler mod_wsgi deployment option.

mod_python is similar to (and inspired by) mod_perl : It embeds Python within Apache and loads Python code into
memory when the server starts. Code stays in memory throughout the life of an Apache process, which leads to
significant performance gains over other server arrangements.

Django requires Apache 2.x and mod_python 3.x, and you should use Apache’s prefork MPM, as opposed to the
worker MPM.

See Also:

330 Chapter 4. “How-to” guides

http://en.wikipedia.org/wiki/TUX_web_server
http://httpd.apache.org/
http://www.cherokee-project.com/
http://code.google.com/p/modwsgi/wiki/ConfigurationGuidelines#Hosting_Of_Static_Files
http://code.google.com/p/modwsgi/wiki/IntegrationWithDjango
http://www.modpython.org/
http://httpd.apache.org/
http://perl.apache.org/
http://httpd.apache.org/docs/2.2/mod/prefork.html
http://httpd.apache.org/docs/2.2/mod/worker.html

Django Documentation, Release 1.2.7

• Apache is a big, complex animal, and this document only scratches the surface of what Apache can do. If you
need more advanced information about Apache, there’s no better source than Apache’s own official documenta-
tion

• You may also be interested in How to use Django with FastCGI, SCGI, or AJP.

Basic configuration

To configure Django with mod_python, first make sure you have Apache installed, with the mod_python module
activated.

Then edit your httpd.conf file and add the following:

<Location "/mysite/">
SetHandler python-program
PythonHandler django.core.handlers.modpython
SetEnv DJANGO_SETTINGS_MODULE mysite.settings
PythonOption django.root /mysite
PythonDebug On

</Location>

...and replace mysite.settings with the Python import path to your Django project’s settings file.

This tells Apache: “Use mod_python for any URL at or under ‘/mysite/’, using the Django mod_python handler.” It
passes the value of DJANGO_SETTINGS_MODULE so mod_python knows which settings to use.

Because mod_python does not know we are serving this site from underneath the /mysite/ prefix, this value needs
to be passed through to the mod_python handler in Django, via the PythonOption django.root ... line.
The value set on that line (the last item) should match the string given in the <Location ...> directive. The effect
of this is that Django will automatically strip the /mysite string from the front of any URLs before matching them
against your URLconf patterns. If you later move your site to live under /mysite2, you will not have to change
anything except the django.root option in the config file.

When using django.root you should make sure that what’s left, after the prefix has been removed, begins with
a slash. Your URLconf patterns that are expecting an initial slash will then work correctly. In the above example,
since we want to send things like /mysite/admin/ to /admin/, we need to remove the string /mysite from
the beginning, so that is the django.root value. It would be an error to use /mysite/ (with a trailing slash) in
this case.

Note that we’re using the <Location> directive, not the <Directory> directive. The latter is used for pointing at
places on your filesystem, whereas <Location> points at places in the URL structure of a Web site. <Directory>
would be meaningless here.

Also, if your Django project is not on the default PYTHONPATH for your computer, you’ll have to tell mod_python
where your project can be found:

<Location "/mysite/">
SetHandler python-program
PythonHandler django.core.handlers.modpython
SetEnv DJANGO_SETTINGS_MODULE mysite.settings
PythonOption django.root /mysite
PythonDebug On
PythonPath "[’/path/to/project’] + sys.path"

</Location>

The value you use for PythonPath should include the parent directories of all the modules you are going to import
in your application. It should also include the parent directory of the DJANGO_SETTINGS_MODULE location. This
is exactly the same situation as setting the Python path for interactive usage. Whenever you try to import something,

4.8. Deploying Django 331

http://httpd.apache.org/docs/
http://httpd.apache.org/docs/

Django Documentation, Release 1.2.7

Python will run through all the directories in sys.path in turn, from first to last, and try to import from each directory
until one succeeds.

Make sure that your Python source files’ permissions are set such that the Apache user (usually named apache or
httpd on most systems) will have read access to the files.

An example might make this clearer. Suppose you have some applications under /usr/local/django-apps/
(for example, /usr/local/django-apps/weblog/ and so forth), your settings file is at
/var/www/mysite/settings.py and you have specified DJANGO_SETTINGS_MODULE as in the above
example. In this case, you would need to write your PythonPath directive as:

PythonPath "[’/usr/local/django-apps/’, ’/var/www’] + sys.path"

With this path, import weblog and import mysite.settings will both work. If you had import
blogroll in your code somewhere and blogroll lived under the weblog/ directory, you would also need
to add /usr/local/django-apps/weblog/ to your PythonPath. Remember: the parent directories of
anything you import directly must be on the Python path.

Note: If you’re using Windows, we still recommended that you use forward slashes in the pathnames, even though
Windows normally uses the backslash character as its native separator. Apache knows how to convert from the forward
slash format to the native format, so this approach is portable and easier to read. (It avoids tricky problems with having
to double-escape backslashes.)

This is valid even on a Windows system:

PythonPath "[’c:/path/to/project’] + sys.path"

You can also add directives such as PythonAutoReload Off for performance. See the mod_python documenta-
tion for a full list of options.

Note that you should set PythonDebug Off on a production server. If you leave PythonDebug On, your users
would see ugly (and revealing) Python tracebacks if something goes wrong within mod_python.

Restart Apache, and any request to /mysite/ or below will be served by Django. Note that Django’s URLconfs
won’t trim the “/mysite/” – they get passed the full URL.

When deploying Django sites on mod_python, you’ll need to restart Apache each time you make changes to your
Python code.

Multiple Django installations on the same Apache

It’s entirely possible to run multiple Django installations on the same Apache instance. Just use VirtualHost for
that, like so:

NameVirtualHost *

<VirtualHost *>
ServerName www.example.com
...
SetEnv DJANGO_SETTINGS_MODULE mysite.settings

</VirtualHost>

<VirtualHost *>
ServerName www2.example.com
...
SetEnv DJANGO_SETTINGS_MODULE mysite.other_settings

</VirtualHost>

332 Chapter 4. “How-to” guides

http://modpython.org/live/current/doc-html/directives.html
http://modpython.org/live/current/doc-html/directives.html

Django Documentation, Release 1.2.7

If you need to put two Django installations within the same VirtualHost (or in different VirtualHost blocks
that share the same server name), you’ll need to take a special precaution to ensure mod_python’s cache doesn’t mess
things up. Use the PythonInterpreter directive to give different <Location> directives separate interpreters:

<VirtualHost *>
ServerName www.example.com
...
<Location "/something">

SetEnv DJANGO_SETTINGS_MODULE mysite.settings
PythonInterpreter mysite

</Location>

<Location "/otherthing">
SetEnv DJANGO_SETTINGS_MODULE mysite.other_settings
PythonInterpreter othersite

</Location>
</VirtualHost>

The values of PythonInterpreter don’t really matter, as long as they’re different between the two Location
blocks.

Running a development server with mod_python

If you use mod_python for your development server, you can avoid the hassle of having to restart the server each time
you make code changes. Just set MaxRequestsPerChild 1 in your httpd.conf file to force Apache to reload
everything for each request. But don’t do that on a production server, or we’ll revoke your Django privileges.

If you’re the type of programmer who debugs using scattered print statements, note that output to stdout will not
appear in the Apache log and can even cause response errors.

If you have the need to print debugging information in a mod_python setup, you have a few options. You can print to
stderr explicitly, like so:

print >> sys.stderr, ’debug text’
sys.stderr.flush()

(note that stderr is buffered, so calling flush is necessary if you wish debugging information to be displayed
promptly.)

A more compact approach is to use an assertion:

assert False, ’debug text’

Another alternative is to add debugging information to the template of your page.

Serving media files

Django doesn’t serve media files itself; it leaves that job to whichever Web server you choose.

We recommend using a separate Web server – i.e., one that’s not also running Django – for serving media. Here are
some good choices:

• lighttpd

• Nginx

• TUX

• A stripped-down version of Apache

4.8. Deploying Django 333

http://blog.dscpl.com.au/2009/04/wsgi-and-printing-to-standard-output.html
http://www.lighttpd.net/
http://wiki.nginx.org/Main
http://en.wikipedia.org/wiki/TUX_web_server
http://httpd.apache.org/

Django Documentation, Release 1.2.7

• Cherokee

If, however, you have no option but to serve media files on the same Apache VirtualHost as Django, here’s how
you can turn off mod_python for a particular part of the site:

<Location "/media">
SetHandler None

</Location>

Just change Location to the root URL of your media files. You can also use <LocationMatch> to match a
regular expression.

This example sets up Django at the site root but explicitly disables Django for the media subdirectory and any URL
that ends with .jpg, .gif or .png:

<Location "/">
SetHandler python-program
PythonHandler django.core.handlers.modpython
SetEnv DJANGO_SETTINGS_MODULE mysite.settings

</Location>

<Location "/media">
SetHandler None

</Location>

<LocationMatch "\.(jpg|gif|png)$">
SetHandler None

</LocationMatch>

Serving the admin files

Note that the Django development server automagically serves admin media files, but this is not the case when you
use any other server arrangement. You’re responsible for setting up Apache, or whichever media server you’re using,
to serve the admin files.

The admin files live in (django/contrib/admin/media) of the Django distribution.

Here are two recommended approaches:

1. Create a symbolic link to the admin media files from within your document root. This way, all of your Django-
related files – code and templates – stay in one place, and you’ll still be able to svn update your code to get
the latest admin templates, if they change.

2. Or, copy the admin media files so that they live within your Apache document root.

Using “eggs” with mod_python

If you installed Django from a Python egg or are using eggs in your Django project, some extra configuration is
required. Create an extra file in your project (or somewhere else) that contains something like the following:

import os
os.environ[’PYTHON_EGG_CACHE’] = ’/some/directory’

Here, /some/directory is a directory that the Apache Web server process can write to. It will be used as the
location for any unpacking of code the eggs need to do.

Then you have to tell mod_python to import this file before doing anything else. This is done using the PythonIm-
port directive to mod_python. You need to ensure that you have specified the PythonInterpreter directive to
mod_python as described above (you need to do this even if you aren’t serving multiple installations in this case).

334 Chapter 4. “How-to” guides

http://www.cherokee-project.com/
http://peak.telecommunity.com/DevCenter/PythonEggs
http://www.modpython.org/live/current/doc-html/dir-other-pimp.html
http://www.modpython.org/live/current/doc-html/dir-other-pimp.html

Django Documentation, Release 1.2.7

Then add the PythonImport line in the main server configuration (i.e., outside the Location or VirtualHost
sections). For example:

PythonInterpreter my_django
PythonImport /path/to/my/project/file.py my_django

Note that you can use an absolute path here (or a normal dotted import path), as described in the mod_python manual.
We use an absolute path in the above example because if any Python path modifications are required to access your
project, they will not have been done at the time the PythonImport line is processed.

Error handling

When you use Apache/mod_python, errors will be caught by Django – in other words, they won’t propagate to the
Apache level and won’t appear in the Apache error_log.

The exception for this is if something is really wonky in your Django setup. In that case, you’ll see an “Internal
Server Error” page in your browser and the full Python traceback in your Apache error_log file. The error_log
traceback is spread over multiple lines. (Yes, this is ugly and rather hard to read, but it’s how mod_python does things.)

If you get a segmentation fault

If Apache causes a segmentation fault, there are two probable causes, neither of which has to do with Django itself.

1. It may be because your Python code is importing the “pyexpat” module, which may conflict with the version
embedded in Apache. For full information, see Expat Causing Apache Crash.

2. It may be because you’re running mod_python and mod_php in the same Apache instance, with MySQL as your
database backend. In some cases, this causes a known mod_python issue due to version conflicts in PHP and
the Python MySQL backend. There’s full information in the mod_python FAQ entry.

If you continue to have problems setting up mod_python, a good thing to do is get a barebones mod_python site
working, without the Django framework. This is an easy way to isolate mod_python-specific problems. Getting
mod_python Working details this procedure.

The next step should be to edit your test code and add an import of any Django-specific code you’re using – your
views, your models, your URLconf, your RSS configuration, etc. Put these imports in your test handler function and
access your test URL in a browser. If this causes a crash, you’ve confirmed it’s the importing of Django code that
causes the problem. Gradually reduce the set of imports until it stops crashing, so as to find the specific module that
causes the problem. Drop down further into modules and look into their imports, as necessary.

If you get a UnicodeEncodeError

If you’re taking advantage of the internationalization features of Django (see Internationalization and localiza-
tion) and you intend to allow users to upload files, you must ensure that the environment used to start Apache
is configured to accept non-ASCII file names. If your environment is not correctly configured, you will trigger
UnicodeEncodeError exceptions when calling functions like os.path() on filenames that contain non-ASCII
characters.

To avoid these problems, the environment used to start Apache should contain settings analogous to the following:

export LANG=’en_US.UTF-8’
export LC_ALL=’en_US.UTF-8’

Consult the documentation for your operating system for the appropriate syntax and location to put these configuration
items; /etc/apache2/envvars is a common location on Unix platforms. Once you have added these statements
to your environment, restart Apache.

4.8. Deploying Django 335

http://www.modpython.org/live/current/doc-html/dir-other-pimp.html
http://www.dscpl.com.au/wiki/ModPython/Articles/ExpatCausingApacheCrash
http://modpython.org/FAQ/faqw.py?req=show&file=faq02.013.htp
http://www.dscpl.com.au/wiki/ModPython/Articles/GettingModPythonWorking
http://www.dscpl.com.au/wiki/ModPython/Articles/GettingModPythonWorking

Django Documentation, Release 1.2.7

4.8.3 How to use Django with FastCGI, SCGI, or AJP

Although the current preferred setup for running Django is Apache with mod_wsgi, many people use shared hosting,
on which protocols such as FastCGI, SCGI or AJP are the only viable options. In some setups, these protocols may
provide better performance than mod_wsgi.

Note

This document primarily focuses on FastCGI. Other protocols, such as SCGI and AJP, are also supported, through the
flup Python package. See the Protocols section below for specifics about SCGI and AJP.

Essentially, FastCGI is an efficient way of letting an external application serve pages to a Web server. The Web server
delegates the incoming Web requests (via a socket) to FastCGI, which executes the code and passes the response back
to the Web server, which, in turn, passes it back to the client’s Web browser.

Like mod_python, FastCGI allows code to stay in memory, allowing requests to be served with no startup time. Unlike
mod_python (or mod_perl), a FastCGI process doesn’t run inside the Web server process, but in a separate, persistent
process.

Why run code in a separate process?

The traditional mod_* arrangements in Apache embed various scripting languages (most notably PHP, Python and
Perl) inside the process space of your Web server. Although this lowers startup time – because code doesn’t have to
be read off disk for every request – it comes at the cost of memory use. For mod_python, for example, every Apache
process gets its own Python interpreter, which uses up a considerable amount of RAM.

Due to the nature of FastCGI, it’s even possible to have processes that run under a different user account than the Web
server process. That’s a nice security benefit on shared systems, because it means you can secure your code from other
users.

Prerequisite: flup

Before you can start using FastCGI with Django, you’ll need to install flup, a Python library for dealing with FastCGI.
Version 0.5 or newer should work fine.

Starting your FastCGI server

FastCGI operates on a client-server model, and in most cases you’ll be starting the FastCGI process on your own. Your
Web server (be it Apache, lighttpd, or otherwise) only contacts your Django-FastCGI process when the server needs
a dynamic page to be loaded. Because the daemon is already running with the code in memory, it’s able to serve the
response very quickly.

Note

If you’re on a shared hosting system, you’ll probably be forced to use Web server-managed FastCGI processes. See
the section below on running Django with Web server-managed processes for more information.

A Web server can connect to a FastCGI server in one of two ways: It can use either a Unix domain socket (a “named
pipe” on Win32 systems), or it can use a TCP socket. What you choose is a manner of preference; a TCP socket is
usually easier due to permissions issues.

To start your server, first change into the directory of your project (wherever your manage.py is), and then run the
runfcgi command:

336 Chapter 4. “How-to” guides

http://code.google.com/p/modwsgi/
http://www.modpython.org/
http://perl.apache.org/
http://www.saddi.com/software/flup/

Django Documentation, Release 1.2.7

./manage.py runfcgi [options]

If you specify help as the only option after runfcgi, it’ll display a list of all the available options.

You’ll need to specify either a socket, a protocol or both host and port. Then, when you set up your Web
server, you’ll just need to point it at the host/port or socket you specified when starting the FastCGI server. See the
examples, below.

Protocols

Django supports all the protocols that flup does, namely fastcgi, SCGI and AJP1.3 (the Apache JServ Protocol, version
1.3). Select your preferred protocol by using the protocol=<protocol_name> option with ./manage.py
runfcgi – where <protocol_name> may be one of: fcgi (the default), scgi or ajp. For example:

./manage.py runfcgi protocol=scgi

Examples

Running a threaded server on a TCP port:

./manage.py runfcgi method=threaded host=127.0.0.1 port=3033

Running a preforked server on a Unix domain socket:

./manage.py runfcgi method=prefork socket=/home/user/mysite.sock pidfile=django.pid

Socket security

Django’s default umask requires that the webserver and the Django fastcgi process be run with the same group and
user. For increased security, you can run them under the same group but as different users. If you do this, you will
need to set the umask to 0002 using the umask argument to runfcgi.

Run without daemonizing (backgrounding) the process (good for debugging):

./manage.py runfcgi daemonize=false socket=/tmp/mysite.sock maxrequests=1

Stopping the FastCGI daemon

If you have the process running in the foreground, it’s easy enough to stop it: Simply hitting Ctrl-C will stop and
quit the FastCGI server. However, when you’re dealing with background processes, you’ll need to resort to the Unix
kill command.

If you specify the pidfile option to runfcgi, you can kill the running FastCGI daemon like this:

kill ‘cat $PIDFILE‘

...where $PIDFILE is the pidfile you specified.

To easily restart your FastCGI daemon on Unix, try this small shell script:

#!/bin/bash

Replace these three settings.
PROJDIR="/home/user/myproject"

4.8. Deploying Django 337

http://www.saddi.com/software/flup/
http://www.fastcgi.com/
http://python.ca/scgi/protocol.txt
http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html

Django Documentation, Release 1.2.7

PIDFILE="$PROJDIR/mysite.pid"
SOCKET="$PROJDIR/mysite.sock"

cd $PROJDIR
if [-f $PIDFILE]; then

kill ‘cat -- $PIDFILE‘
rm -f -- $PIDFILE

fi

exec /usr/bin/env - \
PYTHONPATH="../python:.." \
./manage.py runfcgi socket=$SOCKET pidfile=$PIDFILE

Apache setup

To use Django with Apache and FastCGI, you’ll need Apache installed and configured, with mod_fastcgi installed and
enabled. Consult the Apache documentation for instructions.

Once you’ve got that set up, point Apache at your Django FastCGI instance by editing the httpd.conf (Apache
configuration) file. You’ll need to do two things:

• Use the FastCGIExternalServer directive to specify the location of your FastCGI server.

• Use mod_rewrite to point URLs at FastCGI as appropriate.

Specifying the location of the FastCGI server

The FastCGIExternalServer directive tells Apache how to find your FastCGI server. As the FastCGIExter-
nalServer docs explain, you can specify either a socket or a host. Here are examples of both:

Connect to FastCGI via a socket / named pipe.
FastCGIExternalServer /home/user/public_html/mysite.fcgi -socket /home/user/mysite.sock

Connect to FastCGI via a TCP host/port.
FastCGIExternalServer /home/user/public_html/mysite.fcgi -host 127.0.0.1:3033

In either case, the file /home/user/public_html/mysite.fcgi doesn’t actually have to exist. It’s just a URL
used by the Web server internally – a hook for signifying which requests at a URL should be handled by FastCGI.
(More on this in the next section.)

Using mod_rewrite to point URLs at FastCGI

The second step is telling Apache to use FastCGI for URLs that match a certain pattern. To do this, use the mod_rewrite
module and rewrite URLs to mysite.fcgi (or whatever you specified in the FastCGIExternalServer direc-
tive, as explained in the previous section).

In this example, we tell Apache to use FastCGI to handle any request that doesn’t represent a file on the filesystem and
doesn’t start with /media/. This is probably the most common case, if you’re using Django’s admin site:

<VirtualHost 12.34.56.78>
ServerName example.com
DocumentRoot /home/user/public_html
Alias /media /home/user/python/django/contrib/admin/media
RewriteEngine On
RewriteRule ^/(media.*)$ /$1 [QSA,L,PT]

338 Chapter 4. “How-to” guides

http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html
http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html#FastCgiExternalServer
http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html#FastCgiExternalServer
http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html

Django Documentation, Release 1.2.7

RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^/(.*)$ /mysite.fcgi/$1 [QSA,L]

</VirtualHost>

Django will automatically use the pre-rewrite version of the URL when constructing URLs with the {% url %}
template tag (and similar methods).

lighttpd setup

lighttpd is a lightweight Web server commonly used for serving static files. It supports FastCGI natively and, thus, is
a good choice for serving both static and dynamic pages, if your site doesn’t have any Apache-specific needs.

Make sure mod_fastcgi is in your modules list, somewhere after mod_rewrite and mod_access, but not after
mod_accesslog. You’ll probably want mod_alias as well, for serving admin media.

Add the following to your lighttpd config file:

server.document-root = "/home/user/public_html"
fastcgi.server = (

"/mysite.fcgi" => (
"main" => (

Use host / port instead of socket for TCP fastcgi
"host" => "127.0.0.1",
"port" => 3033,
"socket" => "/home/user/mysite.sock",
"check-local" => "disable",

)
),

)
alias.url = (

"/media" => "/home/user/django/contrib/admin/media/",
)

url.rewrite-once = (
"^(/media.*)$" => "$1",
"^/favicon\.ico$" => "/media/favicon.ico",
"^(/.*)$" => "/mysite.fcgi$1",

)

Running multiple Django sites on one lighttpd

lighttpd lets you use “conditional configuration” to allow configuration to be customized per host. To specify multiple
FastCGI sites, just add a conditional block around your FastCGI config for each site:

If the hostname is ’www.example1.com’...
$HTTP["host"] == "www.example1.com" {

server.document-root = "/foo/site1"
fastcgi.server = (

...
)
...

}

If the hostname is ’www.example2.com’...
$HTTP["host"] == "www.example2.com" {

server.document-root = "/foo/site2"

4.8. Deploying Django 339

http://www.lighttpd.net/

Django Documentation, Release 1.2.7

fastcgi.server = (
...

)
...

}

You can also run multiple Django installations on the same site simply by specifying multiple entries in the
fastcgi.server directive. Add one FastCGI host for each.

Cherokee setup

Cherokee is a very fast, flexible and easy to configure Web Server. It supports the widespread technologies nowa-
days: FastCGI, SCGI, PHP, CGI, SSI, TLS and SSL encrypted connections, Virtual hosts, Authentication, on the fly
encoding, Load Balancing, Apache compatible log files, Data Base Balancer, Reverse HTTP Proxy and much more.

The Cherokee project provides a documentation to setting up Django with Cherokee.

Running Django on a shared-hosting provider with Apache

Many shared-hosting providers don’t allow you to run your own server daemons or edit the httpd.conf file. In
these cases, it’s still possible to run Django using Web server-spawned processes.

Note

If you’re using Web server-spawned processes, as explained in this section, there’s no need for you to start the FastCGI
server on your own. Apache will spawn a number of processes, scaling as it needs to.

In your Web root directory, add this to a file named .htaccess:

AddHandler fastcgi-script .fcgi
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ mysite.fcgi/$1 [QSA,L]

Then, create a small script that tells Apache how to spawn your FastCGI program. Create a file mysite.fcgi and
place it in your Web directory, and be sure to make it executable:

#!/usr/bin/python
import sys, os

Add a custom Python path.
sys.path.insert(0, "/home/user/python")

Switch to the directory of your project. (Optional.)
os.chdir("/home/user/myproject")

Set the DJANGO_SETTINGS_MODULE environment variable.
os.environ[’DJANGO_SETTINGS_MODULE’] = "myproject.settings"

from django.core.servers.fastcgi import runfastcgi
runfastcgi(method="threaded", daemonize="false")

340 Chapter 4. “How-to” guides

http://www.cherokee-project.com/doc/cookbook_django.html

Django Documentation, Release 1.2.7

Restarting the spawned server

If you change any Python code on your site, you’ll need to tell FastCGI the code has changed. But there’s no need to
restart Apache in this case. Rather, just reupload mysite.fcgi, or edit the file, so that the timestamp on the file will
change. When Apache sees the file has been updated, it will restart your Django application for you.

If you have access to a command shell on a Unix system, you can accomplish this easily by using the touch command:

touch mysite.fcgi

Serving admin media files

Regardless of the server and configuration you eventually decide to use, you will also need to give some thought to
how to serve the admin media files. The advice given in the modpython documentation is also applicable in the setups
detailed above.

Forcing the URL prefix to a particular value

Because many of these fastcgi-based solutions require rewriting the URL at some point inside the Web server, the path
information that Django sees may not resemble the original URL that was passed in. This is a problem if the Django
application is being served from under a particular prefix and you want your URLs from the {% url %} tag to look
like the prefix, rather than the rewritten version, which might contain, for example, mysite.fcgi.

Django makes a good attempt to work out what the real script name prefix should be. In particular, if the Web server
sets the SCRIPT_URL (specific to Apache’s mod_rewrite), or REDIRECT_URL (set by a few servers, including
Apache + mod_rewrite in some situations), Django will work out the original prefix automatically.

In the cases where Django cannot work out the prefix correctly and where you want the original value to be used
in URLs, you can set the FORCE_SCRIPT_NAME setting in your main settings file. This sets the script name
uniformly for every URL served via that settings file. Thus you’ll need to use different settings files if you want
different sets of URLs to have different script names in this case, but that is a rare situation.

As an example of how to use it, if your Django configuration is serving all of the URLs under ’/’ and you wanted to
use this setting, you would set FORCE_SCRIPT_NAME = ” in your settings file.

If you’re new to deploying Django and/or Python, we’d recommend you try mod_wsgi first. In most cases it’ll be the
easiest, fastest, and most stable deployment choice.

See Also:

• Chapter 12 of The Django Book discusses deployment and especially scaling in more detail.

4.9 Error reporting via e-mail

When you’re running a public site you should always turn off the DEBUG setting. That will make your server run much
faster, and will also prevent malicious users from seeing details of your application that can be revealed by the error
pages.

However, running with DEBUG set to False means you’ll never see errors generated by your site – everyone will just
see your public error pages. You need to keep track of errors that occur in deployed sites, so Django can be configured
to e-mail you details of those errors.

4.9. Error reporting via e-mail 341

http://djangobook.com/en/2.0/chapter12/

Django Documentation, Release 1.2.7

4.9.1 Server errors

When DEBUG is False, Django will e-mail the users listed in the ADMINS setting whenever your code raises an
unhandled exception and results in an internal server error (HTTP status code 500). This gives the administrators
immediate notification of any errors. The ADMINS will get a description of the error, a complete Python traceback,
and details about the HTTP request that caused the error.

Note: In order to send e-mail, Django requires a few settings telling it how to connect to your mail server. At the
very least, you’ll need to specify EMAIL_HOST and possibly EMAIL_HOST_USER and EMAIL_HOST_PASSWORD,
though other settings may be also required depending on your mail server’s configuration. Consult the Django settings
documentation for a full list of email-related settings.

By default, Django will send e-mail from root@localhost. However, some mail providers reject all e-mail from this
address. To use a different sender address, modify the SERVER_EMAIL setting.

To disable this behavior, just remove all entries from the ADMINS setting.

4.9.2 404 errors

Django can also be configured to e-mail errors about broken links (404 “page not found” errors). Django sends e-mails
about 404 errors when:

• DEBUG is False

• SEND_BROKEN_LINK_EMAILS is True

• Your MIDDLEWARE_CLASSES setting includes CommonMiddleware (which it does by default).

If those conditions are met, Django will e-mail the users listed in the MANAGERS setting whenever your code raises a
404 and the request has a referer. (It doesn’t bother to e-mail for 404s that don’t have a referer – those are usually just
people typing in broken URLs or broken Web ‘bots).

You can tell Django to stop reporting particular 404s by tweaking the IGNORABLE_404_ENDS and
IGNORABLE_404_STARTS settings. Both should be a tuple of strings. For example:

IGNORABLE_404_ENDS = (’.php’, ’.cgi’)
IGNORABLE_404_STARTS = (’/phpmyadmin/’,)

In this example, a 404 to any URL ending with .php or .cgi will not be reported. Neither will any URL starting
with /phpmyadmin/.

The best way to disable this behavior is to set SEND_BROKEN_LINK_EMAILS to False.

See Also:

You can also set up custom error reporting by writing a custom piece of exception middleware. If you do write custom
error handling, it’s a good idea to emulate Django’s built-in error handling and only report/log errors if DEBUG is
False.

4.10 Providing initial data for models

It’s sometimes useful to pre-populate your database with hard-coded data when you’re first setting up an app. There’s
a couple of ways you can have Django automatically create this data: you can provide initial data via fixtures, or you
can provide initial data as SQL.

In general, using a fixture is a cleaner method since it’s database-agnostic, but initial SQL is also quite a bit more
flexible.

342 Chapter 4. “How-to” guides

mailto:root@localhost

Django Documentation, Release 1.2.7

4.10.1 Providing initial data with fixtures

A fixture is a collection of data that Django knows how to import into a database. The most straightforward way of
creating a fixture if you’ve already got some data is to use the manage.py dumpdata command. Or, you can write
fixtures by hand; fixtures can be written as XML, YAML, or JSON documents. The serialization documentation has
more details about each of these supported serialization formats.

As an example, though, here’s what a fixture for a simple Person model might look like in JSON:

[
{
"model": "myapp.person",
"pk": 1,
"fields": {

"first_name": "John",
"last_name": "Lennon"

}
},
{
"model": "myapp.person",
"pk": 2,
"fields": {
"first_name": "Paul",
"last_name": "McCartney"

}
}

]

And here’s that same fixture as YAML:

- model: myapp.person
pk: 1
fields:
first_name: John
last_name: Lennon

- model: myapp.person
pk: 2
fields:
first_name: Paul
last_name: McCartney

You’ll store this data in a fixtures directory inside your app.

Loading data is easy: just call manage.py loaddata fixturename, where fixturename is the name of the
fixture file you’ve created. Every time you run loaddata the data will be read from the fixture and re-loaded into
the database. Note that this means that if you change one of the rows created by a fixture and then run loaddata
again you’ll wipe out any changes you’ve made.

Automatically loading initial data fixtures

If you create a fixture named initial_data.[xml/yaml/json], that fixture will be loaded every time you run
syncdb. This is extremely convenient, but be careful: remember that the data will be refreshed every time you run
syncdb. So don’t use initial_data for data you’ll want to edit.

See Also:

Fixtures are also used by the testing framework to help set up a consistent test environment.

4.10. Providing initial data for models 343

Django Documentation, Release 1.2.7

4.10.2 Providing initial SQL data

Django provides a hook for passing the database arbitrary SQL that’s executed just after the CREATE TABLE state-
ments when you run syncdb. You can use this hook to populate default records, or you could also create SQL
functions, views, triggers, etc.

The hook is simple: Django just looks for a file called sql/<modelname>.sql, in your app directory, where
<modelname> is the model’s name in lowercase.

So, if you had a Person model in an app called myapp, you could add arbitrary SQL to the file sql/person.sql
inside your myapp directory. Here’s an example of what the file might contain:

INSERT INTO myapp_person (first_name, last_name) VALUES (’John’, ’Lennon’);
INSERT INTO myapp_person (first_name, last_name) VALUES (’Paul’, ’McCartney’);

Each SQL file, if given, is expected to contain valid SQL statements which will insert the desired data (e.g., properly-
formatted INSERT statements separated by semicolons).

The SQL files are read by the sqlcustom, sqlreset, sqlall and reset commands in manage.py. Refer to the
manage.py documentation for more information.

Note that if you have multiple SQL data files, there’s no guarantee of the order in which they’re executed. The only
thing you can assume is that, by the time your custom data files are executed, all the database tables already will have
been created.

Initial SQL data and testing

This technique cannot be used to provide initial data for testing purposes. Django’s test framework flushes the contents
of the test database after each test; as a result, any data added using the custom SQL hook will be lost.

If you require data for a test case, you should add it using either a test fixture, or programatically add it during the
setUp() of your test case.

Database-backend-specific SQL data

There’s also a hook for backend-specific SQL data. For example, you can have separate
initial-data files for PostgreSQL and MySQL. For each app, Django looks for a file called
<appname>/sql/<modelname>.<backend>.sql, where <appname> is your app direc-
tory, <modelname> is the model’s name in lowercase and <backend> is the last part of
the module name provided for the ENGINE in your settings file (e.g., if you have defined a
database with an ENGINE value of django.db.backends.postgresql, Django will look for
<appname>/sql/<modelname>.postgresql.sql).

Backend-specific SQL data is executed before non-backend-specific SQL data. For example, if your app contains
the files sql/person.sql and sql/person.postgresql.sql and you’re installing the app on PostgreSQL,
Django will execute the contents of sql/person.postgresql.sql first, then sql/person.sql.

4.11 Using internationalization in your own projects

At runtime, Django looks for translations by following this algorithm:

• First, it looks for a locale directory in the directory containing your settings file.

• Second, it looks for a locale directory in the project directory.

344 Chapter 4. “How-to” guides

Django Documentation, Release 1.2.7

• Third, it looks for a locale directory in each of the installed apps. It does this in the reverse order of IN-
STALLED_APPS

• Finally, it checks the Django-provided base translation in django/conf/locale.

In all cases the name of the directory containing the translation is expected to be named using locale name notation.
E.g. de, pt_BR, es_AR, etc.

This way, you can write applications that include their own translations, and you can override base translations in
your project path. Or, you can just build a big project out of several apps and put all translations into one big project
message file. The choice is yours.

Note: If you’re using manually configured settings, as described in Using settings without setting
DJANGO_SETTINGS_MODULE, the locale directory in the project directory will not be examined, since Django
loses the ability to work out the location of the project directory. (Django normally uses the location of the settings
file to determine this, and a settings file doesn’t exist if you’re manually configuring your settings.)

All message file repositories are structured the same way. They are:

• $APPPATH/locale/<language>/LC_MESSAGES/django.(po|mo)

• $PROJECTPATH/locale/<language>/LC_MESSAGES/django.(po|mo)

• All paths listed in LOCALE_PATHS in your settings file are searched in that order for
<language>/LC_MESSAGES/django.(po|mo)

• $PYTHONPATH/django/conf/locale/<language>/LC_MESSAGES/django.(po|mo)

To create message files, you use the django-admin.py makemessages tool. You only need to be in the same
directory where the locale/ directory is located. And you use django-admin.py compilemessages to
produce the binary .mo files that are used by gettext. Read the Localization document for more details.

You can also run django-admin.py compilemessages --settings=path.to.settings to make the
compiler process all the directories in your LOCALE_PATHS setting.

Application message files are a bit complicated to discover – they need the LocaleMiddleware. If you don’t use
the middleware, only the Django message files and project message files will be installed and available at runtime.

Finally, you should give some thought to the structure of your translation files. If your applications need to be delivered
to other users and will be used in other projects, you might want to use app-specific translations. But using app-
specific translations and project translations could produce weird problems with makemessages: It will traverse
all directories below the current path and so might put message IDs into the project message file that are already in
application message files.

The easiest way out is to store applications that are not part of the project (and so carry their own translations) outside
the project tree. That way, django-admin.py makemessages on the project level will only translate strings
that are connected to your explicit project and not strings that are distributed independently.

4.11.1 Using translations outside views and templates

While Django provides a rich set of i18n tools for use in views and templates, it does not restrict the usage to Django-
specific code. The Django translation mechanisms can be used to translate arbitrary texts to any language that is
supported by Django (as long as an appropriate translation catalog exists, of course). You can load a translation
catalog, activate it and translate text to language of your choice, but remember to switch back to original language,
as activating a translation catalog is done on per-thread basis and such change will affect code running in the same
thread.

For example:

4.11. Using internationalization in your own projects 345

Django Documentation, Release 1.2.7

from django.utils import translation
def welcome_translated(language):

cur_language = translation.get_language()
try:

translation.activate(language)
text = translation.ugettext(’welcome’)

finally:
translation.activate(cur_language)

return text

Calling this function with the value ‘de’ will give you "Willkommen", regardless of LANGUAGE_CODE and lan-
guage set by middleware.

Functions of particular interest are django.utils.translation.get_language() which returns the lan-
guage used in the current thread, django.utils.translation.activate() which activates a translation
catalog for the current thread, and django.utils.translation.check_for_language() which checks
if the given language is supported by Django.

4.12 Running Django on Jython

Jython is an implementation of Python that runs on the Java platform (JVM). Django runs cleanly on Jython version
2.5 or later, which means you can deploy Django on any Java platform.

This document will get you up and running with Django on top of Jython.

4.12.1 Installing Jython

Django works with Jython versions 2.5b3 and higher. Download Jython at http://www.jython.org/.

4.12.2 Creating a servlet container

If you just want to experiment with Django, skip ahead to the next section; Django includes a lightweight Web server
you can use for testing, so you won’t need to set up anything else until you’re ready to deploy Django in production.

If you want to use Django on a production site, use a Java servlet container, such as Apache Tomcat. Full JavaEE
applications servers such as GlassFish or JBoss are also OK, if you need the extra features they include.

4.12.3 Installing Django

The next step is to install Django itself. This is exactly the same as installing Django on standard Python, so see
Remove any old versions of Django and Install the Django code for instructions.

4.12.4 Installing Jython platform support libraries

The django-jython project contains database backends and management commands for Django/Jython development.
Note that the builtin Django backends won’t work on top of Jython.

To install it, follow the installation instructions detailed on the project Web site. Also, read the database backends
documentation there.

346 Chapter 4. “How-to” guides

http://www.jython.org/
http://www.jython.org/
http://tomcat.apache.org/
https://glassfish.dev.java.net/
http://www.jboss.org/
http://code.google.com/p/django-jython/
http://code.google.com/p/django-jython/wiki/Install
http://code.google.com/p/django-jython/wiki/DatabaseBackends

Django Documentation, Release 1.2.7

4.12.5 Differences with Django on Jython

At this point, Django on Jython should behave nearly identically to Django running on standard Python. However, are
a few differences to keep in mind:

• Remember to use the jython command instead of python. The documentation uses python for consistancy,
but if you’re using Jython you’ll want to mentally replace python with jython every time it occurs.

• Similarly, you’ll need to use the JYTHONPATH environment variable instead of PYTHONPATH.

4.13 Integrating Django with a legacy database

While Django is best suited for developing new applications, it’s quite possible to integrate it into legacy databases.
Django includes a couple of utilities to automate as much of this process as possible.

This document assumes you know the Django basics, as covered in the tutorial.

Once you’ve got Django set up, you’ll follow this general process to integrate with an existing database.

4.13.1 Give Django your database parameters

You’ll need to tell Django what your database connection parameters are, and what the name of the database is. Do
that by editing the DATABASES setting and assigning values to the following keys for the ’default’ connection:

• NAME

• ENGINE

• USER

• PASSWORD

• HOST

• PORT

4.13.2 Auto-generate the models

Django comes with a utility called inspectdb that can create models by introspecting an existing database. You can
view the output by running this command:

python manage.py inspectdb

Save this as a file by using standard Unix output redirection:

python manage.py inspectdb > models.py

This feature is meant as a shortcut, not as definitive model generation. See the documentation of inspectdb
for more information.

Once you’ve cleaned up your models, name the file models.py and put it in the Python package that holds your app.
Then add the app to your INSTALLED_APPS setting.

4.13. Integrating Django with a legacy database 347

Django Documentation, Release 1.2.7

4.13.3 Install the core Django tables

Next, run the syncdb command to install any extra needed database records such as admin permissions and content
types:

python manage.py syncdb

4.13.4 Test and tweak

Those are the basic steps – from here you’ll want to tweak the models Django generated until they work the way you’d
like. Try accessing your data via the Django database API, and try editing objects via Django’s admin site, and edit
the models file accordingly.

4.14 Outputting CSV with Django

This document explains how to output CSV (Comma Separated Values) dynamically using Django views. To do this,
you can either use the Python CSV library or the Django template system.

4.14.1 Using the Python CSV library

Python comes with a CSV library, csv. The key to using it with Django is that the csv module’s CSV-creation
capability acts on file-like objects, and Django’s HttpResponse objects are file-like objects.

Here’s an example:

import csv
from django.http import HttpResponse

def some_view(request):
Create the HttpResponse object with the appropriate CSV header.
response = HttpResponse(mimetype=’text/csv’)
response[’Content-Disposition’] = ’attachment; filename=somefilename.csv’

writer = csv.writer(response)
writer.writerow([’First row’, ’Foo’, ’Bar’, ’Baz’])
writer.writerow([’Second row’, ’A’, ’B’, ’C’, ’"Testing"’, "Here’s a quote"])

return response

The code and comments should be self-explanatory, but a few things deserve a mention:

• The response gets a special MIME type, text/csv. This tells browsers that the document is a CSV file, rather
than an HTML file. If you leave this off, browsers will probably interpret the output as HTML, which will result
in ugly, scary gobbledygook in the browser window.

• The response gets an additional Content-Disposition header, which contains the name of the CSV file.
This filename is arbitrary; call it whatever you want. It’ll be used by browsers in the “Save as...” dialogue, etc.

• Hooking into the CSV-generation API is easy: Just pass response as the first argument to csv.writer.
The csv.writer function expects a file-like object, and HttpResponse objects fit the bill.

• For each row in your CSV file, call writer.writerow, passing it an iterable object such as a list or tuple.

• The CSV module takes care of quoting for you, so you don’t have to worry about escaping strings with quotes
or commas in them. Just pass writerow() your raw strings, and it’ll do the right thing.

348 Chapter 4. “How-to” guides

http://docs.python.org/library/csv.html

Django Documentation, Release 1.2.7

Handling Unicode

Python’s csv module does not support Unicode input. Since Django uses Unicode internally this means strings read
from sources such as HttpRequest are potentially problematic. There are a few options for handling this:

• Manually encode all Unicode objects to a compatible encoding.

• Use the UnicodeWriter class provided in the csv module’s examples section.

• Use the python-unicodecsv module, which aims to be a drop-in replacement for csv that gracefully handles
Unicode.

For more information, see the Python CSV File Reading and Writing documentation.

4.14.2 Using the template system

Alternatively, you can use the Django template system to generate CSV. This is lower-level than using the convenient
Python csv module, but the solution is presented here for completeness.

The idea here is to pass a list of items to your template, and have the template output the commas in a for loop.

Here’s an example, which generates the same CSV file as above:

from django.http import HttpResponse
from django.template import loader, Context

def some_view(request):
Create the HttpResponse object with the appropriate CSV header.
response = HttpResponse(mimetype=’text/csv’)
response[’Content-Disposition’] = ’attachment; filename=somefilename.csv’

The data is hard-coded here, but you could load it from a database or
some other source.
csv_data = (

(’First row’, ’Foo’, ’Bar’, ’Baz’),
(’Second row’, ’A’, ’B’, ’C’, ’"Testing"’, "Here’s a quote"),

)

t = loader.get_template(’my_template_name.txt’)
c = Context({

’data’: csv_data,
})
response.write(t.render(c))
return response

The only difference between this example and the previous example is that this one uses template loading instead of
the CSV module. The rest of the code – such as the mimetype=’text/csv’ – is the same.

Then, create the template my_template_name.txt, with this template code:

{% for row in data %}"{{ row.0|addslashes }}", "{{ row.1|addslashes }}", "{{ row.2|addslashes }}", "{{ row.3|addslashes }}", "{{ row.4|addslashes }}"
{% endfor %}

This template is quite basic. It just iterates over the given data and displays a line of CSV for each row. It uses the
addslashes template filter to ensure there aren’t any problems with quotes.

4.14. Outputting CSV with Django 349

http://docs.python.org/library/csv.html#examples
https://github.com/jdunck/python-unicodecsv
http://docs.python.org/library/csv.html

Django Documentation, Release 1.2.7

4.14.3 Other text-based formats

Notice that there isn’t very much specific to CSV here – just the specific output format. You can use either of these
techniques to output any text-based format you can dream of. You can also use a similar technique to generate arbitrary
binary data; see Outputting PDFs with Django for an example.

4.15 Outputting PDFs with Django

This document explains how to output PDF files dynamically using Django views. This is made possible by the
excellent, open-source ReportLab Python PDF library.

The advantage of generating PDF files dynamically is that you can create customized PDFs for different purposes –
say, for different users or different pieces of content.

For example, Django was used at kusports.com to generate customized, printer-friendly NCAA tournament brackets,
as PDF files, for people participating in a March Madness contest.

4.15.1 Install ReportLab

Download and install the ReportLab library from http://www.reportlab.org/oss/rl-toolkit/download/. The user guide
(not coincidentally, a PDF file) explains how to install it.

Test your installation by importing it in the Python interactive interpreter:

>>> import reportlab

If that command doesn’t raise any errors, the installation worked.

4.15.2 Write your view

The key to generating PDFs dynamically with Django is that the ReportLab API acts on file-like objects, and Django’s
HttpResponse objects are file-like objects.

Here’s a “Hello World” example:

from reportlab.pdfgen import canvas
from django.http import HttpResponse

def some_view(request):
Create the HttpResponse object with the appropriate PDF headers.
response = HttpResponse(mimetype=’application/pdf’)
response[’Content-Disposition’] = ’attachment; filename=somefilename.pdf’

Create the PDF object, using the response object as its "file."
p = canvas.Canvas(response)

Draw things on the PDF. Here’s where the PDF generation happens.
See the ReportLab documentation for the full list of functionality.
p.drawString(100, 100, "Hello world.")

Close the PDF object cleanly, and we’re done.
p.showPage()
p.save()
return response

350 Chapter 4. “How-to” guides

http://www.reportlab.org/oss/rl-toolkit/
http://www.kusports.com/
http://www.reportlab.org/oss/rl-toolkit/download/
http://www.reportlab.com/docs/reportlab-userguide.pdf

Django Documentation, Release 1.2.7

The code and comments should be self-explanatory, but a few things deserve a mention:

• The response gets a special MIME type, application/pdf. This tells browsers that the document is a PDF
file, rather than an HTML file. If you leave this off, browsers will probably interpret the output as HTML, which
would result in ugly, scary gobbledygook in the browser window.

• The response gets an additional Content-Disposition header, which contains the name of the PDF file.
This filename is arbitrary: Call it whatever you want. It’ll be used by browsers in the “Save as...” dialogue, etc.

• The Content-Disposition header starts with ’attachment; ’ in this example. This forces Web
browsers to pop-up a dialog box prompting/confirming how to handle the document even if a default is set on
the machine. If you leave off ’attachment;’, browsers will handle the PDF using whatever program/plugin
they’ve been configured to use for PDFs. Here’s what that code would look like:

response[’Content-Disposition’] = ’filename=somefilename.pdf’

• Hooking into the ReportLab API is easy: Just pass response as the first argument to canvas.Canvas. The
Canvas class expects a file-like object, and HttpResponse objects fit the bill.

• Note that all subsequent PDF-generation methods are called on the PDF object (in this case, p) – not on
response.

• Finally, it’s important to call showPage() and save() on the PDF file.

4.15.3 Complex PDFs

If you’re creating a complex PDF document with ReportLab, consider using the cStringIO library as a temporary
holding place for your PDF file. The cStringIO library provides a file-like object interface that is particularly efficient.
Here’s the above “Hello World” example rewritten to use cStringIO:

Fall back to StringIO in environments where cStringIO is not available
try:

from cStringIO import StringIO
except ImportError:

from StringIO import StringIO
from reportlab.pdfgen import canvas
from django.http import HttpResponse

def some_view(request):
Create the HttpResponse object with the appropriate PDF headers.
response = HttpResponse(mimetype=’application/pdf’)
response[’Content-Disposition’] = ’attachment; filename=somefilename.pdf’

buffer = StringIO()

Create the PDF object, using the StringIO object as its "file."
p = canvas.Canvas(buffer)

Draw things on the PDF. Here’s where the PDF generation happens.
See the ReportLab documentation for the full list of functionality.
p.drawString(100, 100, "Hello world.")

Close the PDF object cleanly.
p.showPage()
p.save()

Get the value of the StringIO buffer and write it to the response.
pdf = buffer.getvalue()
buffer.close()

4.15. Outputting PDFs with Django 351

http://docs.python.org/library/stringio.html#module-cStringIO

Django Documentation, Release 1.2.7

response.write(pdf)
return response

4.15.4 Further resources

• PDFlib is another PDF-generation library that has Python bindings. To use it with Django, just use the same
concepts explained in this article.

• Pisa XHTML2PDF is yet another PDF-generation library. Pisa ships with an example of how to integrate Pisa
with Django.

• HTMLdoc is a command-line script that can convert HTML to PDF. It doesn’t have a Python interface, but you
can escape out to the shell using system or popen and retrieve the output in Python.

4.15.5 Other formats

Notice that there isn’t a lot in these examples that’s PDF-specific – just the bits using reportlab. You can use a
similar technique to generate any arbitrary format that you can find a Python library for. Also see Outputting CSV with
Django for another example and some techniques you can use when generated text-based formats.

4.16 How to serve static files

Django itself doesn’t serve static (media) files, such as images, style sheets, or video. It leaves that job to whichever
Web server you choose.

The reasoning here is that standard Web servers, such as Apache, lighttpd and Cherokee, are much more fine-tuned at
serving static files than a Web application framework.

With that said, Django does support static files during development. You can use the
django.views.static.serve() view to serve media files.

See Also:

If you just need to serve the admin media from a nonstandard location, see the --adminmedia parameter to
runserver.

4.16.1 The big, fat disclaimer

Using this method is inefficient and insecure. Do not use this in a production setting. Use this only for development.

For information on serving static files in an Apache production environment, see the Django mod_python documenta-
tion.

4.16.2 How to do it

Here’s the formal definition of the serve() view:

def serve(request, path, document_root, show_indexes=False)

To use it, just put this in your URLconf :

(r’^site_media/(?P<path>.*)$’, ’django.views.static.serve’,
{’document_root’: ’/path/to/media’}),

352 Chapter 4. “How-to” guides

http://www.pdflib.org/
http://www.xhtml2pdf.com/
http://www.htmldoc.org/
http://httpd.apache.org/
http://www.lighttpd.net/
http://www.cherokee-project.com/

Django Documentation, Release 1.2.7

...where site_media is the URL where your media will be rooted, and /path/to/media is the filesystem
root for your media. This will call the serve() view, passing in the path from the URLconf and the (required)
document_root parameter.

Given the above URLconf:

• The file /path/to/media/foo.jpg will be made available at the URL /site_media/foo.jpg.

• The file /path/to/media/css/mystyles.css will be made available at the URL
/site_media/css/mystyles.css.

• The file /path/bar.jpg will not be accessible, because it doesn’t fall under the document root.

Of course, it’s not compulsory to use a fixed string for the ’document_root’ value. You might wish to make that
an entry in your settings file and use the setting value there. That will allow you and other developers working on the
code to easily change the value as required. For example, if we have a line in settings.py that says:

STATIC_DOC_ROOT = ’/path/to/media’

...we could write the above URLconf entry as:

from django.conf import settings
...
(r’^site_media/(?P<path>.*)$’, ’django.views.static.serve’,

{’document_root’: settings.STATIC_DOC_ROOT}),

Be careful not to use the same path as your ADMIN_MEDIA_PREFIX (which defaults to /media/) as this will
overwrite your URLconf entry.

4.16.3 Directory listings

Optionally, you can pass the show_indexes parameter to the serve() view. This is False by default. If it’s
True, Django will display file listings for directories.

For example:

(r’^site_media/(?P<path>.*)$’, ’django.views.static.serve’,
{’document_root’: ’/path/to/media’, ’show_indexes’: True}),

You can customize the index view by creating a template called static/directory_index.html. That tem-
plate gets two objects in its context:

• directory – the directory name (a string)

• file_list – a list of file names (as strings) in the directory

Here’s the default static/directory_index.html template:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-type" content="text/html; charset=utf-8" />
<meta http-equiv="Content-Language" content="en-us" />
<meta name="robots" content="NONE,NOARCHIVE" />
<title>Index of {{ directory }}</title>

</head>
<body>

<h1>Index of {{ directory }}</h1>

{% for f in file_list %}
{{ f }}

4.16. How to serve static files 353

Django Documentation, Release 1.2.7

{% endfor %}

</body>
</html>

Changed in version 1.0.3: Prior to Django 1.0.3, there was a bug in the view that provided directory listings. The
template that was loaded had to be called static/directory_listing (with no .html extension). For back-
wards compatibility with earlier versions, Django will still load templates with the older (no extension) name, but it
will prefer the directory_index.html version.

4.16.4 Limiting use to DEBUG=True

Because URLconfs are just plain Python modules, you can use Python logic to make the static-media view available
only in development mode. This is a handy trick to make sure the static-serving view doesn’t slip into a production
setting by mistake.

Do this by wrapping an if DEBUG statement around the django.views.static.serve() inclusion. Here’s
a full example URLconf:

from django.conf.urls.defaults import *
from django.conf import settings

urlpatterns = patterns(’’,
(r’^articles/2003/$’, ’news.views.special_case_2003’),
(r’^articles/(?P<year>\d{4})/$’, ’news.views.year_archive’),
(r’^articles/(?P<year>\d{4})/(?P<month>\d{2})/$’, ’news.views.month_archive’),
(r’^articles/(?P<year>\d{4})/(?P<month>\d{2})/(?P<day>\d+)/$’, ’news.views.article_detail’),

)

if settings.DEBUG:
urlpatterns += patterns(’’,

(r’^site_media/(?P<path>.*)$’, ’django.views.static.serve’, {’document_root’: ’/path/to/media’}),
)

This code is straightforward. It imports the settings and checks the value of the DEBUG setting. If it evaluates to True,
then site_media will be associated with the django.views.static.serve view. If not, then the view won’t
be made available.

Of course, the catch here is that you’ll have to remember to set DEBUG=False in your production settings file. But
you should be doing that anyway.

See Also:

The Django community aggregator, where we aggregate content from the global Django community. Many writers in
the aggregator write this sort of how-to material.

354 Chapter 4. “How-to” guides

http://www.djangoproject.com/community/

CHAPTER

FIVE

DJANGO FAQ

5.1 FAQ: General

5.1.1 Why does this project exist?

Django grew from a very practical need: World Online, a newspaper Web operation, is responsible for building
intensive Web applications on journalism deadlines. In the fast-paced newsroom, World Online often has only a
matter of hours to take a complicated Web application from concept to public launch.

At the same time, the World Online Web developers have consistently been perfectionists when it comes to following
best practices of Web development.

In fall 2003, the World Online developers (Adrian Holovaty and Simon Willison) ditched PHP and began using Python
to develop its Web sites. As they built intensive, richly interactive sites such as Lawrence.com, they began to extract a
generic Web development framework that let them build Web applications more and more quickly. They tweaked this
framework constantly, adding improvements over two years.

In summer 2005, World Online decided to open-source the resulting software, Django. Django would not be possible
without a whole host of open-source projects – Apache, Python, and PostgreSQL to name a few – and we’re thrilled
to be able to give something back to the open-source community.

5.1.2 What does “Django” mean, and how do you pronounce it?

Django is named after Django Reinhardt, a gypsy jazz guitarist from the 1930s to early 1950s. To this day, he’s
considered one of the best guitarists of all time.

Listen to his music. You’ll like it.

Django is pronounced JANG-oh. Rhymes with FANG-oh. The “D” is silent.

We’ve also recorded an audio clip of the pronunciation.

5.1.3 Is Django stable?

Yes. World Online has been using Django for more than three years. Sites built on Django have weathered traffic
spikes of over one million hits an hour and a number of Slashdottings. Yes, it’s quite stable.

355

http://httpd.apache.org/
http://www.python.org/
http://www.postgresql.org/
http://en.wikipedia.org/wiki/Django_Reinhardt
http://red-bean.com/~adrian/django_pronunciation.mp3

Django Documentation, Release 1.2.7

5.1.4 Does Django scale?

Yes. Compared to development time, hardware is cheap, and so Django is designed to take advantage of as much
hardware as you can throw at it.

Django uses a “shared-nothing” architecture, which means you can add hardware at any level – database servers,
caching servers or Web/application servers.

The framework cleanly separates components such as its database layer and application layer. And it ships with a
simple-yet-powerful cache framework.

5.1.5 Who’s behind this?

Django was originally developed at World Online, the Web department of a newspaper in Lawrence, Kansas, USA.
Django’s now run by an international team of volunteers; you can read all about them over at the list of committers

5.1.6 Which sites use Django?

DjangoSites.org features a constantly growing list of Django-powered sites.

5.1.7 Django appears to be a MVC framework, but you call the Controller the “view”,
and the View the “template”. How come you don’t use the standard names?

Well, the standard names are debatable.

In our interpretation of MVC, the “view” describes the data that gets presented to the user. It’s not necessarily how
the data looks, but which data is presented. The view describes which data you see, not how you see it. It’s a subtle
distinction.

So, in our case, a “view” is the Python callback function for a particular URL, because that callback function describes
which data is presented.

Furthermore, it’s sensible to separate content from presentation – which is where templates come in. In Django, a
“view” describes which data is presented, but a view normally delegates to a template, which describes how the data
is presented.

Where does the “controller” fit in, then? In Django’s case, it’s probably the framework itself: the machinery that sends
a request to the appropriate view, according to the Django URL configuration.

If you’re hungry for acronyms, you might say that Django is a “MTV” framework – that is, “model”, “template”, and
“view.” That breakdown makes much more sense.

At the end of the day, of course, it comes down to getting stuff done. And, regardless of how things are named, Django
gets stuff done in a way that’s most logical to us.

5.1.8 <Framework X> does <feature Y> – why doesn’t Django?

We’re well aware that there are other awesome Web frameworks out there, and we’re not averse to borrowing ideas
where appropriate. However, Django was developed precisely because we were unhappy with the status quo, so please
be aware that “because <Framework X> does it” is not going to be sufficient reason to add a given feature to Django.

356 Chapter 5. Django FAQ

http://djangosites.org

Django Documentation, Release 1.2.7

5.1.9 Why did you write all of Django from scratch, instead of using other Python
libraries?

When Django was originally written a couple of years ago, Adrian and Simon spent quite a bit of time exploring the
various Python Web frameworks available.

In our opinion, none of them were completely up to snuff.

We’re picky. You might even call us perfectionists. (With deadlines.)

Over time, we stumbled across open-source libraries that did things we’d already implemented. It was reassuring to
see other people solving similar problems in similar ways, but it was too late to integrate outside code: We’d already
written, tested and implemented our own framework bits in several production settings – and our own code met our
needs delightfully.

In most cases, however, we found that existing frameworks/tools inevitably had some sort of fundamental, fatal flaw
that made us squeamish. No tool fit our philosophies 100%.

Like we said: We’re picky.

We’ve documented our philosophies on the design philosophies page.

5.1.10 Is Django a content-management-system (CMS)?

No, Django is not a CMS, or any sort of “turnkey product” in and of itself. It’s a Web framework; it’s a programming
tool that lets you build Web sites.

For example, it doesn’t make much sense to compare Django to something like Drupal, because Django is something
you use to create things like Drupal.

Of course, Django’s automatic admin site is fantastic and timesaving – but the admin site is one module of Django the
framework. Furthermore, although Django has special conveniences for building “CMS-y” apps, that doesn’t mean
it’s not just as appropriate for building “non-CMS-y” apps (whatever that means!).

5.1.11 How can I download the Django documentation to read it offline?

The Django docs are available in the docs directory of each Django tarball release. These docs are in reST (reStruc-
turedText) format, and each text file corresponds to a Web page on the official Django site.

Because the documentation is stored in revision control, you can browse documentation changes just like you can
browse code changes.

Technically, the docs on Django’s site are generated from the latest development versions of those reST documents,
so the docs on the Django site may offer more information than the docs that come with the latest Django release.

5.1.12 Where can I find Django developers for hire?

Consult our developers for hire page for a list of Django developers who would be happy to help you.

You might also be interested in posting a job to http://djangogigs.com/ . If you want to find Django-capable people in
your local area, try http://djangopeople.net/ .

5.1. FAQ: General 357

http://drupal.org/
http://code.djangoproject.com/browser/django/trunk/docs
http://code.djangoproject.com/wiki/DevelopersForHire
http://djangogigs.com/
http://djangopeople.net/

Django Documentation, Release 1.2.7

5.2 FAQ: Installation

5.2.1 How do I get started?

1. Download the code.

2. Install Django (read the installation guide).

3. Walk through the tutorial.

4. Check out the rest of the documentation, and ask questions if you run into trouble.

5.2.2 What are Django’s prerequisites?

Django requires Python, specifically any version of Python from 2.4 through 2.7. No other Python libraries are required
for basic Django usage.

For a development environment – if you just want to experiment with Django – you don’t need to have a separate Web
server installed; Django comes with its own lightweight development server. For a production environment, Django
follows the WSGI spec, which means it can run on a variety of server platforms. See Deploying Django for some
popular alternatives. Also, the server arrangements wiki page contains details for several deployment strategies.

If you want to use Django with a database, which is probably the case, you’ll also need a database engine. PostgreSQL
is recommended, because we’re PostgreSQL fans, and MySQL, SQLite 3, and Oracle are also supported.

5.2.3 Do I lose anything by using Python 2.4 versus newer Python versions, such
as Python 2.5 or 2.6?

Not in the core framework. Currently, Django itself officially supports any version of Python from 2.4 through 2.7,
inclusive. However, newer versions of Python are often faster, have more features, and are better supported. Third-
party applications for use with Django are, of course, free to set their own version requirements.

Over the next year or two Django will begin dropping support for older Python versions as part of a migration which
will end with Django running on Python 3 (see below for details).

All else being equal, we recommend that you use the latest 2.x release (currently Python 2.7). This will let you take
advantage of the numerous improvements and optimizations to the Python language since version 2.4, and will help
ease the process of dropping support for older Python versions on the road to Python 3.

5.2.4 Can I use Django with Python 2.3?

Django 1.1 (and earlier) supported Python 2.3. Django 1.2 and newer does not. We highly recommend you upgrade
Python if at all possible, but Django 1.1 will continue to work on Python 2.3.

5.2.5 Can I use Django with Python 3?

Not at the moment. Python 3.0 introduced a number of backwards-incompatible changes to the Python language, and
although these changes are generally a good thing for Python’s future, it will be a while before most Python software
catches up and is able to run on Python 3.0. For larger Python-based software like Django, the transition is expected to
take at least a year or two (since it involves dropping support for older Python releases and so must be done gradually).

In the meantime, Python 2.x releases will be supported and provided with bug fixes and security updates by the Python
development team, so continuing to use a Python 2.x release during the transition should not present any risk.

358 Chapter 5. Django FAQ

http://www.djangoproject.com/download/
http://www.djangoproject.com/community/
http://www.python.org/
http://www.python.org/dev/peps/pep-0333/
http://code.djangoproject.com/wiki/ServerArrangements
http://www.postgresql.org/
http://www.mysql.com/
http://www.sqlite.org/
http://www.oracle.com/

Django Documentation, Release 1.2.7

5.2.6 Will Django run under shared hosting (like TextDrive or Dreamhost)?

See our Django-friendly Web hosts page.

5.2.7 Should I use the stable version or development version?

Generally, if you’re using code in production, you should be using a stable release. The Django project publishes a
full stable release every nine months or so, with bugfix updates in between. These stable releases contain the API that
is covered by our backwards compatibility guarantees; if you write code against stable releases, you shouldn’t have
any problems upgrading when the next official version is released.

5.3 FAQ: Using Django

5.3.1 Why do I get an error about importing DJANGO_SETTINGS_MODULE?

Make sure that:

• The environment variable DJANGO_SETTINGS_MODULE is set to a fully-qualified Python module (i.e.
“mysite.settings”).

• Said module is on sys.path (import mysite.settings should work).

• The module doesn’t contain syntax errors (of course).

• If you’re using mod_python but not using Django’s request handler, you’ll need to work around a mod_python
bug related to the use of SetEnv; before you import anything from Django you’ll need to do the following:

os.environ.update(req.subprocess_env)

(where req is the mod_python request object).

5.3.2 I can’t stand your template language. Do I have to use it?

We happen to think our template engine is the best thing since chunky bacon, but we recognize that choosing a template
language runs close to religion. There’s nothing about Django that requires using the template language, so if you’re
attached to ZPT, Cheetah, or whatever, feel free to use those.

5.3.3 Do I have to use your model/database layer?

Nope. Just like the template system, the model/database layer is decoupled from the rest of the framework.

The one exception is: If you use a different database library, you won’t get to use Django’s automatically-generated
admin site. That app is coupled to the Django database layer.

5.3.4 How do I use image and file fields?

Using a FileField or an ImageField in a model takes a few steps:

1. In your settings file, you’ll need to define MEDIA_ROOT as the full path to a directory where you’d like Django
to store uploaded files. (For performance, these files are not stored in the database.) Define MEDIA_URL as the
base public URL of that directory. Make sure that this directory is writable by the Web server’s user account.

5.3. FAQ: Using Django 359

http://code.djangoproject.com/wiki/DjangoFriendlyWebHosts

Django Documentation, Release 1.2.7

2. Add the FileField or ImageField to your model, making sure to define the upload_to option to tell
Django to which subdirectory of MEDIA_ROOT it should upload files.

3. All that will be stored in your database is a path to the file (relative to MEDIA_ROOT). You’ll most likely
want to use the convenience url attribute provided by Django. For example, if your ImageField is called
mug_shot, you can get the absolute path to your image in a template with {{ object.mug_shot.url
}}.

5.3.5 How do I make a variable available to all my templates?

Sometimes your templates just all need the same thing. A common example would be dynamically-generated menus.
At first glance, it seems logical to simply add a common dictionary to the template context.

The correct solution is to use a RequestContext. Details on how to do this are here: Subclassing Context:
RequestContext.

5.4 FAQ: Getting Help

5.4.1 How do I do X? Why doesn’t Y work? Where can I go to get help?

If this FAQ doesn’t contain an answer to your question, you might want to try the django-users mailing list. Feel free
to ask any question related to installing, using, or debugging Django.

If you prefer IRC, the #django IRC channel on the Freenode IRC network is an active community of helpful individuals
who may be able to solve your problem.

5.4.2 Why hasn’t my message appeared on django-users?

django-users has a lot of subscribers. This is good for the community, as it means many people are available to
contribute answers to questions. Unfortunately, it also means that django-users is an attractive target for spammers.

In order to combat the spam problem, when you join the django-users mailing list, we manually moderate the first
message you send to the list. This means that spammers get caught, but it also means that your first question to the list
might take a little longer to get answered. We apologize for any inconvenience that this policy may cause.

5.4.3 Nobody on django-users answered my question! What should I do?

Try making your question more specific, or provide a better example of your problem.

As with most open-source mailing lists, the folks on django-users are volunteers. If nobody has answered your
question, it may be because nobody knows the answer, it may be because nobody can understand the question, or it
may be that everybody that can help is busy. One thing you might try is to ask the question on IRC – visit the #django
IRC channel on the Freenode IRC network.

You might notice we have a second mailing list, called django-developers – but please don’t e-mail support questions
to this mailing list. This list is for discussion of the development of Django itself. Asking a tech support question there
is considered quite impolite.

5.4.4 I think I’ve found a bug! What should I do?

Detailed instructions on how to handle a potential bug can be found in our Guide to contributing to Django.

360 Chapter 5. Django FAQ

http://groups.google.com/group/django-users
http://groups.google.com/group/django-users
http://groups.google.com/group/django-users
http://groups.google.com/group/django-users
http://groups.google.com/group/django-users
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

5.4.5 I think I’ve found a security problem! What should I do?

If you think you’ve found a security problem with Django, please send a message to security@djangoproject.com. This
is a private list only open to long-time, highly trusted Django developers, and its archives are not publicly readable.

Due to the sensitive nature of security issues, we ask that if you think you have found a security problem, please don’t
send a message to one of the public mailing lists. Django has a policy for handling security issues; while a defect is
outstanding, we would like to minimize any damage that could be inflicted through public knowledge of that defect.

5.5 FAQ: Databases and models

5.5.1 How can I see the raw SQL queries Django is running?

Make sure your Django DEBUG setting is set to True. Then, just do this:

>>> from django.db import connection
>>> connection.queries
[{’sql’: ’SELECT polls_polls.id,polls_polls.question,polls_polls.pub_date FROM polls_polls’,
’time’: ’0.002’}]

connection.queries is only available if DEBUG is True. It’s a list of dictionaries in order of query execution.
Each dictionary has the following:

‘‘sql‘‘ -- The raw SQL statement
‘‘time‘‘ -- How long the statement took to execute, in seconds.

connection.queries includes all SQL statements – INSERTs, UPDATES, SELECTs, etc. Each time your app
hits the database, the query will be recorded. Note that the raw SQL logged in connection.queries may not
include parameter quoting. Parameter quoting is performed by the database-specific backend, and not all backends
provide a way to retrieve the SQL after quoting. New in version 1.2: Please, see the release notes If you are using
multiple databases, you can use the same interface on each member of the connections dictionary:

>>> from django.db import connections
>>> connections[’my_db_alias’].queries

5.5.2 Can I use Django with a pre-existing database?

Yes. See Integrating with a legacy database.

5.5.3 If I make changes to a model, how do I update the database?

If you don’t mind clearing data, your project’s manage.py utility has an option to reset the SQL for a particular
application:

manage.py reset appname

This drops any tables associated with appname and recreates them.

If you do care about deleting data, you’ll have to execute the ALTER TABLE statements manually in your database.
That’s the way we’ve always done it, because dealing with data is a very sensitive operation that we’ve wanted to avoid
automating. That said, there’s some work being done to add partially automated database-upgrade functionality.

5.5. FAQ: Databases and models 361

mailto:security@djangoproject.com

Django Documentation, Release 1.2.7

5.5.4 Do Django models support multiple-column primary keys?

No. Only single-column primary keys are supported.

But this isn’t an issue in practice, because there’s nothing stopping you from adding other constraints (using the
unique_together model option or creating the constraint directly in your database), and enforcing the uniqueness
at that level. Single-column primary keys are needed for things such as the admin interface to work; e.g., you need a
simple way of being able to specify an object to edit or delete.

5.5.5 How do I add database-specific options to my CREATE TABLE statements,
such as specifying MyISAM as the table type?

We try to avoid adding special cases in the Django code to accommodate all the database-specific options such as
table type, etc. If you’d like to use any of these options, create an SQL initial data file that contains ALTER TABLE
statements that do what you want to do. The initial data files are executed in your database after the CREATE TABLE
statements.

For example, if you’re using MySQL and want your tables to use the MyISAM table type, create an initial data file
and put something like this in it:

ALTER TABLE myapp_mytable ENGINE=MyISAM;

As explained in the SQL initial data file documentation, this SQL file can contain arbitrary SQL, so you can make any
sorts of changes you need to make.

5.5.6 Why is Django leaking memory?

Django isn’t known to leak memory. If you find your Django processes are allocating more and more memory, with
no sign of releasing it, check to make sure your DEBUG setting is set to False. If DEBUG is True, then Django saves
a copy of every SQL statement it has executed.

(The queries are saved in django.db.connection.queries. See How can I see the raw SQL queries Django
is running?.)

To fix the problem, set DEBUG to False.

If you need to clear the query list manually at any point in your functions, just call reset_queries(), like this:

from django import db
db.reset_queries()

5.6 FAQ: The admin

5.6.1 I can’t log in. When I enter a valid username and password, it just brings up
the login page again, with no error messages.

The login cookie isn’t being set correctly, because the domain of the cookie sent out by Django doesn’t match the
domain in your browser. Try these two things:

• Set the SESSION_COOKIE_DOMAIN setting in your admin config file to match your domain. For example,
if you’re going to “http://www.example.com/admin/” in your browser, in “myproject.settings” you should set
SESSION_COOKIE_DOMAIN = ’www.example.com’.

362 Chapter 5. Django FAQ

http://www.example.com/admin/

Django Documentation, Release 1.2.7

• Some browsers (Firefox?) don’t like to accept cookies from domains that don’t have dots in them. If you’re
running the admin site on “localhost” or another domain that doesn’t have a dot in it, try going to “local-
host.localdomain” or “127.0.0.1”. And set SESSION_COOKIE_DOMAIN accordingly.

5.6.2 I can’t log in. When I enter a valid username and password, it brings up the
login page again, with a “Please enter a correct username and password”
error.

If you’re sure your username and password are correct, make sure your user account has is_active and is_staff
set to True. The admin site only allows access to users with those two fields both set to True.

5.6.3 How can I prevent the cache middleware from caching the admin site?

Set the CACHE_MIDDLEWARE_ANONYMOUS_ONLY setting to True. See the cache documentation for more infor-
mation.

5.6.4 How do I automatically set a field’s value to the user who last edited the object
in the admin?

The ModelAdmin class provides customization hooks that allow you to transform an object as it saved, using details
from the request. By extracting the current user from the request, and customizing the save_model() hook, you
can update an object to reflect the user that edited it. See the documentation on ModelAdmin methods for an example.

5.6.5 How do I limit admin access so that objects can only be edited by the users
who created them?

The ModelAdmin class also provides customization hooks that allow you to control the visibility and editabil-
ity of objects in the admin. Using the same trick of extracting the user from the request, the queryset() and
has_change_permission() can be used to control the visibility and editability of objects in the admin.

5.6.6 My admin-site CSS and images showed up fine using the development server,
but they’re not displaying when using mod_python.

See serving the admin files in the “How to use Django with mod_python” documentation.

5.6.7 My “list_filter” contains a ManyToManyField, but the filter doesn’t display.

Django won’t bother displaying the filter for a ManyToManyField if there are fewer than two related objects.

For example, if your list_filter includes sites, and there’s only one site in your database, it won’t display a
“Site” filter. In that case, filtering by site would be meaningless.

5.6.8 How can I customize the functionality of the admin interface?

You’ve got several options. If you want to piggyback on top of an add/change form that Django automatically gen-
erates, you can attach arbitrary JavaScript modules to the page via the model’s class Admin js parameter. That
parameter is a list of URLs, as strings, pointing to JavaScript modules that will be included within the admin form via
a <script> tag.

5.6. FAQ: The admin 363

Django Documentation, Release 1.2.7

If you want more flexibility than simply tweaking the auto-generated forms, feel free to write custom views for the
admin. The admin is powered by Django itself, and you can write custom views that hook into the authentication
system, check permissions and do whatever else they need to do.

If you want to customize the look-and-feel of the admin interface, read the next question.

5.6.9 The dynamically-generated admin site is ugly! How can I change it?

We like it, but if you don’t agree, you can modify the admin site’s presentation by editing the CSS stylesheet and/or
associated image files. The site is built using semantic HTML and plenty of CSS hooks, so any changes you’d like to
make should be possible by editing the stylesheet. We’ve got a guide to the CSS used in the admin to get you started.

5.7 FAQ: Contributing code

5.7.1 How can I get started contributing code to Django?

Thanks for asking! We’ve written an entire document devoted to this question. It’s titled Contributing to Django.

5.7.2 I submitted a bug fix in the ticket system several weeks ago. Why are you
ignoring my patch?

Don’t worry: We’re not ignoring you!

It’s important to understand there is a difference between “a ticket is being ignored” and “a ticket has not been at-
tended to yet.” Django’s ticket system contains hundreds of open tickets, of various degrees of impact on end-user
functionality, and Django’s developers have to review and prioritize.

On top of that: the people who work on Django are all volunteers. As a result, the amount of time that we have to
work on the framework is limited and will vary from week to week depending on our spare time. If we’re busy, we
may not be able to spend as much time on Django as we might want.

The best way to make sure tickets do not get hung up on the way to checkin is to make it dead easy, even for someone
who may not be intimately familiar with that area of the code, to understand the problem and verify the fix:

• Are there clear instructions on how to reproduce the bug? If this touches a dependency (such as PIL), a contrib
module, or a specific database, are those instructions clear enough even for someone not familiar with it?

• If there are several patches attached to the ticket, is it clear what each one does, which ones can be ignored and
which matter?

• Does the patch include a unit test? If not, is there a very clear explanation why not? A test expresses succinctly
what the problem is, and shows that the patch actually fixes it.

If your patch stands no chance of inclusion in Django, we won’t ignore it – we’ll just close the ticket. So if your ticket
is still open, it doesn’t mean we’re ignoring you; it just means we haven’t had time to look at it yet.

5.7.3 When and how might I remind the core team of a patch I care about?

A polite, well-timed message to the mailing list is one way to get attention. To determine the right time, you need to
keep an eye on the schedule. If you post your message when the core developers are trying to hit a feature deadline or
manage a planning phase, you’re not going to get the sort of attention you require. However, if you draw attention to a
ticket when the core developers are paying particular attention to bugs – just before a bug fixing sprint, or in the lead
up to a beta release for example – you’re much more likely to get a productive response.

364 Chapter 5. Django FAQ

Django Documentation, Release 1.2.7

Gentle IRC reminders can also work – again, strategically timed if possible. During a bug sprint would be a very good
time, for example.

Another way to get traction is to pull several related tickets together. When the core developers sit down to fix a bug
in an area they haven’t touched for a while, it can take a few minutes to remember all the fine details of how that area
of code works. If you collect several minor bug fixes together into a similarly themed group, you make an attractive
target, as the cost of coming up to speed on an area of code can be spread over multiple tickets.

Please refrain from emailing core developers personally, or repeatedly raising the same issue over and over. This sort
of behavior will not gain you any additional attention – certainly not the attention that you need in order to get your
pet bug addressed.

5.7.4 But I’ve reminded you several times and you keep ignoring my patch!

Seriously - we’re not ignoring you. If your patch stands no chance of inclusion in Django, we’ll close the ticket. For
all the other tickets, we need to prioritize our efforts, which means that some tickets will be addressed before others.

One of the criteria that is used to prioritize bug fixes is the number of people that will likely be affected by a given
bug. Bugs that have the potential to affect many people will generally get priority over those that are edge cases.

Another reason that bugs might be ignored for while is if the bug is a symptom of a larger problem. While we can
spend time writing, testing and applying lots of little patches, sometimes the right solution is to rebuild. If a rebuild or
refactor of a particular component has been proposed or is underway, you may find that bugs affecting that component
will not get as much attention. Again, this is just a matter of prioritizing scarce resources. By concentrating on the
rebuild, we can close all the little bugs at once, and hopefully prevent other little bugs from appearing in the future.

Whatever the reason, please keep in mind that while you may hit a particular bug regularly, it doesn’t necessarily
follow that every single Django user will hit the same bug. Different users use Django in different ways, stressing
different parts of the code under different conditions. When we evaluate the relative priorities, we are generally trying
to consider the needs of the entire community, not just the severity for one particular user. This doesn’t mean that we
think your problem is unimportant – just that in the limited time we have available, we will always err on the side of
making 10 people happy rather than making 1 person happy.

5.7. FAQ: Contributing code 365

Django Documentation, Release 1.2.7

366 Chapter 5. Django FAQ

CHAPTER

SIX

API REFERENCE

6.1 Authentication backends

This document details the authentication backends that come with Django. For information on how to use them and
how to write your own authentication backends, see the Other authentication sources section of the User authentica-
tion guide.

6.1.1 Available authentication backends

The following backends are available in django.contrib.auth.backends:

class ModelBackend
This is the default authentication backend used by Django. It authenticates using usernames and passwords
stored in the User model.

class RemoteUserBackend
New in version 1.1: Please, see the release notes Use this backend to take advantage of external-to-Django-
handled authentication. It authenticates using usernames passed in request.META[’REMOTE_USER’].
See the Authenticating against REMOTE_USER documentation.

6.2 contrib packages

Django aims to follow Python’s “batteries included” philosophy. It ships with a variety of extra, optional tools that
solve common Web-development problems.

This code lives in django/contrib in the Django distribution. This document gives a rundown of the packages in
contrib, along with any dependencies those packages have.

Note

For most of these add-ons – specifically, the add-ons that include either models or template tags – you’ll need to add the
package name (e.g., ’django.contrib.admin’) to your INSTALLED_APPS setting and re-run manage.py
syncdb.

6.2.1 The Django admin site

One of the most powerful parts of Django is the automatic admin interface. It reads metadata in your model to provide
a powerful and production-ready interface that content producers can immediately use to start adding content to the

367

http://docs.python.org/tutorial/stdlib.html#batteries-included

Django Documentation, Release 1.2.7

site. In this document, we discuss how to activate, use and customize Django’s admin interface.

Note

The admin site has been refactored significantly since Django 0.96. This document describes the newest version of
the admin site, which allows for much richer customization. If you follow the development of Django itself, you may
have heard this described as “newforms-admin.”

Overview

There are six steps in activating the Django admin site:

1. Add ’django.contrib.admin’ to your INSTALLED_APPS setting.

2. Admin has two dependencies - django.contrib.auth and django.contrib.contenttypes. If
these applications are not in your INSTALLED_APPS list, add them.

3. Determine which of your application’s models should be editable in the admin interface.

4. For each of those models, optionally create a ModelAdmin class that encapsulates the customized admin
functionality and options for that particular model.

5. Instantiate an AdminSite and tell it about each of your models and ModelAdmin classes.

6. Hook the AdminSite instance into your URLconf.

Other topics

Admin actions New in version 1.1: Please, see the release notes The basic workflow of Django’s admin is, in a
nutshell, “select an object, then change it.” This works well for a majority of use cases. However, if you need to make
the same change to many objects at once, this workflow can be quite tedious.

In these cases, Django’s admin lets you write and register “actions” – simple functions that get called with a list of
objects selected on the change list page.

If you look at any change list in the admin, you’ll see this feature in action; Django ships with a “delete se-
lected objects” action available to all models. For example, here’s the user module from Django’s built-in
django.contrib.auth app:

368 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Warning: The “delete selected objects” action uses QuerySet.delete() for efficiency reasons, which has
an important caveat: your model’s delete() method will not be called.
If you wish to override this behavior, simply write a custom action which accomplishes deletion in your preferred
manner – for example, by calling Model.delete() for each of the selected items.
For more background on bulk deletion, see the documentation on object deletion.

Read on to find out how to add your own actions to this list.

Writing actions The easiest way to explain actions is by example, so let’s dive in.

A common use case for admin actions is the bulk updating of a model. Imagine a simple news application with an
Article model:

from django.db import models

STATUS_CHOICES = (
(’d’, ’Draft’),
(’p’, ’Published’),
(’w’, ’Withdrawn’),

)

class Article(models.Model):
title = models.CharField(max_length=100)
body = models.TextField()
status = models.CharField(max_length=1, choices=STATUS_CHOICES)

def __unicode__(self):
return self.title

A common task we might perform with a model like this is to update an article’s status from “draft” to “published”.
We could easily do this in the admin one article at a time, but if we wanted to bulk-publish a group of articles, it’d be
tedious. So, let’s write an action that lets us change an article’s status to “published.”

Writing action functions First, we’ll need to write a function that gets called when the action is trigged from the
admin. Action functions are just regular functions that take three arguments:

6.2. contrib packages 369

Django Documentation, Release 1.2.7

• The current ModelAdmin

• An HttpRequest representing the current request,

• A QuerySet containing the set of objects selected by the user.

Our publish-these-articles function won’t need the ModelAdmin or the request object, but we will use the queryset:

def make_published(modeladmin, request, queryset):
queryset.update(status=’p’)

Note: For the best performance, we’re using the queryset’s update method. Other types of actions might need to deal
with each object individually; in these cases we’d just iterate over the queryset:

for obj in queryset:
do_something_with(obj)

That’s actually all there is to writing an action! However, we’ll take one more optional-but-useful step and give the
action a “nice” title in the admin. By default, this action would appear in the action list as “Make published” – the
function name, with underscores replaced by spaces. That’s fine, but we can provide a better, more human-friendly
name by giving the make_published function a short_description attribute:

def make_published(modeladmin, request, queryset):
queryset.update(status=’p’)

make_published.short_description = "Mark selected stories as published"

Note: This might look familiar; the admin’s list_display option uses the same technique to provide human-
readable descriptions for callback functions registered there, too.

Adding actions to the ModelAdmin Next, we’ll need to inform our ModelAdmin of the action. This works just
like any other configuration option. So, the complete admin.py with the action and its registration would look like:

from django.contrib import admin
from myapp.models import Article

def make_published(modeladmin, request, queryset):
queryset.update(status=’p’)

make_published.short_description = "Mark selected stories as published"

class ArticleAdmin(admin.ModelAdmin):
list_display = [’title’, ’status’]
ordering = [’title’]
actions = [make_published]

admin.site.register(Article, ArticleAdmin)

That code will give us an admin change list that looks something like this:

370 Chapter 6. API Reference

Django Documentation, Release 1.2.7

That’s really all there is to it! If you’re itching to write your own actions, you now know enough to get started. The
rest of this document just covers more advanced techniques.

Advanced action techniques There’s a couple of extra options and possibilities you can exploit for more advanced
options.

Actions as ModelAdmin methods The example above shows the make_published action defined as a simple
function. That’s perfectly fine, but it’s not perfect from a code design point of view: since the action is tightly coupled
to the Article object, it makes sense to hook the action to the ArticleAdmin object itself.

That’s easy enough to do:

class ArticleAdmin(admin.ModelAdmin):
...

actions = [’make_published’]

def make_published(self, request, queryset):
queryset.update(status=’p’)

make_published.short_description = "Mark selected stories as published"

Notice first that we’ve moved make_published into a method and renamed the modeladmin parameter to self, and
second that we’ve now put the string ’make_published’ in actions instead of a direct function reference. This
tells the ModelAdmin to look up the action as a method.

Defining actions as methods gives the action more straightforward, idiomatic access to the ModelAdmin itself,
allowing the action to call any of the methods provided by the admin. For example, we can use self to flash a
message to the user informing her that the action was successful:

class ArticleAdmin(admin.ModelAdmin):
...

def make_published(self, request, queryset):
rows_updated = queryset.update(status=’p’)
if rows_updated == 1:

message_bit = "1 story was"
else:

6.2. contrib packages 371

Django Documentation, Release 1.2.7

message_bit = "%s stories were" % rows_updated
self.message_user(request, "%s successfully marked as published." % message_bit)

This make the action match what the admin itself does after successfully performing an action:

Actions that provide intermediate pages By default, after an action is performed the user is simply redirected
back to the original change list page. However, some actions, especially more complex ones, will need to return
intermediate pages. For example, the built-in delete action asks for confirmation before deleting the selected objects.

To provide an intermediary page, simply return an HttpResponse (or subclass) from your action. For example,
you might write a simple export function that uses Django’s serialization functions to dump some selected objects as
JSON:

from django.http import HttpResponse
from django.core import serializers

def export_as_json(modeladmin, request, queryset):
response = HttpResponse(mimetype="text/javascript")
serializers.serialize("json", queryset, stream=response)
return response

Generally, something like the above isn’t considered a great idea. Most of the time, the best practice will be to return
an HttpResponseRedirect and redirect the user to a view you’ve written, passing the list of selected objects in
the GET query string. This allows you to provide complex interaction logic on the intermediary pages. For example,
if you wanted to provide a more complete export function, you’d want to let the user choose a format, and possibly a
list of fields to include in the export. The best thing to do would be to write a small action that simply redirects to your
custom export view:

from django.contrib import admin
from django.contrib.contenttypes.models import ContentType
from django.http import HttpResponseRedirect

def export_selected_objects(modeladmin, request, queryset):
selected = request.POST.getlist(admin.ACTION_CHECKBOX_NAME)
ct = ContentType.objects.get_for_model(queryset.model)
return HttpResponseRedirect("/export/?ct=%s&ids=%s" % (ct.pk, ",".join(selected)))

372 Chapter 6. API Reference

Django Documentation, Release 1.2.7

As you can see, the action is the simple part; all the complex logic would belong in your export view. This would need
to deal with objects of any type, hence the business with the ContentType.

Writing this view is left as an exercise to the reader.

Making actions available site-wide
AdminSite.add_action(action[, name])

Some actions are best if they’re made available to any object in the admin site – the export action defined above
would be a good candidate. You can make an action globally available using AdminSite.add_action().
For example:

from django.contrib import admin

admin.site.add_action(export_selected_objects)

This makes the export_selected_objects action globally available as an action named “export_selected_objects”.
You can explicitly give the action a name – good if you later want to programatically remove the action – by
passing a second argument to AdminSite.add_action():

admin.site.add_action(export_selected_objects, ’export_selected’)

Disabling actions Sometimes you need to disable certain actions – especially those registered site-wide – for partic-
ular objects. There’s a few ways you can disable actions:

Disabling a site-wide action
AdminSite.disable_action(name)

If you need to disable a site-wide action you can call AdminSite.disable_action().

For example, you can use this method to remove the built-in “delete selected objects” action:

admin.site.disable_action(’delete_selected’)

Once you’ve done the above, that action will no longer be available site-wide.

If, however, you need to re-enable a globally-disabled action for one particular model, simply list it explicitly in
your ModelAdmin.actions list:

Globally disable delete selected
admin.site.disable_action(’delete_selected’)

This ModelAdmin will not have delete_selected available
class SomeModelAdmin(admin.ModelAdmin):

actions = [’some_other_action’]
...

This one will
class AnotherModelAdmin(admin.ModelAdmin):

actions = [’delete_selected’, ’a_third_action’]
...

Disabling all actions for a particular ModelAdmin If you want no bulk actions available for a given
ModelAdmin, simply set ModelAdmin.actions to None:

class MyModelAdmin(admin.ModelAdmin):
actions = None

This tells the ModelAdmin to not display or allow any actions, including any site-wide actions.

6.2. contrib packages 373

Django Documentation, Release 1.2.7

Conditionally enabling or disabling actions
ModelAdmin.get_actions(request)

Finally, you can conditionally enable or disable actions on a per-request (and hence per-user basis) by overriding
ModelAdmin.get_actions().

This returns a dictionary of actions allowed. The keys are action names, and the values are (function,
name, short_description) tuples.

Most of the time you’ll use this method to conditionally remove actions from the list gathered by the superclass.
For example, if I only wanted users whose names begin with ‘J’ to be able to delete objects in bulk, I could do
the following:

class MyModelAdmin(admin.ModelAdmin):
...

def get_actions(self, request):
actions = super(MyModelAdmin, self).get_actions(request)
if request.user.username[0].upper() != ’J’:

del actions[’delete_selected’]
return actions

The Django admin documentation generator Django’s admindocs app pulls documentation from the docstrings
of models, views, template tags, and template filters for any app in INSTALLED_APPS and makes that documentation
available from the Django admin.

In addition to providing offline documentation for all template tags and template filters that ship with Django, you may
utilize admindocs to quickly document your own code.

Overview To activate the admindocs, you will need to do the following:

• Add django.contrib.admindocs to your INSTALLED_APPS.

• Add (r’^admin/doc/’, include(’django.contrib.admindocs.urls’)) to your
urlpatterns. Make sure it’s included before the r’^admin/’ entry, so that requests to /admin/doc/
don’t get handled by the latter entry.

• Install the docutils Python module (http://docutils.sf.net/).

• Optional: Linking to templates requires the ADMIN_FOR setting to be configured.

• Optional: Using the admindocs bookmarklets requires the XViewMiddleware to be installed.

Once those steps are complete, you can start browsing the documentation by going to your admin interface and clicking
the “Documentation” link in the upper right of the page.

Documentation helpers The following special markup can be used in your docstrings to easily create hyperlinks to
other components:

Django Component reStructuredText roles
Models :model:‘appname.ModelName‘
Views :view:‘appname.view_name‘
Template tags :tag:‘tagname‘
Template filters :filter:‘filtername‘
Templates :template:‘path/to/template.html‘

374 Chapter 6. API Reference

http://docutils.sf.net/

Django Documentation, Release 1.2.7

Model reference The models section of the admindocs page describes each model in the system along with all
the fields and methods available on it. Relationships to other models appear as hyperlinks. Descriptions are pulled
from help_text attributes on fields or from docstrings on model methods.

A model with useful documentation might look like this:

class BlogEntry(models.Model):
"""
Stores a single blog entry, related to :model:‘blog.Blog‘ and
:model:‘auth.User‘.

"""
slug = models.SlugField(help_text="A short label, generally used in URLs.")
author = models.ForeignKey(User)
blog = models.ForeignKey(Blog)
...

def publish(self):
"""Makes the blog entry live on the site."""
...

View reference Each URL in your site has a separate entry in the admindocs page, and clicking on a given URL
will show you the corresponding view. Helpful things you can document in your view function docstrings include:

• A short description of what the view does.

• The context, or a list of variables available in the view’s template.

• The name of the template or templates that are used for that view.

For example:

from myapp.models import MyModel

def my_view(request, slug):
"""
Display an individual :model:‘myapp.MyModel‘.

Context

‘‘RequestContext‘‘

‘‘mymodel‘‘
An instance of :model:‘myapp.MyModel‘.

Template:

:template:‘myapp/my_template.html‘

"""
return render_to_response(’myapp/my_template.html’, {

’mymodel’: MyModel.objects.get(slug=slug)
}, context_instance=RequestContext(request))

Template tags and filters reference The tags and filters admindocs sections describe all the tags and filters that
come with Django (in fact, the built-in tag reference and built-in filter reference documentation come directly from
those pages). Any tags or filters that you create or are added by a third-party app will show up in these sections as
well.

6.2. contrib packages 375

Django Documentation, Release 1.2.7

Template reference While admindocs does not include a place to document templates by themselves, if you use
the :template:‘path/to/template.html‘ syntax in a docstring the resulting page will verify the path of
that template with Django’s template loaders. This can be a handy way to check if the specified template exists and to
show where on the filesystem that template is stored.

Included Bookmarklets Several useful bookmarklets are available from the admindocs page:

Documentation for this page Jumps you from any page to the documentation for the view that generates that page.

Show object ID Shows the content-type and unique ID for pages that represent a single object.

Edit this object Jumps to the admin page for pages that represent a single object.

Using these bookmarklets requires that you are either logged into the Django admin as a User with is_staff
set to True, or that the django.middleware.doc middleware and XViewMiddleware are installed and you
are accessing the site from an IP address listed in INTERNAL_IPS.

See Also:

For information about serving the media files (images, JavaScript, and CSS) associated with the admin in production,
see Serving media files.

ModelAdmin objects

class ModelAdmin
The ModelAdmin class is the representation of a model in the admin interface. These are stored in a file named
admin.py in your application. Let’s take a look at a very simple example of the ModelAdmin:

from django.contrib import admin
from myproject.myapp.models import Author

class AuthorAdmin(admin.ModelAdmin):
pass

admin.site.register(Author, AuthorAdmin)

Do you need a ModelAdmin object at all?

In the preceding example, the ModelAdmin class doesn’t define any custom values (yet). As a result, the
default admin interface will be provided. If you are happy with the default admin interface, you don’t need
to define a ModelAdmin object at all – you can register the model class without providing a ModelAdmin
description. The preceding example could be simplified to:

from django.contrib import admin
from myproject.myapp.models import Author

admin.site.register(Author)

ModelAdmin Options

The ModelAdmin is very flexible. It has several options for dealing with customizing the interface. All options are
defined on the ModelAdmin subclass:

class AuthorAdmin(admin.ModelAdmin):
date_hierarchy = ’pub_date’

376 Chapter 6. API Reference

Django Documentation, Release 1.2.7

ModelAdmin.date_hierarchy
Set date_hierarchy to the name of a DateField or DateTimeField in your model, and the change
list page will include a date-based drilldown navigation by that field.

Example:

date_hierarchy = ’pub_date’

ModelAdmin.form
By default a ModelForm is dynamically created for your model. It is used to create the form presented on both
the add/change pages. You can easily provide your own ModelForm to override any default form behavior on
the add/change pages.

For an example see the section Adding custom validation to the admin.

ModelAdmin.fieldsets
Set fieldsets to control the layout of admin “add” and “change” pages.

fieldsets is a list of two-tuples, in which each two-tuple represents a <fieldset> on the admin form
page. (A <fieldset> is a “section” of the form.)

The two-tuples are in the format (name, field_options), where name is a string representing the title
of the fieldset and field_options is a dictionary of information about the fieldset, including a list of fields
to be displayed in it.

A full example, taken from the django.contrib.flatpages.FlatPage model:

class FlatPageAdmin(admin.ModelAdmin):
fieldsets = (

(None, {
’fields’: (’url’, ’title’, ’content’, ’sites’)

}),
(’Advanced options’, {

’classes’: (’collapse’,),
’fields’: (’enable_comments’, ’registration_required’, ’template_name’)

}),
)

This results in an admin page that looks like:

6.2. contrib packages 377

Django Documentation, Release 1.2.7

If fieldsets isn’t given, Django will default to displaying each field that isn’t an AutoField and has
editable=True, in a single fieldset, in the same order as the fields are defined in the model.

The field_options dictionary can have the following keys:

•fields A tuple of field names to display in this fieldset. This key is required.

Example:

{
’fields’: (’first_name’, ’last_name’, ’address’, ’city’, ’state’),
}

To display multiple fields on the same line, wrap those fields in their own tuple. In this example, the
first_name and last_name fields will display on the same line:

{
’fields’: ((’first_name’, ’last_name’), ’address’, ’city’, ’state’),
}

New in version 1.2: Please, see the release notes fields can contain values defined in
readonly_fields to be displayed as read-only.

•classes A list containing extra CSS classes to apply to the fieldset.

Example:

{
’classes’: [’wide’, ’extrapretty’],
}

378 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Two useful classes defined by the default admin site stylesheet are collapse and wide. Fieldsets
with the collapse style will be initially collapsed in the admin and replaced with a small “click to
expand” link. Fieldsets with the wide style will be given extra horizontal space.

•description A string of optional extra text to be displayed at the top of each fieldset, under the heading
of the fieldset.

Note that this value is not HTML-escaped when it’s displayed in the admin interface.
This lets you include HTML if you so desire. Alternatively you can use plain text and
django.utils.html.escape() to escape any HTML special characters.

ModelAdmin.fields
Use this option as an alternative to fieldsets if the layout does not matter and if you want to only show a
subset of the available fields in the form. For example, you could define a simpler version of the admin form for
the django.contrib.flatpages.FlatPage model as follows:

class FlatPageAdmin(admin.ModelAdmin):
fields = (’url’, ’title’, ’content’)

In the above example, only the fields ‘url’, ‘title’ and ‘content’ will be displayed, sequentially, in
the form. New in version 1.2: Please, see the release notes fields can contain values defined in
ModelAdmin.readonly_fields to be displayed as read-only.

Note

This fields option should not be confused with the fields dictionary key that is within the fieldsets
option, as described in the previous section.

exclude

This attribute, if given, should be a list of field names to exclude from the form.

For example, let’s consider the following model:

class Author(models.Model):
name = models.CharField(max_length=100)
title = models.CharField(max_length=3)
birth_date = models.DateField(blank=True, null=True)

If you want a form for the Author model that includes only the name and title fields, you would specify
fields or exclude like this:

class AuthorAdmin(admin.ModelAdmin):
fields = (’name’, ’title’)

class AuthorAdmin(admin.ModelAdmin):
exclude = (’birth_date’,)

Since the Author model only has three fields, name, title, and birth_date, the forms resulting from the
above declarations will contain exactly the same fields.

filter_horizontal

Use a nifty unobtrusive JavaScript “filter” interface instead of the usability-challenged <select multiple>
in the admin form. The value is a list of fields that should be displayed as a horizontal filter interface. See
filter_vertical to use a vertical interface.

filter_vertical

Same as filter_horizontal, but is a vertical display of the filter interface.

6.2. contrib packages 379

Django Documentation, Release 1.2.7

ModelAdmin.list_display
Set list_display to control which fields are displayed on the change list page of the admin.

Example:

list_display = (’first_name’, ’last_name’)

If you don’t set list_display, the admin site will display a single column that displays the
__unicode__() representation of each object.

You have four possible values that can be used in list_display:

•A field of the model. For example:

class PersonAdmin(admin.ModelAdmin):
list_display = (’first_name’, ’last_name’)

•A callable that accepts one parameter for the model instance. For example:

def upper_case_name(obj):
return ("%s %s" % (obj.first_name, obj.last_name)).upper()

upper_case_name.short_description = ’Name’

class PersonAdmin(admin.ModelAdmin):
list_display = (upper_case_name,)

•A string representing an attribute on the ModelAdmin. This behaves same as the callable. For example:

class PersonAdmin(admin.ModelAdmin):
list_display = (’upper_case_name’,)

def upper_case_name(self, obj):
return ("%s %s" % (obj.first_name, obj.last_name)).upper()

upper_case_name.short_description = ’Name’

•A string representing an attribute on the model. This behaves almost the same as the callable, but self in
this context is the model instance. Here’s a full model example:

class Person(models.Model):
name = models.CharField(max_length=50)
birthday = models.DateField()

def decade_born_in(self):
return self.birthday.strftime(’%Y’)[:3] + "0’s"

decade_born_in.short_description = ’Birth decade’

class PersonAdmin(admin.ModelAdmin):
list_display = (’name’, ’decade_born_in’)

A few special cases to note about list_display:

•If the field is a ForeignKey, Django will display the __unicode__() of the related object.

•ManyToManyField fields aren’t supported, because that would entail executing a separate SQL state-
ment for each row in the table. If you want to do this nonetheless, give your model a custom
method, and add that method’s name to list_display. (See below for more on custom methods
in list_display.)

•If the field is a BooleanField or NullBooleanField, Django will display a pretty “on” or “off”
icon instead of True or False.

380 Chapter 6. API Reference

Django Documentation, Release 1.2.7

•If the string given is a method of the model, ModelAdmin or a callable, Django will HTML-escape the
output by default. If you’d rather not escape the output of the method, give the method an allow_tags
attribute whose value is True.

Here’s a full example model:

class Person(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
color_code = models.CharField(max_length=6)

def colored_name(self):
return ’%s %s’ % (self.color_code, self.first_name, self.last_name)

colored_name.allow_tags = True

class PersonAdmin(admin.ModelAdmin):
list_display = (’first_name’, ’last_name’, ’colored_name’)

•If the string given is a method of the model, ModelAdmin or a callable that returns True or False Django
will display a pretty “on” or “off” icon if you give the method a boolean attribute whose value is True.

Here’s a full example model:

class Person(models.Model):
first_name = models.CharField(max_length=50)
birthday = models.DateField()

def born_in_fifties(self):
return self.birthday.strftime(’%Y’)[:3] == ’195’

born_in_fifties.boolean = True

class PersonAdmin(admin.ModelAdmin):
list_display = (’name’, ’born_in_fifties’)

•The __str__() and __unicode__() methods are just as valid in list_display as any other
model method, so it’s perfectly OK to do this:

list_display = (’__unicode__’, ’some_other_field’)

•Usually, elements of list_display that aren’t actual database fields can’t be used in sorting (because
Django does all the sorting at the database level).

However, if an element of list_display represents a certain database field, you can indicate this fact
by setting the admin_order_field attribute of the item.

For example:

class Person(models.Model):
first_name = models.CharField(max_length=50)
color_code = models.CharField(max_length=6)

def colored_first_name(self):
return ’%s’ % (self.color_code, self.first_name)

colored_first_name.allow_tags = True
colored_first_name.admin_order_field = ’first_name’

class PersonAdmin(admin.ModelAdmin):
list_display = (’first_name’, ’colored_first_name’)

The above will tell Django to order by the first_name field when trying to sort by
colored_first_name in the admin.

6.2. contrib packages 381

Django Documentation, Release 1.2.7

ModelAdmin.list_display_links
Set list_display_links to control which fields in list_display should be linked to the “change”
page for an object.

By default, the change list page will link the first column – the first field specified in list_display – to
the change page for each item. But list_display_links lets you change which columns are linked. Set
list_display_links to a list or tuple of fields (in the same format as list_display) to link.

list_display_links can specify one or many fields. As long as the fields appear in list_display,
Django doesn’t care how many (or how few) fields are linked. The only requirement is: If you want to use
list_display_links, you must define list_display.

In this example, the first_name and last_name fields will be linked on the change list page:

class PersonAdmin(admin.ModelAdmin):
list_display = (’first_name’, ’last_name’, ’birthday’)
list_display_links = (’first_name’, ’last_name’)

ModelAdmin.list_editable
New in version 1.1: Please, see the release notes Set list_editable to a list of field names on the model
which will allow editing on the change list page. That is, fields listed in list_editable will be displayed
as form widgets on the change list page, allowing users to edit and save multiple rows at once.

Note: list_editable interacts with a couple of other options in particular ways; you should note the
following rules:

•Any field in list_editable must also be in list_display. You can’t edit a field that’s not dis-
played!

•The same field can’t be listed in both list_editable and list_display_links – a field can’t be
both a form and a link.

You’ll get a validation error if either of these rules are broken.

ModelAdmin.list_filter
Set list_filter to activate filters in the right sidebar of the change list page of the admin. This should be
a list of field names, and each specified field should be either a BooleanField, CharField, DateField,
DateTimeField, IntegerField or ForeignKey.

This example, taken from the django.contrib.auth.models.User model, shows how both
list_display and list_filter work:

class UserAdmin(admin.ModelAdmin):
list_display = (’username’, ’email’, ’first_name’, ’last_name’, ’is_staff’)
list_filter = (’is_staff’, ’is_superuser’)

The above code results in an admin change list page that looks like this:

382 Chapter 6. API Reference

Django Documentation, Release 1.2.7

(This example also has search_fields defined. See below.)

ModelAdmin.list_per_page
Set list_per_page to control how many items appear on each paginated admin change list page. By default,
this is set to 100.

ModelAdmin.list_select_related
Set list_select_related to tell Django to use select_related() in retrieving the list of objects on
the admin change list page. This can save you a bunch of database queries.

The value should be either True or False. Default is False.

Note that Django will use select_related(), regardless of this setting, if one of the list_display
fields is a ForeignKey.

ModelAdmin.inlines
See InlineModelAdmin objects below.

ModelAdmin.ordering
Set ordering to specify how lists of objects should be ordered in the Django admin views. This should be a
list or tuple in the same format as a model’s ordering parameter.

If this isn’t provided, the Django admin will use the model’s default ordering.

Note

Django will only honor the first element in the list/tuple; any others will be ignored.

ModelAdmin.prepopulated_fields
Set prepopulated_fields to a dictionary mapping field names to the fields it should prepopulate from:

class ArticleAdmin(admin.ModelAdmin):
prepopulated_fields = {"slug": ("title",)}

When set, the given fields will use a bit of JavaScript to populate from the fields assigned. The main use for
this functionality is to automatically generate the value for SlugField fields from one or more other fields.
The generated value is produced by concatenating the values of the source fields, and then by transforming that
result into a valid slug (e.g. substituting dashes for spaces).

prepopulated_fields doesn’t accept DateTimeField, ForeignKey, nor ManyToManyField
fields.

6.2. contrib packages 383

Django Documentation, Release 1.2.7

ModelAdmin.radio_fields
By default, Django’s admin uses a select-box interface (<select>) for fields that are ForeignKey or have
choices set. If a field is present in radio_fields, Django will use a radio-button interface instead. As-
suming group is a ForeignKey on the Person model:

class PersonAdmin(admin.ModelAdmin):
radio_fields = {"group": admin.VERTICAL}

You have the choice of using HORIZONTAL or VERTICAL from the django.contrib.admin module.

Don’t include a field in radio_fields unless it’s a ForeignKey or has choices set.

ModelAdmin.raw_id_fields
By default, Django’s admin uses a select-box interface (<select>) for fields that are ForeignKey. Sometimes
you don’t want to incur the overhead of having to select all the related instances to display in the drop-down.

raw_id_fields is a list of fields you would like to change into a Input widget for either a ForeignKey
or ManyToManyField:

class ArticleAdmin(admin.ModelAdmin):
raw_id_fields = ("newspaper",)

ModelAdmin.readonly_fields
New in version 1.2: Please, see the release notes By default the admin shows all fields as editable. Any fields
in this option (which should be a list or tuple) will display its data as-is and non-editable. This option
behaves nearly identical to ModelAdmin.list_display. Usage is the same, however, when you specify
ModelAdmin.fields or ModelAdmin.fieldsets the read-only fields must be present to be shown
(they are ignored otherwise).

If readonly_fields is used without defining explicit ordering through ModelAdmin.fields or
ModelAdmin.fieldsets they will be added last after all editable fields.

ModelAdmin.save_as
Set save_as to enable a “save as” feature on admin change forms.

Normally, objects have three save options: “Save”, “Save and continue editing” and “Save and add another”. If
save_as is True, “Save and add another” will be replaced by a “Save as” button.

“Save as” means the object will be saved as a new object (with a new ID), rather than the old object.

By default, save_as is set to False.

ModelAdmin.save_on_top
Set save_on_top to add save buttons across the top of your adminchange forms.

Normally, the save buttons appear only at the bottom of the forms. If you set save_on_top, the buttons will
appear both on the top and the bottom.

By default, save_on_top is set to False.

ModelAdmin.search_fields
Set search_fields to enable a search box on the admin change list page. This should be set to a list of field
names that will be searched whenever somebody submits a search query in that text box.

These fields should be some kind of text field, such as CharField or TextField. You can also perform a
related lookup on a ForeignKey or ManyToManyField with the lookup API “follow” notation:

search_fields = [’foreign_key__related_fieldname’]

For example, if you have a blog entry with an author, the following definition would enable search blog entries
by the email address of the author:

384 Chapter 6. API Reference

Django Documentation, Release 1.2.7

search_fields = [’user__email’]

When somebody does a search in the admin search box, Django splits the search query into words and re-
turns all objects that contain each of the words, case insensitive, where each word must be in at least one of
search_fields. For example, if search_fields is set to [’first_name’, ’last_name’] and
a user searches for john lennon, Django will do the equivalent of this SQL WHERE clause:

WHERE (first_name ILIKE ’%john%’ OR last_name ILIKE ’%john%’)
AND (first_name ILIKE ’%lennon%’ OR last_name ILIKE ’%lennon%’)

For faster and/or more restrictive searches, prefix the field name with an operator:

^ Matches the beginning of the field. For example, if search_fields is set to [’^first_name’,
’^last_name’] and a user searches for john lennon, Django will do the equivalent of this SQL
WHERE clause:

WHERE (first_name ILIKE ’john%’ OR last_name ILIKE ’john%’)
AND (first_name ILIKE ’lennon%’ OR last_name ILIKE ’lennon%’)

This query is more efficient than the normal ’%john%’ query, because the database only needs to check
the beginning of a column’s data, rather than seeking through the entire column’s data. Plus, if the column
has an index on it, some databases may be able to use the index for this query, even though it’s a LIKE
query.

= Matches exactly, case-insensitive. For example, if search_fields is set to [’=first_name’,
’=last_name’] and a user searches for john lennon, Django will do the equivalent of this SQL
WHERE clause:

WHERE (first_name ILIKE ’john’ OR last_name ILIKE ’john’)
AND (first_name ILIKE ’lennon’ OR last_name ILIKE ’lennon’)

Note that the query input is split by spaces, so, following this example, it’s currently not possible to search
for all records in which first_name is exactly ’john winston’ (containing a space).

@ Performs a full-text match. This is like the default search method but uses an index. Currently this is only
available for MySQL.

ModelAdmin.formfield_overrides
New in version 1.1: Please, see the release notes This provides a quick-and-dirty way to override some of the
Field options for use in the admin. formfield_overrides is a dictionary mapping a field class to a dict
of arguments to pass to the field at construction time.

Since that’s a bit abstract, let’s look at a concrete example. The most common use of
formfield_overrides is to add a custom widget for a certain type of field. So, imagine we’ve written
a RichTextEditorWidget that we’d like to use for large text fields instead of the default <textarea>.
Here’s how we’d do that:

from django.db import models
from django.contrib import admin

Import our custom widget and our model from where they’re defined
from myapp.widgets import RichTextEditorWidget
from myapp.models import MyModel

class MyModelAdmin(admin.ModelAdmin):
formfield_overrides = {

models.TextField: {’widget’: RichTextEditorWidget},
}

6.2. contrib packages 385

Django Documentation, Release 1.2.7

Note that the key in the dictionary is the actual field class, not a string. The value is another dictionary; these
arguments will be passed to __init__(). See The Forms API for details.

Warning: If you want to use a custom widget with a relation field (i.e. ForeignKey or
ManyToManyField), make sure you haven’t included that field’s name in raw_id_fields or
radio_fields.
formfield_overrides won’t let you change the widget on relation fields that have raw_id_fields
or radio_fields set. That’s because raw_id_fields and radio_fields imply custom widgets
of their own.

ModelAdmin.actions
New in version 1.1: Please, see the release notes A list of actions to make available on the change list page. See
Admin actions for details.

ModelAdmin.actions_on_top

ModelAdmin.actions_on_bottom
New in version 1.1: Please, see the release notes Controls where on the page the actions bar appears.
By default, the admin changelist displays actions at the top of the page (actions_on_top = True;
actions_on_bottom = False).

ModelAdmin.actions_selection_counter
New in version 1.2: Please, see the release notes Controls whether a selection counter is display next to the
action dropdown. By default, the admin changelist will display it (actions_selection_counter =
True).

Custom template options The Overriding Admin Templates section describes how to override or extend the default
admin templates. Use the following options to override the default templates used by the ModelAdmin views:

ModelAdmin.add_form_template
New in version 1.2: Please, see the release notes Path to a custom template, used by add_view().

ModelAdmin.change_form_template
Path to a custom template, used by change_view().

ModelAdmin.change_list_template
Path to a custom template, used by changelist_view().

ModelAdmin.delete_confirmation_template
Path to a custom template, used by delete_view() for displaying a confirmation page when deleting one or
more objects.

ModelAdmin.delete_selected_confirmation_template
New in version 1.2: Please, see the release notes Path to a custom template, used by the
delete_selected() action method for displaying a confirmation page when deleting one or more objects.
See the actions documentation.

ModelAdmin.object_history_template
Path to a custom template, used by history_view().

ModelAdmin methods

ModelAdmin.save_model(self, request, obj, form, change)
The save_model method is given the HttpRequest, a model instance, a ModelForm instance and a
boolean value based on whether it is adding or changing the object. Here you can do any pre- or post-save
operations.

386 Chapter 6. API Reference

Django Documentation, Release 1.2.7

For example to attach request.user to the object prior to saving:

class ArticleAdmin(admin.ModelAdmin):
def save_model(self, request, obj, form, change):

obj.user = request.user
obj.save()

ModelAdmin.save_formset(self, request, form, formset, change)
The save_formset method is given the HttpRequest, the parent ModelForm instance and a boolean
value based on whether it is adding or changing the parent object.

For example to attach request.user to each changed formset model instance:

class ArticleAdmin(admin.ModelAdmin):
def save_formset(self, request, form, formset, change):

instances = formset.save(commit=False)
for instance in instances:

instance.user = request.user
instance.save()

formset.save_m2m()

ModelAdmin.get_readonly_fields(self, request, obj=None)
New in version 1.2: Please, see the release notes The get_readonly_fields method is given
the HttpRequest and the obj being edited (or None on an add form) and is expected to re-
turn a list or tuple of field names that will be displayed as read-only, as described above in the
ModelAdmin.readonly_fields section.

ModelAdmin.get_urls(self)
New in version 1.1: Please, see the release notes The get_urls method on a ModelAdmin returns the URLs
to be used for that ModelAdmin in the same way as a URLconf. Therefore you can extend them as documented
in URL dispatcher:

class MyModelAdmin(admin.ModelAdmin):
def get_urls(self):

urls = super(MyModelAdmin, self).get_urls()
my_urls = patterns(’’,

(r’^my_view/$’, self.my_view)
)
return my_urls + urls

Note: Notice that the custom patterns are included before the regular admin URLs: the admin URL patterns
are very permissive and will match nearly anything, so you’ll usually want to prepend your custom URLs to the
built-in ones.

However, the self.my_view function registered above suffers from two problems:

•It will not perform any permission checks, so it will be accessible to the general public.

•It will not provide any header details to prevent caching. This means if the page retrieves data from the
database, and caching middleware is active, the page could show outdated information.

Since this is usually not what you want, Django provides a convenience wrapper to check permis-
sions and mark the view as non-cacheable. This wrapper is AdminSite.admin_view() (i.e.
self.admin_site.admin_view inside a ModelAdmin instance); use it like so:

class MyModelAdmin(admin.ModelAdmin):
def get_urls(self):

urls = super(MyModelAdmin, self).get_urls()
my_urls = patterns(’’,

6.2. contrib packages 387

Django Documentation, Release 1.2.7

(r’^my_view/$’, self.admin_site.admin_view(self.my_view))
)
return my_urls + urls

Notice the wrapped view in the fifth line above:

(r’^my_view/$’, self.admin_site.admin_view(self.my_view))

This wrapping will protect self.my_view from unauthorized access and will apply the
django.views.decorators.cache.never_cache decorator to make sure it is not cached if
the cache middleware is active.

If the page is cacheable, but you still want the permission check to be performed, you can pass a
cacheable=True argument to AdminSite.admin_view():

(r’^my_view/$’, self.admin_site.admin_view(self.my_view, cacheable=True))

ModelAdmin.formfield_for_foreignkey(self, db_field, request, **kwargs)
New in version 1.1: Please, see the release notes The formfield_for_foreignkey method on a
ModelAdmin allows you to override the default formfield for a foreign key field. For example, to return a
subset of objects for this foreign key field based on the user:

class MyModelAdmin(admin.ModelAdmin):
def formfield_for_foreignkey(self, db_field, request, **kwargs):

if db_field.name == "car":
kwargs["queryset"] = Car.objects.filter(owner=request.user)

return super(MyModelAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs)

This uses the HttpRequest instance to filter the Car foreign key field to only display the cars owned by the
User instance.

ModelAdmin.formfield_for_manytomany(self, db_field, request, **kwargs)
New in version 1.1: Please, see the release notes Like the formfield_for_foreignkey method, the
formfield_for_manytomany method can be overridden to change the default formfield for a many to
many field. For example, if an owner can own multiple cars and cars can belong to multiple owners – a many to
many relationship – you could filter the Car foreign key field to only display the cars owned by the User:

class MyModelAdmin(admin.ModelAdmin):
def formfield_for_manytomany(self, db_field, request, **kwargs):

if db_field.name == "cars":
kwargs["queryset"] = Car.objects.filter(owner=request.user)

return super(MyModelAdmin, self).formfield_for_manytomany(db_field, request, **kwargs)

ModelAdmin.formfield_for_choice_field(self, db_field, request, **kwargs)
Like the formfield_for_foreignkey and formfield_for_manytomany methods, the
formfield_for_choice_field method can be overridden to change the default formfield for a
field that has declared choices. For example, if the choices available to a superuser should be different than
those available to regular staff, you could proceed as follows:

class MyModelAdmin(admin.ModelAdmin):
def formfield_for_choice_field(self, db_field, request, **kwargs):

if db_field.name == "status":
kwargs[’choices’] = (

(’accepted’, ’Accepted’),
(’denied’, ’Denied’),

)
if request.user.is_superuser:

kwargs[’choices’] += ((’ready’, ’Ready for deployment’),)
return super(MyModelAdmin, self).formfield_for_choice_field(db_field, request, **kwargs)

388 Chapter 6. API Reference

Django Documentation, Release 1.2.7

ModelAdmin.has_add_permission(self, request)
Should return True if adding an object is permitted, False otherwise.

ModelAdmin.has_change_permission(self, request, obj=None)
Should return True if editing obj is permitted, False otherwise. If obj is None, should return True or False
to indicate whether editing of objects of this type is permitted in general (e.g., False will be interpreted as
meaning that the current user is not permitted to edit any object of this type).

ModelAdmin.has_delete_permission(self, request, obj=None)
Should return True if deleting obj is permitted, False otherwise. If obj is None, should return True or
False to indicate whether deleting objects of this type is permitted in general (e.g., False will be interpreted
as meaning that the current user is not permitted to delete any object of this type).

ModelAdmin.queryset(self, request)
The queryset method on a ModelAdmin returns a QuerySet of all model instances that can be edited by
the admin site. One use case for overriding this method is to show objects owned by the logged-in user:

class MyModelAdmin(admin.ModelAdmin):
def queryset(self, request):

qs = super(MyModelAdmin, self).queryset(request)
if request.user.is_superuser:

return qs
return qs.filter(author=request.user)

ModelAdmin.message_user(request, message)
Sends a message to the user. The default implementation creates a message using the
django.contrib.messages backend. See the custom ModelAdmin example.

Other methods
ModelAdmin.add_view(self, request, form_url=’‘, extra_context=None)

Django view for the model instance addition page. See note below.
ModelAdmin.change_view(self, request, object_id, extra_context=None)

Django view for the model instance edition page. See note below.

ModelAdmin.changelist_view(self, request, extra_context=None)
Django view for the model instances change list/actions page. See note below.

ModelAdmin.delete_view(self, request, object_id, extra_context=None)
Django view for the model instance(s) deletion confirmation page. See note below.

ModelAdmin.history_view(self, request, object_id, extra_context=None)
Django view for the page that shows the modification history for a given model instance.

Unlike the hook-type ModelAdmin methods detailed in the previous section, these five methods are in reality de-
signed to be invoked as Django views from the admin application URL dispatching handler to render the pages that
deal with model instances CRUD operations. As a result, completely overriding these methods will significantly
change the behavior of the admin application.

One common reason for overriding these methods is to augment the context data that is provided to the template that
renders the view. In the following example, the change view is overridden so that the rendered template is provided
some extra mapping data that would not otherwise be available:

class MyModelAdmin(admin.ModelAdmin):

A template for a very customized change view:
change_form_template = ’admin/myapp/extras/openstreetmap_change_form.html’

def get_osm_info(self):
...

6.2. contrib packages 389

Django Documentation, Release 1.2.7

def change_view(self, request, object_id, extra_context=None):
my_context = {

’osm_data’: self.get_osm_info(),
}
return super(MyModelAdmin, self).change_view(request, object_id,

extra_context=my_context)

ModelAdmin media definitions

There are times where you would like add a bit of CSS and/or JavaScript to the add/change views. This can be
accomplished by using a Media inner class on your ModelAdmin:

class ArticleAdmin(admin.ModelAdmin):
class Media:

css = {
"all": ("my_styles.css",)

}
js = ("my_code.js",)

Keep in mind that this will be prepended with MEDIA_URL. The same rules apply as regular media definitions on
forms.

Django admin Javascript makes use of the jQuery library. To avoid conflict with user scripts, Django’s jQuery is
namespaced as django.jQuery. If you want to use jQuery in your own admin JavaScript without including a
second copy, you can use the django.jQuery object on changelist and add/edit views.

Adding custom validation to the admin

Adding custom validation of data in the admin is quite easy. The automatic admin interface reuses django.forms,
and the ModelAdmin class gives you the ability define your own form:

class ArticleAdmin(admin.ModelAdmin):
form = MyArticleAdminForm

MyArticleAdminForm can be defined anywhere as long as you import where needed. Now within your form you
can add your own custom validation for any field:

class MyArticleAdminForm(forms.ModelForm):
class Meta:

model = Article

def clean_name(self):
do something that validates your data
return self.cleaned_data["name"]

It is important you use a ModelForm here otherwise things can break. See the forms documentation on custom
validation and, more specifically, the model form validation notes for more information.

InlineModelAdmin objects

class InlineModelAdmin
The admin interface has the ability to edit models on the same page as a parent model. These are called inlines.
Suppose you have these two models:

390 Chapter 6. API Reference

http://jquery.com

Django Documentation, Release 1.2.7

class Author(models.Model):
name = models.CharField(max_length=100)

class Book(models.Model):
author = models.ForeignKey(Author)
title = models.CharField(max_length=100)

You can edit the books authored by an author on the author page. You add inlines to a model by specifying them
in a ModelAdmin.inlines:

class BookInline(admin.TabularInline):
model = Book

class AuthorAdmin(admin.ModelAdmin):
inlines = [

BookInline,
]

Django provides two subclasses of InlineModelAdmin and they are:

•TabularInline

•StackedInline

The difference between these two is merely the template used to render them.

InlineModelAdmin options

InlineModelAdmin shares many of the same features as ModelAdmin, and adds some of its own (the shared
features are actually defined in the BaseModelAdmin superclass). The shared features are:

• form

• fieldsets

• fields

• exclude

• filter_horizontal

• filter_vertical

• prepopulated_fields

• radio_fields

• raw_id_fields

New in version 1.1: Please, see the release notes

• formfield_for_foreignkey()

• formfield_for_manytomany()

New in version 1.2: Please, see the release notes

• readonly_fields

• formfield_overrides

The InlineModelAdmin class adds:

6.2. contrib packages 391

Django Documentation, Release 1.2.7

InlineModelAdmin.model
The model in which the inline is using. This is required.

InlineModelAdmin.fk_name
The name of the foreign key on the model. In most cases this will be dealt with automatically, but fk_name
must be specified explicitly if there are more than one foreign key to the same parent model.

InlineModelAdmin.formset
This defaults to BaseInlineFormSet. Using your own formset can give you many possibilities of cus-
tomization. Inlines are built around model formsets.

InlineModelAdmin.form
The value for form defaults to ModelForm. This is what is passed through to inlineformset_factory
when creating the formset for this inline.

InlineModelAdmin.extra
This controls the number of extra forms the formset will display in addition to the initial forms. See the form-
sets documentation for more information. New in version 1.2: Please, see the release notes For users with
JavaScript-enabled browsers, an “Add another” link is provided to enable any number of additional inlines to be
added in addition to those provided as a result of the extra argument.

The dynamic link will not appear if the number of currently displayed forms exceeds max_num, or if the user
does not have JavaScript enabled.

InlineModelAdmin.max_num
This controls the maximum number of forms to show in the inline. This doesn’t directly correlate to the number
of objects, but can if the value is small enough. See Limiting the number of editable objects for more information.

InlineModelAdmin.raw_id_fields
By default, Django’s admin uses a select-box interface (<select>) for fields that are ForeignKey. Sometimes
you don’t want to incur the overhead of having to select all the related instances to display in the drop-down.

raw_id_fields is a list of fields you would like to change into a Input widget for either a ForeignKey
or ManyToManyField:

class BookInline(admin.TabularInline):
model = Book
raw_id_fields = ("pages",)

InlineModelAdmin.template
The template used to render the inline on the page.

InlineModelAdmin.verbose_name
An override to the verbose_name found in the model’s inner Meta class.

InlineModelAdmin.verbose_name_plural
An override to the verbose_name_plural found in the model’s inner Meta class.

InlineModelAdmin.can_delete
Specifies whether or not inline objects can be deleted in the inline. Defaults to True.

Working with a model with two or more foreign keys to the same parent model

It is sometimes possible to have more than one foreign key to the same model. Take this model for instance:

class Friendship(models.Model):
to_person = models.ForeignKey(Person, related_name="friends")
from_person = models.ForeignKey(Person, related_name="from_friends")

392 Chapter 6. API Reference

Django Documentation, Release 1.2.7

If you wanted to display an inline on the Person admin add/change pages you need to explicitly define the foreign
key since it is unable to do so automatically:

class FriendshipInline(admin.TabularInline):
model = Friendship
fk_name = "to_person"

class PersonAdmin(admin.ModelAdmin):
inlines = [

FriendshipInline,
]

Working with Many-to-Many Models

New in version 1.2: Please, see the release notes By default, admin widgets for many-to-many relations will be
displayed on whichever model contains the actual reference to the ManyToManyField. Depending on your
ModelAdmin definition, each many-to-many field in your model will be represented by a standard HTML <select
multiple>, a horizontal or vertical filter, or a raw_id_admin widget. However, it is also possible to replace these
widgets with inlines.

Suppose we have the following models:

class Person(models.Model):
name = models.CharField(max_length=128)

class Group(models.Model):
name = models.CharField(max_length=128)
members = models.ManyToManyField(Person, related_name=’groups’)

If you want to display many-to-many relations using an inline, you can do so by defining an InlineModelAdmin
object for the relationship:

class MembershipInline(admin.TabularInline):
model = Group.members.through

class PersonAdmin(admin.ModelAdmin):
inlines = [

MembershipInline,
]

class GroupAdmin(admin.ModelAdmin):
inlines = [

MembershipInline,
]
exclude = (’members’,)

There are two features worth noting in this example.

Firstly - the MembershipInline class references Group.members.through. The through attribute is a
reference to the model that manages the many-to-many relation. This model is automatically created by Django when
you define a many-to-many field.

Secondly, the GroupAdmin must manually exclude the members field. Django displays an admin widget for a
many-to-many field on the model that defines the relation (in this case, Group). If you want to use an inline model to
represent the many-to-many relationship, you must tell Django’s admin to not display this widget - otherwise you will
end up with two widgets on your admin page for managing the relation.

In all other respects, the InlineModelAdmin is exactly the same as any other. You can customize the appearance
using any of the normal ModelAdmin properties.

6.2. contrib packages 393

Django Documentation, Release 1.2.7

Working with Many-to-Many Intermediary Models

When you specify an intermediary model using the through argument to a ManyToManyField, the admin will
not display a widget by default. This is because each instance of that intermediary model requires more information
than could be displayed in a single widget, and the layout required for multiple widgets will vary depending on the
intermediate model.

However, we still want to be able to edit that information inline. Fortunately, this is easy to do with inline admin
models. Suppose we have the following models:

class Person(models.Model):
name = models.CharField(max_length=128)

class Group(models.Model):
name = models.CharField(max_length=128)
members = models.ManyToManyField(Person, through=’Membership’)

class Membership(models.Model):
person = models.ForeignKey(Person)
group = models.ForeignKey(Group)
date_joined = models.DateField()
invite_reason = models.CharField(max_length=64)

The first step in displaying this intermediate model in the admin is to define an inline class for the Membership
model:

class MembershipInline(admin.TabularInline):
model = Membership
extra = 1

This simple example uses the default InlineModelAdmin values for the Membership model, and limits the extra
add forms to one. This could be customized using any of the options available to InlineModelAdmin classes.

Now create admin views for the Person and Group models:

class PersonAdmin(admin.ModelAdmin):
inlines = (MembershipInline,)

class GroupAdmin(admin.ModelAdmin):
inlines = (MembershipInline,)

Finally, register your Person and Group models with the admin site:

admin.site.register(Person, PersonAdmin)
admin.site.register(Group, GroupAdmin)

Now your admin site is set up to edit Membership objects inline from either the Person or the Group detail pages.

Using generic relations as an inline

It is possible to use an inline with generically related objects. Let’s say you have the following models:

class Image(models.Model):
image = models.ImageField(upload_to="images")
content_type = models.ForeignKey(ContentType)
object_id = models.PositiveIntegerField()
content_object = generic.GenericForeignKey("content_type", "object_id")

394 Chapter 6. API Reference

Django Documentation, Release 1.2.7

class Product(models.Model):
name = models.CharField(max_length=100)

If you want to allow editing and creating Image instance on the Product add/change views
you can use GenericTabularInline or GenericStackedInline (both subclasses of
GenericInlineModelAdmin) provided by django.contrib.contenttypes.generic, they im-
plement tabular and stacked visual layouts for the forms representing the inline objects respectively just like their
non-generic counterparts and behave just like any other inline. In your admin.py for this example app:

from django.contrib import admin
from django.contrib.contenttypes import generic

from myproject.myapp.models import Image, Product

class ImageInline(generic.GenericTabularInline):
model = Image

class ProductAdmin(admin.ModelAdmin):
inlines = [

ImageInline,
]

admin.site.register(Product, ProductAdmin)

See the contenttypes documentation for more specific information.

Overriding Admin Templates

It is relatively easy to override many of the templates which the admin module uses to generate the various pages of
an admin site. You can even override a few of these templates for a specific app, or a specific model.

Set up your projects admin template directories

The admin template files are located in the contrib/admin/templates/admin directory.

In order to override one or more of them, first create an admin directory in your project’s templates directory.
This can be any of the directories you specified in TEMPLATE_DIRS.

Within this admin directory, create sub-directories named after your app. Within these app subdirectories create sub-
directories named after your models. Note, that the admin app will lowercase the model name when looking for the
directory, so make sure you name the directory in all lowercase if you are going to run your app on a case-sensitive
filesystem.

To override an admin template for a specific app, copy and edit the template from the
django/contrib/admin/templates/admin directory, and save it to one of the directories you just
created.

For example, if we wanted to add a tool to the change list view for all the models in an app named my_app, we would
copy contrib/admin/templates/admin/change_list.html to the templates/admin/my_app/
directory of our project, and make any necessary changes.

If we wanted to add a tool to the change list view for only a specific model named ‘Page’, we would copy that same
file to the templates/admin/my_app/page directory of our project.

6.2. contrib packages 395

Django Documentation, Release 1.2.7

Overriding vs. replacing an admin template

Because of the modular design of the admin templates, it is usually neither necessary nor advisable to replace an entire
template. It is almost always better to override only the section of the template which you need to change.

To continue the example above, we want to add a new link next to the History tool for the Page model. After
looking at change_form.html we determine that we only need to override the object-tools block. Therefore
here is our new change_form.html :

{% extends "admin/change_form.html" %}
{% load i18n %}
{% block object-tools %}
{% if change %}{% if not is_popup %}
<ul class="object-tools">
{% trans "History" %}
My Link
{% if has_absolute_url %}

{% trans "View on site" %}

{% endif%}

{% endif %}{% endif %}
{% endblock %}

And that’s it! If we placed this file in the templates/admin/my_app directory, our link would appear on every
model’s change form.

Templates which may be overridden per app or model

Not every template in contrib/admin/templates/admin may be overridden per app or per model. The fol-
lowing can:

• app_index.html

• change_form.html

• change_list.html

• delete_confirmation.html

• object_history.html

For those templates that cannot be overridden in this way, you may still override them for your entire project. Just
place the new version in your templates/admin directory. This is particularly useful to create custom 404 and
500 pages.

Note: Some of the admin templates, such as change_list_request.html are used to render custom inclusion
tags. These may be overridden, but in such cases you are probably better off creating your own version of the tag in
question and giving it a different name. That way you can use it selectively.

Root and login templates

If you wish to change the index, login or logout templates, you are better off creating your own AdminSite in-
stance (see below), and changing the AdminSite.index_template , AdminSite.login_template or
AdminSite.logout_template properties.

396 Chapter 6. API Reference

Django Documentation, Release 1.2.7

AdminSite objects

class AdminSite(name=None)
A Django administrative site is represented by an instance of django.contrib.admin.sites.AdminSite;
by default, an instance of this class is created as django.contrib.admin.site and you can register your
models and ModelAdmin instances with it.

If you’d like to set up your own administrative site with custom behavior, however, you’re free to subclass
AdminSite and override or add anything you like. Then, simply create an instance of your AdminSite
subclass (the same way you’d instantiate any other Python class), and register your models and ModelAdmin
subclasses with it instead of using the default. New in version 1.1: Please, see the release notes When construct-
ing an instance of an AdminSite, you are able to provide a unique instance name using the name argument
to the constructor. This instance name is used to identify the instance, especially when reversing admin URLs.
If no instance name is provided, a default instance name of admin will be used.

AdminSite attributes

Templates can override or extend base admin templates as described in Overriding Admin Templates.

AdminSite.index_template
Path to a custom template that will be used by the admin site main index view.

AdminSite.login_template
Path to a custom template that will be used by the admin site login view.

AdminSite.logout_template
New in version 1.2: Please, see the release notes Path to a custom template that will be used by the admin site
logout view.

AdminSite.password_change_template
New in version 1.2: Please, see the release notes Path to a custom template that will be used by the admin site
password change view.

AdminSite.password_change_done_template
New in version 1.2: Please, see the release notes Path to a custom template that will be used by the admin site
password change done view.

Hooking AdminSite instances into your URLconf

The last step in setting up the Django admin is to hook your AdminSite instance into your URLconf. Do this by
pointing a given URL at the AdminSite.urls method.

In this example, we register the default AdminSite instance django.contrib.admin.site at the URL
/admin/

urls.py
from django.conf.urls.defaults import *
from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns(’’,
(r’^admin/’, include(admin.site.urls)),

)

Above we used admin.autodiscover() to automatically load the INSTALLED_APPS admin.py modules.

6.2. contrib packages 397

Django Documentation, Release 1.2.7

In this example, we register the AdminSite instance myproject.admin.admin_site at the URL
/myadmin/

urls.py
from django.conf.urls.defaults import *
from myproject.admin import admin_site

urlpatterns = patterns(’’,
(r’^myadmin/’, include(admin_site.urls)),

)

There is really no need to use autodiscover when using your own AdminSite instance since you will likely be
importing all the per-app admin.py modules in your myproject.admin module.

Multiple admin sites in the same URLconf

It’s easy to create multiple instances of the admin site on the same Django-powered Web site. Just cre-
ate multiple instances of AdminSite and root each one at a different URL. Changed in version 1.1: The
method for hooking AdminSite instances into urls has changed in Django 1.1. In this example, the URLs
/basic-admin/ and /advanced-admin/ feature separate versions of the admin site – using the AdminSite
instances myproject.admin.basic_site and myproject.admin.advanced_site, respectively:

urls.py
from django.conf.urls.defaults import *
from myproject.admin import basic_site, advanced_site

urlpatterns = patterns(’’,
(r’^basic-admin/’, include(basic_site.urls)),
(r’^advanced-admin/’, include(advanced_site.urls)),

)

AdminSite instances take a single argument to their constructor, their name, which can be anything you like. This
argument becomes the prefix to the URL names for the purposes of reversing them. This is only necessary if you are
using more than one AdminSite.

Adding views to admin sites

New in version 1.1: Please, see the release notes Just like ModelAdmin, AdminSite provides a get_urls()
method that can be overridden to define additional views for the site. To add a new view to your admin site, extend the
base get_urls() method to include a pattern for your new view.

Note: Any view you render that uses the admin templates, or extends the base admin template, should provide the
current_app argument to RequestContext or Contextwhen rendering the template. It should be set to either
self.name if your view is on an AdminSite or self.admin_site.name if your view is on a ModelAdmin.

Reversing Admin URLs

New in version 1.1: Please, see the release notes When an AdminSite is deployed, the views provided by that site
are accessible using Django’s URL reversing system.

The AdminSite provides the following named URL patterns:

398 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Page URL name Parameters
Index index
Logout logout
Password change password_change
Password change done password_change_done
i18n javascript jsi18n
Application index page app_list app_label

Each ModelAdmin instance provides an additional set of named URLs:

Page URL name Parameters
Changelist {{ app_label }}_{{ model_name }}_changelist
Add {{ app_label }}_{{ model_name }}_add
History {{ app_label }}_{{ model_name }}_history object_id
Delete {{ app_label }}_{{ model_name }}_delete object_id
Change {{ app_label }}_{{ model_name }}_change object_id

These named URLs are registered with the application namespace admin, and with an instance namespace corre-
sponding to the name of the Site instance.

So - if you wanted to get a reference to the Change view for a particular Choice object (from the polls application)
in the default admin, you would call:

>>> from django.core import urlresolvers
>>> c = Choice.objects.get(...)
>>> change_url = urlresolvers.reverse(’admin:polls_choice_change’, args=(c.id,))

This will find the first registered instance of the admin application (whatever the instance name), and resolve to the
view for changing poll.Choice instances in that instance.

If you want to find a URL in a specific admin instance, provide the name of that instance as a current_app hint
to the reverse call. For example, if you specifically wanted the admin view from the admin instance named custom,
you would need to call:

>>> change_url = urlresolvers.reverse(’custom:polls_choice_change’, args=(c.id,))

For more details, see the documentation on reversing namespaced URLs.

6.2.2 django.contrib.auth

See User authentication in Django.

6.2.3 Django’s comments framework

Django includes a simple, yet customizable comments framework. The built-in comments framework can be used to
attach comments to any model, so you can use it for comments on blog entries, photos, book chapters, or anything
else.

Note: If you used to use Django’s older (undocumented) comments framework, you’ll need to upgrade. See the
upgrade guide for instructions.

Quick start guide

To get started using the comments app, follow these steps:

6.2. contrib packages 399

Django Documentation, Release 1.2.7

1. Install the comments framework by adding ’django.contrib.comments’ to INSTALLED_APPS.

2. Run manage.py syncdb so that Django will create the comment tables.

3. Add the comment app’s URLs to your project’s urls.py:

urlpatterns = patterns(’’,
...
(r’^comments/’, include(’django.contrib.comments.urls’)),
...

)

4. Use the comment template tags below to embed comments in your templates.

You might also want to examine Comment settings.

Comment template tags

You’ll primarily interact with the comment system through a series of template tags that let you embed comments and
generate forms for your users to post them.

Like all custom template tag libraries, you’ll need to load the custom tags before you can use them:

{% load comments %}

Once loaded you can use the template tags below.

Specifying which object comments are attached to

Django’s comments are all “attached” to some parent object. This can be any instance of a Django model. Each of the
tags below gives you a couple of different ways you can specify which object to attach to:

1. Refer to the object directly – the more common method. Most of the time, you’ll have some object in the
template’s context you want to attach the comment to; you can simply use that object.

For example, in a blog entry page that has a variable named entry, you could use the following to load the
number of comments:

{% get_comment_count for entry as comment_count %}.

2. Refer to the object by content-type and object id. You’d use this method if you, for some reason, don’t actually
have direct access to the object.

Following the above example, if you knew the object ID was 14 but didn’t have access to the actual object, you
could do something like:

{% get_comment_count for blog.entry 14 as comment_count %}

In the above, blog.entry is the app label and (lower-cased) model name of the model class.

Displaying comments

To display a list of comments, you can use the template tags render_comment_list or get_comment_list.

400 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Quickly rendering a comment list The easiest way to display a list of comments for some object is by using
render_comment_list:

{% render_comment_list for [object] %}

For example:

{% render_comment_list for event %}

This will render comments using a template named comments/list.html, a default version of which is included
with Django.

Rendering a custom comment list To get the list of comments for some object, use get_comment_list:

{% get_comment_list for [object] as [varname] %}

For example:

{% get_comment_list for event as comment_list %}
{% for comment in comment_list %}

...
{% endfor %}

This returns a list of Comment objects; see the comment model documentation for details.

Linking to comments

New in version 1.2: Please, see the release notes To provide a permalink to a specific comment, use
get_comment_permalink:

{% get_comment_permalink comment_obj [format_string] %}

By default, the named anchor that will be appended to the URL will be the letter ‘c’ followed by the comment id, for
example ‘c82’. You may specify a custom format string if you wish to override this behavior:

{% get_comment_permalink comment "#c%(id)s-by-%(user_name)s"%}

The format string is a standard python format string. Valid mapping keys include any attributes of the comment object.

Regardless of whether you specify a custom anchor pattern, you must supply a matching named anchor at a suitable
place in your template.

For example:

{% for comment in comment_list %}

permalink for comment #{{ forloop.counter }}

...

{% endfor %}

Warning: There’s a known bug in Safari/Webkit which causes the named anchor to be forgotten following a
redirect. The practical impact for comments is that the Safari/webkit browsers will arrive at the correct page but
will not scroll to the named anchor.

6.2. contrib packages 401

Django Documentation, Release 1.2.7

Counting comments

To count comments attached to an object, use get_comment_count:

{% get_comment_count for [object] as [varname] %}

For example:

{% get_comment_count for event as comment_count %}

<p>This event has {{ comment_count }} comments.</p>

Displaying the comment post form

To show the form that users will use to post a comment, you can use render_comment_form or
get_comment_form

Quickly rendering the comment form The easiest way to display a comment form is by using
render_comment_form:

{% render_comment_form for [object] %}

For example:

{% render_comment_form for event %}

This will render comments using a template named comments/form.html, a default version of which is included
with Django.

Rendering a custom comment form If you want more control over the look and feel of the comment form, you use
use get_comment_form to get a form object that you can use in the template:

{% get_comment_form for [object] as [varname] %}

A complete form might look like:

{% get_comment_form for event as form %}
<form action="{% comment_form_target %}" method="post">
{{ form }}
<tr>
<td></td>
<td><input type="submit" name="preview" class="submit-post" value="Preview"></td>

</tr>
</form>

Be sure to read the notes on the comment form, below, for some special considerations you’ll need to make if you’re
using this approach.

Getting the comment form target You may have noticed that the above example uses another template tag –
comment_form_target – to actually get the action attribute of the form. This will always return the correct
URL that comments should be posted to; you’ll always want to use it like above:

<form action="{% comment_form_target %}" method="post">

402 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Redirecting after the comment post To specify the URL you want to redirect to after the comment has been posted,
you can include a hidden form input called next in your comment form. For example:

<input type="hidden" name="next" value="{% url my_comment_was_posted %}" />

Notes on the comment form

The form used by the comment system has a few important anti-spam attributes you should know about:

• It contains a number of hidden fields that contain timestamps, information about the object the comment should
be attached to, and a “security hash” used to validate this information. If someone tampers with this data –
something comment spammers will try – the comment submission will fail.

If you’re rendering a custom comment form, you’ll need to make sure to pass these values through unchanged.

• The timestamp is used to ensure that “reply attacks” can’t continue very long. Users who wait too long between
requesting the form and posting a comment will have their submissions refused.

• The comment form includes a “honeypot” field. It’s a trap: if any data is entered in that field, the comment will
be considered spam (spammers often automatically fill in all fields in an attempt to make valid submissions).

The default form hides this field with a piece of CSS and further labels it with a warning field; if you use the
comment form with a custom template you should be sure to do the same.

The comments app also depends on the more general Cross Site Request Forgery protection that comes with Django.
As described in the documentation, it is best to use CsrfViewMiddleware. However, if you are not using that,
you will need to use the csrf_protect decorator on any views that include the comment form, in order for those
views to be able to output the CSRF token and cookie.

More information

The built-in comment models

class Comment
Django’s built-in comment model. Has the following fields:

content_object
A GenericForeignKey attribute pointing to the object the comment is attached to. You can use this
to get at the related object (i.e. my_comment.content_object).

Since this field is a GenericForeignKey, it’s actually syntactic sugar on top of two underlying at-
tributes, described below.

content_type
A ForeignKey to ContentType; this is the type of the object the comment is attached to.

object_pk
A TextField containing the primary key of the object the comment is attached to.

site
A ForeignKey to the Site on which the comment was posted.

user
A ForeignKey to the User who posted the comment. May be blank if the comment was posted by an
unauthenticated user.

user_name
The name of the user who posted the comment.

6.2. contrib packages 403

http://en.wikipedia.org/wiki/Honeypot_(computing)

Django Documentation, Release 1.2.7

user_email
The email of the user who posted the comment.

user_url
The URL entered by the person who posted the comment.

comment
The actual content of the comment itself.

submit_date
The date the comment was submitted.

ip_address
The IP address of the user posting the comment.

is_public
False if the comment is in moderation (see Generic comment moderation); If True, the comment will
be displayed on the site.

is_removed
True if the comment was removed. Used to keep track of removed comments instead of just deleting
them.

Comment settings

These settings configure the behavior of the comments framework:

COMMENTS_HIDE_REMOVED If True (default), removed comments will be excluded from comment
lists/counts (as taken from template tags). Otherwise, the template author is responsible for some sort of a “this
comment has been removed by the site staff” message.

COMMENT_MAX_LENGTH The maximum length of the comment field, in characters. Comments longer than
this will be rejected. Defaults to 3000.

COMMENTS_APP An app which provides customization of the comments framework. Use the same dotted-string
notation as in INSTALLED_APPS. Your custom COMMENTS_APP must also be listed in INSTALLED_APPS.

Signals sent by the comments app

The comment app sends a series of signals to allow for comment moderation and similar activities. See the introduction
to signals for information about how to register for and receive these signals.

comment_will_be_posted
django.contrib.comments.signals.comment_will_be_posted
Sent just before a comment will be saved, after it’s been sanity checked and submitted. This can be used to modify the
comment (in place) with posting details or other such actions.

If any receiver returns False the comment will be discarded and a 403 (not allowed) response will be returned.

This signal is sent at more or less the same time (just before, actually) as the Comment object’s pre_save signal.

Arguments sent with this signal:

sender The comment model.

404 Chapter 6. API Reference

Django Documentation, Release 1.2.7

comment The comment instance about to be posted. Note that it won’t have been saved into the database yet, so it
won’t have a primary key, and any relations might not work correctly yet.

request The HttpRequest that posted the comment.

comment_was_posted
django.contrib.comments.signals.comment_was_posted
Sent just after the comment is saved.

Arguments sent with this signal:

sender The comment model.

comment The comment instance that was posted. Note that it will have already been saved, so if you modify it you’ll
need to call save() again.

request The HttpRequest that posted the comment.

comment_was_flagged
django.contrib.comments.signals.comment_was_flagged
Sent after a comment was “flagged” in some way. Check the flag to see if this was a user requesting removal of a
comment, a moderator approving/removing a comment, or some other custom user flag.

Arguments sent with this signal:

sender The comment model.

comment The comment instance that was posted. Note that it will have already been saved, so if you modify it you’ll
need to call save() again.

flag The CommentFlag that’s been attached to the comment.

created True if this is a new flag; False if it’s a duplicate flag.

request The HttpRequest that posted the comment.

Upgrading from Django’s previous comment system

Prior versions of Django included an outdated, undocumented comment system. Users who reverse-engineered this
framework will need to upgrade to use the new comment system; this guide explains how.

The main changes from the old system are:

• This new system is documented.

• It uses modern Django features like forms and modelforms.

• It has a single Comment model instead of separate FreeComment and Comment models.

• Comments have “email” and “URL” fields.

• No ratings, photos and karma. This should only effect World Online.

• The {% comment_form %} tag no longer exists. Instead, there’s now two functions:
{% get_comment_form %}, which returns a form for posting a new comment, and {%
render_comment_form %}, which renders said form using the comments/form.html template.

• The way comments are include in your URLconf have changed; you’ll need to replace:

(r’^comments/’, include(’django.contrib.comments.urls.comments’)),

with:

6.2. contrib packages 405

Django Documentation, Release 1.2.7

(r’^comments/’, include(’django.contrib.comments.urls’)),

Upgrading data The data models for Django’s comment system have changed, as have the table names. Before
you transfer your existing data into the new comments system, make sure that you have installed the new comments
system as explained in the quick start guide. This will ensure that the new tables have been properly created.

To transfer your data into the new comments system, you’ll need to directly run the following SQL:

BEGIN;

INSERT INTO django_comments
(content_type_id, object_pk, site_id, user_name, user_email, user_url,
comment, submit_date, ip_address, is_public, is_removed)

SELECT
content_type_id, object_id, site_id, person_name, ’’, ’’, comment,
submit_date, ip_address, is_public, not approved

FROM comments_freecomment;

INSERT INTO django_comments
(content_type_id, object_pk, site_id, user_id, user_name, user_email,
user_url, comment, submit_date, ip_address, is_public, is_removed)

SELECT
content_type_id, object_id, site_id, user_id, ’’, ’’, ’’, comment,
submit_date, ip_address, is_public, is_removed

FROM comments_comment;

UPDATE django_comments SET user_name = (
SELECT username FROM auth_user
WHERE django_comments.user_id = auth_user.id

) WHERE django_comments.user_id is not NULL;
UPDATE django_comments SET user_email = (

SELECT email FROM auth_user
WHERE django_comments.user_id = auth_user.id

) WHERE django_comments.user_id is not NULL;

COMMIT;

Customizing the comments framework

If the built-in comment framework doesn’t quite fit your needs, you can extend the comment app’s behavior to add
custom data and logic. The comments framework lets you extend the built-in comment model, the built-in comment
form, and the various comment views.

The COMMENTS_APP setting is where this customization begins. Set COMMENTS_APP to the name of the app you’d
like to use to provide custom behavior. You’ll use the same syntax as you’d use for INSTALLED_APPS, and the app
given must also be in the INSTALLED_APPS list.

For example, if you wanted to use an app named my_comment_app, your settings file would contain:

INSTALLED_APPS = [
...
’my_comment_app’,
...

]

COMMENTS_APP = ’my_comment_app’

406 Chapter 6. API Reference

Django Documentation, Release 1.2.7

The app named in COMMENTS_APP provides its custom behavior by defining some module-level functions in the
app’s __init__.py. The complete list of these functions can be found below, but first let’s look at a quick example.

An example custom comments app One of the most common types of customization is modifying the set of fields
provided on the built-in comment model. For example, some sites that allow comments want the commentator to
provide a title for their comment; the built-in comment model has no field for that title.

To make this kind of customization, we’ll need to do three things:

1. Create a custom comment Model that adds on the “title” field.

2. Create a custom comment Form that also adds this “title” field.

3. Inform Django of these objects by defining a few functions in a custom COMMENTS_APP.

So, carrying on the example above, we’re dealing with a typical app structure in the my_custom_app directory:

my_custom_app/
__init__.py
models.py
forms.py

In the models.py we’ll define a CommentWithTitle model:

from django.db import models
from django.contrib.comments.models import Comment

class CommentWithTitle(Comment):
title = models.CharField(max_length=300)

Most custom comment models will subclass the Comment model. However, if you want to substantially remove or
change the fields available in the Comment model, but don’t want to rewrite the templates, you could try subclassing
from BaseCommentAbstractModel.

Next, we’ll define a custom comment form in forms.py. This is a little more tricky:
we have to both create a form and override CommentForm.get_comment_model() and
CommentForm.get_comment_create_data() to return deal with our custom title field:

from django import forms
from django.contrib.comments.forms import CommentForm
from my_comment_app.models import CommentWithTitle

class CommentFormWithTitle(CommentForm):
title = forms.CharField(max_length=300)

def get_comment_model(self):
Use our custom comment model instead of the built-in one.
return CommentWithTitle

def get_comment_create_data(self):
Use the data of the superclass, and add in the title field
data = super(CommentFormWithTitle, self).get_comment_create_data()
data[’title’] = self.cleaned_data[’title’]
return data

Django provides a couple of “helper” classes to make writing certain types of custom comment forms easier; see
django.contrib.comments.forms for more.

Finally, we’ll define a couple of methods in my_custom_app/__init__.py to point Django at these classes
we’ve created:

6.2. contrib packages 407

Django Documentation, Release 1.2.7

from my_comments_app.models import CommentWithTitle
from my_comments_app.forms import CommentFormWithTitle

def get_model():
return CommentWithTitle

def get_form():
return CommentFormWithTitle

Warning: Be careful not to create cyclic imports in your custom comments app. If you feel your comment
configuration isn’t being used as defined – for example, if your comment moderation policy isn’t being applied –
you may have a cyclic import problem.
If you are having unexplained problems with comments behavior, check if your custom comments application
imports (even indirectly) any module that itself imports Django’s comments module.

The above process should take care of most common situations. For more advanced usage, there are additional methods
you can define. Those are explained in the next section.

Custom comment app API The django.contrib.comments app defines the following methods; any custom
comment app must define at least one of them. All are optional, however.

get_model()
Return the Model class to use for comments. This model should inherit from
django.contrib.comments.models.BaseCommentAbstractModel, which defines necessary
core fields.

The default implementation returns django.contrib.comments.models.Comment.

get_form()
Return the Form class you want to use for creating, validating, and saving your comment model. Your custom
comment form should accept an additional first argument, target_object, which is the object the comment
will be attached to.

The default implementation returns django.contrib.comments.forms.CommentForm.

Note: The default comment form also includes a number of unobtrusive spam-prevention features (see Notes
on the comment form). If replacing it with your own form, you may want to look at the source code for the
built-in form and consider incorporating similar features.

get_form_target()
Return the URL for POSTing comments. This will be the <form action> attribute when rendering your
comment form.

The default implementation returns a reverse-resolved URL pointing to the post_comment() view.

Note: If you provide a custom comment model and/or form, but you want to use the default
post_comment() view, you will need to be aware that it requires the model and form to have certain ad-
ditional attributes and methods: see the post_comment() view documentation for details.

get_flag_url()
Return the URL for the “flag this comment” view.

The default implementation returns a reverse-resolved URL pointing to the
django.contrib.comments.views.moderation.flag() view.

408 Chapter 6. API Reference

Django Documentation, Release 1.2.7

get_delete_url()
Return the URL for the “delete this comment” view.

The default implementation returns a reverse-resolved URL pointing to the
django.contrib.comments.views.moderation.delete() view.

get_approve_url()
Return the URL for the “approve this comment from moderation” view.

The default implementation returns a reverse-resolved URL pointing to the
django.contrib.comments.views.moderation.approve() view.

Comment form classes

The django.contrib.comments.forms module contains a handful of forms you’ll use when writing custom
views dealing with comments, or when writing custom comment apps.

class CommentForm
The main comment form representing the standard, built-in way of handling submitted comments. This is the
class used by all the views django.contrib.comments to handle submitted comments.

If you want to build custom views that are similar to Django’s built-in comment handling views, you’ll probably
want to use this form.

Abstract comment forms for custom comment apps If you’re building a custom comment app, you might want to
replace some of the form logic but still rely on parts of the existing form.

CommentForm is actually composed of a couple of abstract base class forms that you can subclass to reuse pieces of
the form handling logic:

class CommentSecurityForm
Handles the anti-spoofing protection aspects of the comment form handling.

This class contains the content_type and object_pk fields pointing to the object the comment is attached
to, along with a timestamp and a security_hash of all the form data. Together, the timestamp and the
security hash ensure that spammers can’t “replay” form submissions and flood you with comments.

class CommentDetailsForm
Handles the details of the comment itself.

This class contains the name, email, url, and the comment field itself, along with the associated validation
logic.

Generic comment moderation

Django’s bundled comments application is extremely useful on its own, but the amount of comment spam cir-
culating on the Web today essentially makes it necessary to have some sort of automatic moderation system in
place for any application which makes use of comments. To make this easier to handle in a consistent fashion,
django.contrib.comments.moderation provides a generic, extensible comment-moderation system which
can be applied to any model or set of models which want to make use of Django’s comment system.

Overview The entire system is contained within django.contrib.comments.moderation, and uses a two-
step process to enable moderation for any given model:

1. A subclass of CommentModerator is defined which specifies the moderation options the model wants to
enable.

6.2. contrib packages 409

Django Documentation, Release 1.2.7

2. The model is registered with the moderation system, passing in the model class and the class which specifies its
moderation options.

A simple example is the best illustration of this. Suppose we have the following model, which would represent entries
in a Weblog:

from django.db import models

class Entry(models.Model):
title = models.CharField(maxlength=250)
body = models.TextField()
pub_date = models.DateTimeField()
enable_comments = models.BooleanField()

Now, suppose that we want the following steps to be applied whenever a new comment is posted on an Entry:

1. If the Entry‘s enable_comments field is False, the comment will simply be disallowed (i.e., immediately
deleted).

2. If the enable_comments field is True, the comment will be allowed to save.

3. Once the comment is saved, an email should be sent to site staff notifying them of the new comment.

Accomplishing this is fairly straightforward and requires very little code:

from django.contrib.comments.moderation import CommentModerator, moderator

class EntryModerator(CommentModerator):
email_notification = True
enable_field = ’enable_comments’

moderator.register(Entry, EntryModerator)

The CommentModerator class pre-defines a number of useful moderation options which subclasses can enable or
disable as desired, and moderator knows how to work with them to determine whether to allow a comment, whether
to moderate a comment which will be allowed to post, and whether to email notifications of new comments.

Built-in moderation options
class CommentModerator

Most common comment-moderation needs can be handled by subclassing CommentModerator and changing
the values of pre-defined attributes; the full range of built-in options is as follows.

auto_close_field
If this is set to the name of a DateField or DateTimeField on the model for which comments are
being moderated, new comments for objects of that model will be disallowed (immediately deleted) when
a certain number of days have passed after the date specified in that field. Must be used in conjunction with
close_after, which specifies the number of days past which comments should be disallowed. Default
value is None.

auto_moderate_field
Like auto_close_field, but instead of outright deleting new comments when the requisite number
of days have elapsed, it will simply set the is_public field of new comments to False before saving
them. Must be used in conjunction with moderate_after, which specifies the number of days past
which comments should be moderated. Default value is None.

close_after
If auto_close_field is used, this must specify the number of days past the value of the field specified
by auto_close_field after which new comments for an object should be disallowed. Default value
is None.

410 Chapter 6. API Reference

Django Documentation, Release 1.2.7

email_notification
If True, any new comment on an object of this model which survives moderation (i.e., is not deleted) will
generate an email to site staff. Default value is False.

enable_field
If this is set to the name of a BooleanField on the model for which comments are being moderated,
new comments on objects of that model will be disallowed (immediately deleted) whenever the value of
that field is False on the object the comment would be attached to. Default value is None.

moderate_after
If auto_moderate_field is used, this must specify the number of days past the value of the field
specified by auto_moderate_field after which new comments for an object should be marked non-
public. Default value is None.

Simply subclassing CommentModerator and changing the values of these options will automatically enable the
various moderation methods for any models registered using the subclass.

Adding custom moderation methods For situations where the built-in options listed above are not sufficient, sub-
classes of CommentModerator can also override the methods which actually perform the moderation, and apply
any logic they desire. CommentModerator defines three methods which determine how moderation will take place;
each method will be called by the moderation system and passed two arguments: comment, which is the new com-
ment being posted, content_object, which is the object the comment will be attached to, and request, which
is the HttpRequest in which the comment is being submitted:

CommentModerator.allow(comment, content_object, request)
Should return True if the comment should be allowed to post on the content object, and False otherwise (in
which case the comment will be immediately deleted).

CommentModerator.email(comment, content_object, request)
If email notification of the new comment should be sent to site staff or moderators, this method is responsible
for sending the email.

CommentModerator.moderate(comment, content_object, request)
Should return True if the comment should be moderated (in which case its is_public field will be set to
False before saving), and False otherwise (in which case the is_public field will not be changed).

Registering models for moderation The moderation system, represented by
django.contrib.comments.moderation.moderator is an instance of the class Moderator, which
allows registration and “unregistration” of models via two methods:

moderator.register(model_or_iterable, moderation_class)
Takes two arguments: the first should be either a model class or list of model classes, and the second should
be a subclass of CommentModerator, and register the model or models to be moderated using the options
defined in the CommentModerator subclass. If any of the models are already registered for moderation, the
exception AlreadyModerated will be raised.

moderator.unregister(model_or_iterable)
Takes one argument: a model class or list of model classes, and removes the model or models from the set
of models which are being moderated. If any of the models are not currently being moderated, the exception
NotModerated will be raised.

Customizing the moderation system Most use cases will work easily with simple subclassing of
CommentModerator and registration with the provided Moderator instance, but customization of global mod-
eration behavior can be achieved by subclassing Moderator and instead registering models with an instance of the
subclass.

6.2. contrib packages 411

Django Documentation, Release 1.2.7

class Moderator
In addition to the Moderator.register() and Moderator.unregister() methods detailed above,
the following methods on Moderator can be overridden to achieve customized behavior:

connect()
Determines how moderation is set up globally. The base implementation in Moderator does this by
attaching listeners to the comment_will_be_posted and comment_was_posted signals from
the comment models.

pre_save_moderation(sender, comment, request, **kwargs)
In the base implementation, applies all pre-save moderation steps (such as determining whether the com-
ment needs to be deleted, or whether it needs to be marked as non-public or generate an email).

post_save_moderation(sender, comment, request, **kwargs)
In the base implementation, applies all post-save moderation steps (currently this consists entirely of delet-
ing comments which were disallowed).

Example of using the in-built comments app

Follow the first three steps of the quick start guide in the documentation.

Now suppose, you have an app (blog) with a model (Post) to which you want to attach comments. Let us also
suppose that you have a template called blog_detail.html where you want to display the comments list and
comment form.

Template First, we should load the comment template tags in the blog_detail.html so that we can use it’s
functionality. So just like all other custom template tag libraries:

{% load comments %}

Next, let us add the number of comments attached to the particular model instance of Post. For this we assume that
a context variable object_pk is present which gives the id of the instance of Post.

The usage of the get_comment_count tag is like below:

{% get_comment_count for blog.post object_pk as comment_count %}
<p>{{ comment_count }} comments have been posted.</p>

If you have the instance (say entry) of the model (Post) available in the context, then you can refer to it directly:

{% get_comment_count for entry as comment_count %}
<p>{{ comment_count }} comments have been posted.</p>

New in version 1.2: Please, see the release notes Next, we can use the render_comment_list tag, to render all
comments to the given instance (entry) by using the comments/list.html template.

{% render_comment_list for entry %}

Django will will look for the list.html under the following directories (for our example):

comments/blog/post/list.html
comments/blog/list.html
comments/list.html

To get a list of comments, we make use of the get_comment_list tag. This tag’s usage is very similar to the
get_comment_count tag. We need to remember that the get_comment_list returns a list of comments and
hence we will have to iterate through them to display them:

412 Chapter 6. API Reference

Django Documentation, Release 1.2.7

{% get_comment_list for blog.post object_pk as comment_list %}
{% for comment in comment_list %}
<p>Posted by: {{ comment.user_name }} on {{ comment.submit_date }}</p>
...
<p>Comment: {{ comment.comment }}</p>
...
{% endfor %}

Finally, we display the comment form, enabling users to enter their comments. There are two ways of doing so. The
first is when you want to display the comments template available under your comments/form.html. The other
method gives you a chance to customize the form.

The first method makes use of the render_comment_form tag. It’s usage too is similar to the other three tags we
have discussed above:

{% render_comment_form for entry %}

It looks for the form.html under the following directories (for our example):

comments/blog/post/form.html
comments/blog/form.html
comments/form.html

Since we customize the form in the second method, we make use of another tag called comment_form_target.
This tag on rendering gives the URL where the comment form is posted. Without any customization,
comment_form_target evaluates to /comments/post/. We use this tag in the form’s action attribute.

The get_comment_form tag renders a form for a model instance by creating a context variable. One can iterate
over the form object to get individual fields. This gives you fine-grain control over the form:

{% for field in form %}
{% ifequal field.name "comment" %}

<!-- Customize the "comment" field, say, make CSS changes -->
...
{% endfor %}

But let’s look at a simple example:

{% get_comment_form for entry as form %}
<!-- A context variable called form is created with the necessary hidden
fields, timestamps and security hashes -->
<table>
<form action="{% comment_form_target %}" method="post">
{{ form }}
<tr>
<td></td>
<td><input type="submit" name="preview" class="submit-post" value="Preview"></td>

</tr>
</form>
</table>

Flagging If you want your users to be able to flag comments (say for profanity), you can just direct them (by placing
a link in your comment list) to /flag/{{ comment.id }}/. Similarly, a user with requisite permissions ("Can
moderate comments") can approve and delete comments. This can also be done through the admin as you’ll
see later. You might also want to customize the following templates:

• flag.html

• flagged.html

6.2. contrib packages 413

Django Documentation, Release 1.2.7

• approve.html

• approved.html

• delete.html

• deleted.html

found under the directory structure we saw for form.html.

Feeds Suppose you want to export a feed of the latest comments, you can use the in-built LatestCommentFeed.
Just enable it in your project’s urls.py:

from django.conf.urls.defaults import *
from django.contrib.comments.feeds import LatestCommentFeed

feeds = {
’latest’: LatestCommentFeed,

}

urlpatterns = patterns(’’,
...

(r’^feeds/(?P<url>.*)/$’, ’django.contrib.syndication.views.feed’,
{’feed_dict’: feeds}),

...
)

Now you should have the latest comment feeds being served off /feeds/latest/.

Moderation Now that we have the comments framework working, we might want to have some moderation setup to
administer the comments. The comments framework comes in-built with generic comment moderation. The comment
moderation has the following features (all of which or only certain can be enabled):

• Enable comments for a particular model instance.

• Close comments after a particular (user-defined) number of days.

• Email new comments to the site-staff.

To enable comment moderation, we subclass the CommentModerator and register it with the moderation features
we want. Let us suppose we want to close comments after 7 days of posting and also send out an email to the site staff.
In blog/models.py, we register a comment moderator in the following way:

from django.contrib.comments.moderation import CommentModerator, moderator
from django.db import models

class Post(models.Model):
title = models.CharField(max_length = 255)
content = models.TextField()
posted_date = models.DateTimeField()

class PostModerator(CommentModerator):
email_notification = True
auto_close_field = ’posted_date’
Close the comments after 7 days.
close_after = 7

moderator.register(Post, PostModerator)

414 Chapter 6. API Reference

Django Documentation, Release 1.2.7

The generic comment moderation also has the facility to remove comments. These comments can then be moderated
by any user who has access to the admin site and the Can moderate comments permission (can be set under
the Users page in the admin).

The moderator can Flag, Approve or Remove comments using the Action drop-down in the admin under the
Comments page.

Note: Only a super-user will be able to delete comments from the database. Remove Comments only sets the
is_public attribute to False.

6.2.4 The contenttypes framework

Django includes a contenttypes application that can track all of the models installed in your Django-powered
project, providing a high-level, generic interface for working with your models.

Overview

At the heart of the contenttypes application is the ContentType model, which lives at
django.contrib.contenttypes.models.ContentType. Instances of ContentType represent
and store information about the models installed in your project, and new instances of ContentType are
automatically created whenever new models are installed.

Instances of ContentType have methods for returning the model classes they represent and for querying objects
from those models. ContentType also has a custom manager that adds methods for working with ContentType
and for obtaining instances of ContentType for a particular model.

Relations between your models and ContentType can also be used to enable “generic” relationships between an
instance of one of your models and instances of any model you have installed.

Installing the contenttypes framework

The contenttypes framework is included in the default INSTALLED_APPS list created by django-admin.py
startproject, but if you’ve removed it or if you manually set up your INSTALLED_APPS list, you can enable it
by adding ’django.contrib.contenttypes’ to your INSTALLED_APPS setting.

It’s generally a good idea to have the contenttypes framework installed; several of Django’s other bundled applications
require it:

• The admin application uses it to log the history of each object added or changed through the admin interface.

• Django’s authentication framework uses it to tie user permissions to specific models.

• Django’s comments system (django.contrib.comments) uses it to “attach” comments to any installed
model.

The ContentType model

class models.ContentType
Each instance of ContentType has three fields which, taken together, uniquely describe an installed model:

app_label
The name of the application the model is part of. This is taken from the app_label attribute of the model,
and includes only the last part of the application’s Python import path; “django.contrib.contenttypes”, for
example, becomes an app_label of “contenttypes”.

6.2. contrib packages 415

Django Documentation, Release 1.2.7

model
The name of the model class.

name
The human-readable name of the model. This is taken from the verbose_name attribute of the model.

Let’s look at an example to see how this works. If you already have the contenttypes application installed, and then
add the sites application to your INSTALLED_APPS setting and run manage.py syncdb to install it,
the model django.contrib.sites.models.Site will be installed into your database. Along with it a new
instance of ContentType will be created with the following values:

• app_label will be set to ’sites’ (the last part of the Python path “django.contrib.sites”).

• model will be set to ’site’.

• name will be set to ’site’.

Methods on ContentType instances

class models.ContentType
Each ContentType instance has methods that allow you to get from a ContentType instance to the model
it represents, or to retrieve objects from that model:

models.ContentType.get_object_for_this_type(**kwargs)
Takes a set of valid lookup arguments for the model the ContentType represents, and does a get()
lookup on that model, returning the corresponding object.

models.ContentType.model_class()
Returns the model class represented by this ContentType instance.

For example, we could look up the ContentType for the User model:

>>> from django.contrib.contenttypes.models import ContentType
>>> user_type = ContentType.objects.get(app_label="auth", model="user")
>>> user_type
<ContentType: user>

And then use it to query for a particular User, or to get access to the User model class:

>>> user_type.model_class()
<class ’django.contrib.auth.models.User’>
>>> user_type.get_object_for_this_type(username=’Guido’)
<User: Guido>

Together, get_object_for_this_type() and model_class() enable two extremely important use cases:

1. Using these methods, you can write high-level generic code that performs queries on any installed model –
instead of importing and using a single specific model class, you can pass an app_label and model into a
ContentType lookup at runtime, and then work with the model class or retrieve objects from it.

2. You can relate another model to ContentType as a way of tying instances of it to particular model classes,
and use these methods to get access to those model classes.

Several of Django’s bundled applications make use of the latter technique. For example, the permissions
system <django.contrib.auth.models.Permission in Django’s authentication framework uses a
Permission model with a foreign key to ContentType; this lets Permission represent concepts like “can
add blog entry” or “can delete news story”.

416 Chapter 6. API Reference

Django Documentation, Release 1.2.7

The ContentTypeManager

class models.ContentTypeManager
ContentType also has a custom manager, ContentTypeManager, which adds the following methods:

clear_cache()
Clears an internal cache used by ContentType to keep track of which models for which it has created
django.contrib.contenttypes.models.ContentType instances. You probably won’t ever
need to call this method yourself; Django will call it automatically when it’s needed.

get_for_model(model)
Takes either a model class or an instance of a model, and returns the ContentType instance representing
that model.

The get_for_model() method is especially useful when you know you need to work with a ContentType but
don’t want to go to the trouble of obtaining the model’s metadata to perform a manual lookup:

>>> from django.contrib.auth.models import User
>>> user_type = ContentType.objects.get_for_model(User)
>>> user_type
<ContentType: user>

Generic relations

Adding a foreign key from one of your own models to ContentType allows your model to effectively tie itself to
another model class, as in the example of the Permission model above. But it’s possible to go one step further and
use ContentType to enable truly generic (sometimes called “polymorphic”) relationships between models.

A simple example is a tagging system, which might look like this:

from django.db import models
from django.contrib.contenttypes.models import ContentType
from django.contrib.contenttypes import generic

class TaggedItem(models.Model):
tag = models.SlugField()
content_type = models.ForeignKey(ContentType)
object_id = models.PositiveIntegerField()
content_object = generic.GenericForeignKey(’content_type’, ’object_id’)

def __unicode__(self):
return self.tag

A normal ForeignKey can only “point to” one other model, which means that if the TaggedItem model used
a ForeignKey it would have to choose one and only one model to store tags for. The contenttypes applica-
tion provides a special field type – django.contrib.contenttypes.generic.GenericForeignKey –
which works around this and allows the relationship to be with any model. There are three parts to setting up a
GenericForeignKey:

1. Give your model a ForeignKey to ContentType.

2. Give your model a field that can store a primary-key value from the models you’ll be relating to. For most
models, this means a PositiveIntegerField. The usual name for this field is “object_id”.

3. Give your model a GenericForeignKey, and pass it the names of the two fields described above. If
these fields are named “content_type” and “object_id”, you can omit this – those are the default field names
GenericForeignKey will look for.

6.2. contrib packages 417

Django Documentation, Release 1.2.7

Primary key type compatibility

The “object_id” field doesn’t have to be the same type as the primary key fields on the related models, but their primary
key values must be coercible to the same type as the “object_id” field by its get_db_prep_value() method.

For example, if you want to allow generic relations to models with either IntegerField or CharField primary
key fields, you can use CharField for the “object_id” field on your model since integers can be coerced to strings
by get_db_prep_value().

For maximum flexibility you can use a TextField which doesn’t have a maximum length defined, however this
may incur significant performance penalties depending on your database backend.

There is no one-size-fits-all solution for which field type is best. You should evaluate the models you expect to be
pointing to and determine which solution will be most effective for your use case.

This will enable an API similar to the one used for a normal ForeignKey; each TaggedItem will have a
content_object field that returns the object it’s related to, and you can also assign to that field or use it when
creating a TaggedItem:

>>> from django.contrib.auth.models import User
>>> guido = User.objects.get(username=’Guido’)
>>> t = TaggedItem(content_object=guido, tag=’bdfl’)
>>> t.save()
>>> t.content_object
<User: Guido>

Due to the way GenericForeignKey is implemented, you cannot use such fields directly with filters (filter()
and exclude(), for example) via the database API. They aren’t normal field objects. These examples will not work:

This will fail
>>> TaggedItem.objects.filter(content_object=guido)
This will also fail
>>> TaggedItem.objects.get(content_object=guido)

Reverse generic relations

If you know which models you’ll be using most often, you can also add a “reverse” generic relationship to enable an
additional API. For example:

class Bookmark(models.Model):
url = models.URLField()
tags = generic.GenericRelation(TaggedItem)

Bookmark instances will each have a tags attribute, which can be used to retrieve their associated TaggedItems:

>>> b = Bookmark(url=’http://www.djangoproject.com/’)
>>> b.save()
>>> t1 = TaggedItem(content_object=b, tag=’django’)
>>> t1.save()
>>> t2 = TaggedItem(content_object=b, tag=’python’)
>>> t2.save()
>>> b.tags.all()
[<TaggedItem: django>, <TaggedItem: python>]

Just as django.contrib.contenttypes.generic.GenericForeignKey accepts the names of the
content-type and object-ID fields as arguments, so too does GenericRelation; if the model which has the

418 Chapter 6. API Reference

Django Documentation, Release 1.2.7

generic foreign key is using non-default names for those fields, you must pass the names of the fields when set-
ting up a GenericRelation to it. For example, if the TaggedItem model referred to above used fields named
content_type_fk and object_primary_key to create its generic foreign key, then a GenericRelation
back to it would need to be defined like so:

tags = generic.GenericRelation(TaggedItem, content_type_field=’content_type_fk’, object_id_field=’object_primary_key’)

Of course, if you don’t add the reverse relationship, you can do the same types of lookups manually:

>>> b = Bookmark.objects.get(url=’http://www.djangoproject.com/’)
>>> bookmark_type = ContentType.objects.get_for_model(b)
>>> TaggedItem.objects.filter(content_type__pk=bookmark_type.id,
... object_id=b.id)
[<TaggedItem: django>, <TaggedItem: python>]

Note that if the model in a GenericRelation uses a non-default value for ct_field or fk_field in
its GenericForeignKey (e.g. the django.contrib.comments app uses ct_field="object_pk"),
you’ll need to set content_type_field and/or object_id_field in the GenericRelation to match
the ct_field and fk_field, respectively, in the GenericForeignKey:

comments = generic.GenericRelation(Comment, object_id_field="object_pk")

Note also, that if you delete an object that has a GenericRelation, any objects which have a
GenericForeignKey pointing at it will be deleted as well. In the example above, this means that if a Bookmark
object were deleted, any TaggedItem objects pointing at it would be deleted at the same time.

Generic relations and aggregation

Django’s database aggregation API doesn’t work with a GenericRelation. For example, you might be tempted
to try something like:

Bookmark.objects.aggregate(Count(’tags’))

This will not work correctly, however. The generic relation adds extra filters to the queryset to ensure the correct
content type, but the aggregate method doesn’t take them into account. For now, if you need aggregates on generic
relations, you’ll need to calculate them without using the aggregation API.

Generic relations in forms and admin

django.contrib.contenttypes.generic provides GenericInlineFormSet,
GenericTabularInline and GenericStackedInline (the last two subclasses of
GenericInlineModelAdmin). This enables the use of generic relations in forms and the admin. See the
model formset and admin documentation for more information.

class generic.GenericInlineModelAdmin
The GenericInlineModelAdmin class inherits all properties from an InlineModelAdmin class. How-
ever, it adds a couple of its own for working with the generic relation:

ct_field
The name of the ContentType foreign key field on the model. Defaults to content_type.

ct_fk_field
The name of the integer field that represents the ID of the related object. Defaults to object_id.

6.2. contrib packages 419

Django Documentation, Release 1.2.7

6.2.5 Cross Site Request Forgery protection

The CSRF middleware and template tag provides easy-to-use protection against Cross Site Request Forgeries. This
type of attack occurs when a malicious Web site contains a link, a form button or some javascript that is intended to
perform some action on your Web site, using the credentials of a logged-in user who visits the malicious site in their
browser. A related type of attack, ‘login CSRF’, where an attacking site tricks a user’s browser into logging into a site
with someone else’s credentials, is also covered.

The first defense against CSRF attacks is to ensure that GET requests are side-effect free. POST requests can then
be protected by following the steps below. New in version 1.2: The ‘contrib’ apps, including the admin, use the
functionality described here. Because it is security related, a few things have been added to core functionality to allow
this to happen without any required upgrade steps.

How to use it

Changed in version 1.2: The template tag functionality (the recommended way to use this) was added in version 1.2.
The previous method (still available) is described under Legacy method. To enable CSRF protection for your views,
follow these steps:

1. Add the middleware ’django.middleware.csrf.CsrfViewMiddleware’ to your list of middleware
classes, MIDDLEWARE_CLASSES. (It should come before CsrfResponseMiddleware if that is being
used, and before any view middleware that assume that CSRF attacks have been dealt with.)

Alternatively, you can use the decorator django.views.decorators.csrf.csrf_protect on par-
ticular views you want to protect (see below).

2. In any template that uses a POST form, use the csrf_token tag inside the <form> element if the form is for
an internal URL, e.g.:

<form action="" method="post">{% csrf_token %}

This should not be done for POST forms that target external URLs, since that would cause the CSRF token to
be leaked, leading to a vulnerability.

3. In the corresponding view functions, ensure that the ’django.core.context_processors.csrf’
context processor is being used. Usually, this can be done in one of two ways:

(a) Use RequestContext, which always uses ’django.core.context_processors.csrf’ (no mat-
ter what your TEMPLATE_CONTEXT_PROCESSORS setting). If you are using generic views or contrib
apps, you are covered already, since these apps use RequestContext throughout.

(b) Manually import and use the processor to generate the CSRF token and add it to the template context. e.g.:

from django.core.context_processors import csrf
from django.shortcuts import render_to_response

def my_view(request):
c = {}
c.update(csrf(request))
... view code here
return render_to_response("a_template.html", c)

You may want to write your own render_to_response wrapper that takes care of this step for you.

The utility script extras/csrf_migration_helper.py can help to automate the finding of code and templates
that may need to be upgraded. It contains full help on how to use it.

420 Chapter 6. API Reference

http://www.squarefree.com/securitytips/web-developers.html#CSRF

Django Documentation, Release 1.2.7

AJAX

While the above method can be used for AJAX POST requests, it has some inconveniences: you have to remember
to pass the CSRF token in as POST data with every POST request. For this reason, there is an alternative method:
on each XMLHttpRequest, set a custom X-CSRFToken header to the value of the CSRF token. This is often easier,
because many javascript frameworks provide hooks that allow headers to be set on every request. In jQuery, you can
use the ajaxSend event as follows:

$(document).ajaxSend(function(event, xhr, settings) {
function getCookie(name) {

var cookieValue = null;
if (document.cookie && document.cookie != ’’) {

var cookies = document.cookie.split(’;’);
for (var i = 0; i < cookies.length; i++) {

var cookie = jQuery.trim(cookies[i]);
// Does this cookie string begin with the name we want?
if (cookie.substring(0, name.length + 1) == (name + ’=’)) {

cookieValue = decodeURIComponent(cookie.substring(name.length + 1));
break;

}
}

}
return cookieValue;

}
function sameOrigin(url) {

// url could be relative or scheme relative or absolute
var host = document.location.host; // host + port
var protocol = document.location.protocol;
var sr_origin = ’//’ + host;
var origin = protocol + sr_origin;
// Allow absolute or scheme relative URLs to same origin
return (url == origin || url.slice(0, origin.length + 1) == origin + ’/’) ||

(url == sr_origin || url.slice(0, sr_origin.length + 1) == sr_origin + ’/’) ||
// or any other URL that isn’t scheme relative or absolute i.e relative.
!(/^(\/\/|http:|https:).*/.test(url));

}
function safeMethod(method) {

return (/^(GET|HEAD|OPTIONS|TRACE)$/.test(method));
}

if (!safeMethod(settings.type) && sameOrigin(settings.url)) {
xhr.setRequestHeader("X-CSRFToken", getCookie(’csrftoken’));

}
});

Adding this to a javascript file that is included on your site will ensure that AJAX POST requests that are made via
jQuery will not be caught by the CSRF protection.

The decorator method

Rather than adding CsrfViewMiddleware as a blanket protection, you can use the csrf_protect decorator,
which has exactly the same functionality, on particular views that need the protection. It must be used both on views
that insert the CSRF token in the output, and on those that accept the POST form data. (These are often the same view
function, but not always). It is used like this:

6.2. contrib packages 421

Django Documentation, Release 1.2.7

from django.views.decorators.csrf import csrf_protect
from django.template import RequestContext

@csrf_protect
def my_view(request):

c = {}
...
return render_to_response("a_template.html", c,

context_instance=RequestContext(request))

Use of the decorator is not recommended by itself, since if you forget to use it, you will have a security hole. The
‘belt and braces’ strategy of using both is fine, and will incur minimal overhead.

Legacy method

In Django 1.1, the template tag did not exist. Instead, a post-processing middleware that re-wrote POST forms to
include the CSRF token was used. If you are upgrading a site from version 1.1 or earlier, please read this section and
the Upgrading notes below. The post-processing middleware is still available as CsrfResponseMiddleware, and
it can be used by following these steps:

1. Follow step 1 above to install CsrfViewMiddleware.

2. Add ’django.middleware.csrf.CsrfResponseMiddleware’ to your MIDDLEWARE_CLASSES
setting.

CsrfResponseMiddleware needs to process the response before things like compression or setting
ofETags happen to the response, so it must come after GZipMiddleware, CommonMiddleware and
ConditionalGetMiddleware in the list. It also must come after CsrfViewMiddleware.

Use of the CsrfResponseMiddleware is not recommended because of the performance hit it imposes, and be-
cause of a potential security problem (see below). It can be used as an interim measure until applications have been
updated to use the csrf_token tag. It is deprecated and will be removed in Django 1.4.

Django 1.1 and earlier provided a single CsrfMiddleware class. This is also still available for backwards compat-
ibility. It combines the functions of the two middleware.

Note also that previous versions of these classes depended on the sessions framework, but this dependency has now
been removed, with backward compatibility support so that upgrading will not produce any issues.

Security of legacy method The post-processing CsrfResponseMiddleware adds the CSRF token to all POST
forms (unless the view has been decorated with csrf_response_exempt). If the POST form has an external
untrusted site as its target, rather than an internal page, that site will be sent the CSRF token when the form is submitted.
Armed with this leaked information, that site will then be able to successfully launch a CSRF attack on your site against
that user. The @csrf_response_exempt decorator can be used to fix this, but only if the page doesn’t also contain
internal forms that require the token.

Upgrading notes

When upgrading to version 1.2 or later, you may have applications that rely on the old post-processing functionality
for CSRF protection, or you may not have enabled any CSRF protection. This section outlines the steps necessary for
a smooth upgrade, without having to fix all the applications to use the new template tag method immediately.

First of all, the location of the middleware and related functions have changed. There are backwards compatible stub
files so that old imports will continue to work for now, but they are deprecated and will be removed in Django 1.4.
The following changes have been made:

422 Chapter 6. API Reference

Django Documentation, Release 1.2.7

• Middleware have been moved to django.middleware.csrf

• Decorators have been moved to django.views.decorators.csrf

Old New
django.contrib.csrf.middleware.CsrfMiddleware django.middleware.csrf.CsrfMiddleware
django.contrib.csrf.middleware.CsrfViewMiddleware django.middleware.csrf.CsrfViewMiddleware
django.contrib.csrf.middleware.CsrfResponseMiddleware django.middleware.csrf.CsrfResponseMiddleware
django.contrib.csrf.middleware.csrf_exempt django.views.decorators.csrf.csrf_exempt
django.contrib.csrf.middleware.csrf_view_exempt django.views.decorators.csrf.csrf_view_exempt
django.contrib.csrf.middleware.csrf_response_exempt django.views.decorators.csrf.csrf_response_exempt

You should update any imports, and also the paths in your MIDDLEWARE_CLASSES.

If you have CsrfMiddleware in your MIDDLEWARE_CLASSES, you will now have a working installation with
CSRF protection. It is recommended at this point that you replace CsrfMiddleware with its two components,
CsrfViewMiddleware and CsrfResponseMiddleware (in that order).

If you do not have any of the middleware in your MIDDLEWARE_CLASSES, you will have a working installation
but without any CSRF protection for your views (just as you had before). It is strongly recommended to install
CsrfViewMiddleware and CsrfResponseMiddleware, as described above.

Note that contrib apps, such as the admin, have been updated to use the csrf_protect decorator, so that they
are secured even if you do not add the CsrfViewMiddleware to your settings. However, if you have supplied
customised templates to any of the view functions of contrib apps (whether explicitly via a keyword argument, or
by overriding built-in templates), you MUST update them to include the csrf_token template tag as described
above, or they will stop working. (If you cannot update these templates for some reason, you will be forced to use
CsrfResponseMiddleware for these views to continue working).

Note also, if you are using the comments app, and you are not going to add CsrfViewMiddleware to your settings
(not recommended), you will need to add the csrf_protect decorator to any views that include the comment forms
and target the comment views (usually using the comment_form_target template tag).

Assuming you have followed the above, all views in your Django site will now be protected by the
CsrfViewMiddleware. Contrib apps meet the requirements imposed by the CsrfViewMiddleware us-
ing the template tag, and other applications in your project will meet its requirements by virtue of the
CsrfResponseMiddleware.

The next step is to update all your applications to use the template tag, as described in How to use it, steps 2-3. This
can be done as soon as is practical. Any applications that are updated will now require Django 1.1.2 or later, since
they will use the CSRF template tag which was not available in earlier versions. (The template tag in 1.1.2 is actually
a no-op that exists solely to ease the transition to 1.2 — it allows apps to be created that have CSRF protection under
1.2 without requiring users of the apps to upgrade to the Django 1.2.X series).

The utility script extras/csrf_migration_helper.py can help to automate the finding of code and templates
that may need to be upgraded. It contains full help on how to use it.

Finally, once all applications are upgraded, CsrfResponseMiddleware can be removed from your settings.

While CsrfResponseMiddleware is still in use, the csrf_response_exempt decorator, described in Ex-
ceptions, may be useful. The post-processing middleware imposes a performance hit and a potential vulnerability, and
any views that have been upgraded to use the new template tag method no longer need it.

Exceptions

New in version 1.1: Please, see the release notesChanged in version 1.2: Import paths for the decorators below were
changed. To manually exclude a view function from being handled by either of the two CSRF middleware, you can
use the csrf_exempt decorator, found in the django.views.decorators.csrf module. For example:

6.2. contrib packages 423

Django Documentation, Release 1.2.7

from django.views.decorators.csrf import csrf_exempt

@csrf_exempt
def my_view(request):

return HttpResponse(’Hello world’)

Like the middleware, the csrf_exempt decorator is composed of two parts: a csrf_view_exempt decorator and
a csrf_response_exempt decorator, found in the same module. These disable the view protection mechanism
(CsrfViewMiddleware) and the response post-processing (CsrfResponseMiddleware) respectively. They
can be used individually if required.

Subdomains

By default, CSRF cookies are specific to the subdomain they are set for. This means that a form served from one sub-
domain (e.g. server1.example.com) will not be able to have a target on another subdomain (e.g. server2.example.com).
This restriction can be removed by setting CSRF_COOKIE_DOMAIN to be something like ".example.com".

Please note that, with or without use of this setting, this CSRF protection mechanism is not safe against cross-
subdomain attacks – see Limitations.

Rejected requests

By default, a ‘403 Forbidden’ response is sent to the user if an incoming request fails the checks performed by
CsrfViewMiddleware. This should usually only be seen when there is a genuine Cross Site Request Forgery, or
when, due to a programming error, the CSRF token has not been included with a POST form.

No logging is done, and the error message is not very friendly, so you may want to provide your own page for handling
this condition. To do this, simply set the CSRF_FAILURE_VIEW setting to a dotted path to your own view function,
which should have the following signature:

def csrf_failure(request, reason="")

where reason is a short message (intended for developers or logging, not for end users) indicating the reason the
request was rejected.

How it works

The CSRF protection is based on the following things:

1. A CSRF cookie that is set to a random value (a session independent nonce, as it is called), which other sites will
not have access to.

This cookie is set by CsrfViewMiddleware. It is meant to be permanent, but since there
is no way to set a cookie that never expires, it is sent with every response that has called
django.middleware.csrf.get_token() (the function used internally to retrieve the CSRF token).

2. A hidden form field with the name ‘csrfmiddlewaretoken’ present in all outgoing POST forms. The value of this
field is the value of the CSRF cookie.

This part is done by the template tag (and with the legacy method, it is done by
CsrfResponseMiddleware).

3. For all incoming POST requests, a CSRF cookie must be present, and the ‘csrfmiddlewaretoken’ field must be
present and correct. If it isn’t, the user will get a 403 error.

This check is done by CsrfViewMiddleware.

424 Chapter 6. API Reference

Django Documentation, Release 1.2.7

4. In addition, for HTTPS requests, strict referer checking is done by CsrfViewMiddleware. This is necessary
to address a Man-In-The-Middle attack that is possible under HTTPS when using a session independent nonce,
due to the fact that HTTP ‘Set-Cookie’ headers are (unfortunately) accepted by clients that are talking to a site
under HTTPS. (Referer checking is not done for HTTP requests because the presence of the Referer header is
not reliable enough under HTTP.)

This ensures that only forms that have originated from your Web site can be used to POST data back.

It deliberately only targets HTTP POST requests (and the corresponding POST forms). GET requests ought never to
have any potentially dangerous side effects (see 9.1.1 Safe Methods, HTTP 1.1, RFC 2616), and so a CSRF attack
with a GET request ought to be harmless.

CsrfResponseMiddleware checks the Content-Type before modifying the response, and only pages that are
served as ‘text/html’ or ‘application/xml+xhtml’ are modified.

Caching

If the csrf_token template tag is used by a template (or the get_token function is called some other
way), CsrfViewMiddleware will add a cookie and a Vary: Cookie header to the response. Similarly,
CsrfResponseMiddleware will send the Vary: Cookie header if it inserted a token. This means that these
middleware will play well with the cache middleware if it is used as instructed (UpdateCacheMiddleware goes
before all other middleware).

However, if you use cache decorators on individual views, the CSRF middleware will not yet have been able to
set the Vary header. In this case, on any views that will require a CSRF token to be inserted you should use the
django.views.decorators.vary.vary_on_cookie() decorator first:

from django.views.decorators.cache import cache_page
from django.views.decorators.vary import vary_on_cookie

@cache_page(60 * 15)
@vary_on_cookie
def my_view(request):

...

Testing

The CsrfViewMiddleware will usually be a big hindrance to testing view functions, due to the need for the CSRF
token which must be sent with every POST request. For this reason, Django’s HTTP client for tests has been modified
to set a flag on requests which relaxes the middleware and the csrf_protect decorator so that they no longer
rejects requests. In every other respect (e.g. sending cookies etc.), they behave the same.

If, for some reason, you want the test client to perform CSRF checks, you can create an instance of the test client that
enforces CSRF checks:

>>> from django.test import Client
>>> csrf_client = Client(enforce_csrf_checks=True)

Limitations

Subdomains within a site will be able to set cookies on the client for the whole domain. By setting the cookie and using
a corresponding token, subdomains will be able to circumvent the CSRF protection. The only way to avoid this is to
ensure that subdomains are controlled by trusted users (or, are at least unable to set cookies). Note that even without
CSRF, there are other vulnerabilities, such as session fixation, that make giving subdomains to untrusted parties a bad
idea, and these vulnerabilities cannot easily be fixed with current browsers.

6.2. contrib packages 425

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Django Documentation, Release 1.2.7

If you are using CsrfResponseMiddleware and your app creates HTML pages and forms in some unusual way,
(e.g. it sends fragments of HTML in JavaScript document.write statements) you might bypass the filter that adds
the hidden field to the form, in which case form submission will always fail. You should use the template tag or
django.middleware.csrf.get_token() to get the CSRF token and ensure it is included when your form is
submitted.

Contrib and reusable apps

Because it is possible for the developer to turn off the CsrfViewMiddleware, all relevant views in contrib apps
use the csrf_protect decorator to ensure the security of these applications against CSRF. It is recommended that
the developers of other reusable apps that want the same guarantees also use the csrf_protect decorator on their
views.

6.2.6 Databrowse

Databrowse is a Django application that lets you browse your data.

As the Django admin dynamically creates an admin interface by introspecting your models, Databrowse dynamically
creates a rich, browsable Web site by introspecting your models.

Note

Databrowse is very new and is currently under active development. It may change substantially before the next Django
release.

With that said, it’s easy to use, and it doesn’t require writing any code. So you can play around with it today, with very
little investment in time or coding.

How to use Databrowse

1. Point Django at the default Databrowse templates. There are two ways to do this:

• Add ’django.contrib.databrowse’ to your INSTALLED_APPS setting. This will work if your
TEMPLATE_LOADERS setting includes the app_directories template loader (which is the case by
default). See the template loader docs for more.

• Otherwise, determine the full filesystem path to the django/contrib/databrowse/templates
directory, and add that directory to your TEMPLATE_DIRS setting.

2. Register a number of models with the Databrowse site:

from django.contrib import databrowse
from myapp.models import SomeModel, SomeOtherModel

databrowse.site.register(SomeModel)
databrowse.site.register(SomeOtherModel)

Note that you should register the model classes, not instances.

It doesn’t matter where you put this, as long as it gets executed at some point. A good place for it is in your
URLconf file (urls.py).

3. Change your URLconf to import the databrowse module:

from django.contrib import databrowse

426 Chapter 6. API Reference

Django Documentation, Release 1.2.7

...and add the following line to your URLconf:

(r’^databrowse/(.*)’, databrowse.site.root),

The prefix doesn’t matter – you can use databrowse/ or db/ or whatever you’d like.

4. Run the Django server and visit /databrowse/ in your browser.

Requiring user login

You can restrict access to logged-in users with only a few extra lines of code. Simply add the following import to your
URLconf:

from django.contrib.auth.decorators import login_required

Then modify the URLconf so that the databrowse.site.root() view is decorated with
django.contrib.auth.decorators.login_required():

(r’^databrowse/(.*)’, login_required(databrowse.site.root)),

If you haven’t already added support for user logins to your URLconf , as described in the user authentication docs,
then you will need to do so now with the following mapping:

(r’^accounts/login/$’, ’django.contrib.auth.views.login’),

The final step is to create the login form required by django.contrib.auth.views.login(). The user
authentication docs provide full details and a sample template that can be used for this purpose.

6.2.7 The flatpages app

Django comes with an optional “flatpages” application. It lets you store simple “flat” HTML content in a database and
handles the management for you via Django’s admin interface and a Python API.

A flatpage is a simple object with a URL, title and content. Use it for one-off, special-case pages, such as “About” or
“Privacy Policy” pages, that you want to store in a database but for which you don’t want to develop a custom Django
application.

A flatpage can use a custom template or a default, systemwide flatpage template. It can be associated with one, or
multiple, sites.

The content field may optionally be left blank if you prefer to put your content in a custom template.

Here are some examples of flatpages on Django-powered sites:

• http://www.lawrence.com/about/contact/

• http://www2.ljworld.com/site/rules/

Installation

To install the flatpages app, follow these steps:

1. Install the sites framework by adding ’django.contrib.sites’ to your INSTALLED_APPS set-
ting, if it’s not already in there.

Also make sure you’ve correctly set SITE_ID to the ID of the site the settings file represents. This will usually
be 1 (i.e. SITE_ID = 1, but if you’re using the sites framework to manage multiple sites, it could be the ID
of a different site.

6.2. contrib packages 427

http://www.lawrence.com/about/contact/
http://www2.ljworld.com/site/rules/

Django Documentation, Release 1.2.7

2. Add ’django.contrib.flatpages’ to your INSTALLED_APPS setting.

3. Add ’django.contrib.flatpages.middleware.FlatpageFallbackMiddleware’ to your
MIDDLEWARE_CLASSES setting.

4. Run the command manage.py syncdb.

How it works

manage.py syncdb creates two tables in your database: django_flatpage and
django_flatpage_sites. django_flatpage is a simple lookup table that simply maps a URL to a
title and bunch of text content. django_flatpage_sites associates a flatpage with a site.

The FlatpageFallbackMiddleware does all of the work. Each time any Django application raises a 404 error,
this middleware checks the flatpages database for the requested URL as a last resort. Specifically, it checks for a
flatpage with the given URL with a site ID that corresponds to the SITE_ID setting.

If it finds a match, it follows this algorithm:

• If the flatpage has a custom template, it loads that template. Otherwise, it loads the template
flatpages/default.html.

• It passes that template a single context variable, flatpage, which is the flatpage object. It uses
RequestContext in rendering the template.

If it doesn’t find a match, the request continues to be processed as usual.

The middleware only gets activated for 404s – not for 500s or responses of any other status code.

Flatpages will not apply view middleware

Because the FlatpageFallbackMiddleware is applied only after URL resolution has failed and produced a
404, the response it returns will not apply any view middleware methods. Only requests which are successfully routed
to a view via normal URL resolution apply view middleware.

Note that the order of MIDDLEWARE_CLASSES matters. Generally, you can put
FlatpageFallbackMiddleware at the end of the list, because it’s a last resort.

For more on middleware, read the middleware docs.

Ensure that your 404 template works

Note that the FlatpageFallbackMiddleware only steps in once another view has successfully produced
a 404 response. If another view or middleware class attempts to produce a 404 but ends up raising an excep-
tion instead (such as a TemplateDoesNotExist exception if your site does not have an appropriate tem-
plate to use for HTTP 404 responses), the response will become an HTTP 500 (“Internal Server Error”) and the
FlatpageFallbackMiddleware will not attempt to serve a flat page.

How to add, change and delete flatpages

Via the admin interface

If you’ve activated the automatic Django admin interface, you should see a “Flatpages” section on the admin index
page. Edit flatpages as you edit any other object in the system.

428 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Via the Python API

class models.FlatPage
Flatpages are represented by a standard Django model, which lives in django/contrib/flatpages/models.py. You
can access flatpage objects via the Django database API.

Flatpage templates

By default, flatpages are rendered via the template flatpages/default.html, but you can override that for a
particular flatpage: in the admin, a collapsed fieldset titled “Advanced options” (clicking will expand it) contains a
field for specifying a template name. If you’re creating a flat page via the Python API you can simply set the template
name as the field template_name on the FlatPage object.

Creating the flatpages/default.html template is your responsibility; in your template directory, just create a
flatpages directory containing a file default.html.

Flatpage templates are passed a single context variable, flatpage, which is the flatpage object.

Here’s a sample flatpages/default.html template:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">

<html>
<head>
<title>{{ flatpage.title }}</title>
</head>
<body>
{{ flatpage.content }}
</body>
</html>

Since you’re already entering raw HTML into the admin page for a flatpage, both flatpage.title and
flatpage.content are marked as not requiring automatic HTML escaping in the template.

6.2.8 django.contrib.formtools

A set of high-level abstractions for Django forms (django.forms).

Form preview

Django comes with an optional “form preview” application that helps automate the following workflow:

“Display an HTML form, force a preview, then do something with the submission.”

To force a preview of a form submission, all you have to do is write a short Python class.

Overview

Given a django.forms.Form subclass that you define, this application takes care of the following workflow:

1. Displays the form as HTML on a Web page.

2. Validates the form data when it’s submitted via POST. a. If it’s valid, displays a preview page. b. If it’s not
valid, redisplays the form with error messages.

6.2. contrib packages 429

http://code.djangoproject.com/browser/django/trunk/django/contrib/flatpages/models.py

Django Documentation, Release 1.2.7

3. When the “confirmation” form is submitted from the preview page, calls a hook that you define – a done()
method that gets passed the valid data.

The framework enforces the required preview by passing a shared-secret hash to the preview page via hidden form
fields. If somebody tweaks the form parameters on the preview page, the form submission will fail the hash-
comparison test.

How to use FormPreview

1. Point Django at the default FormPreview templates. There are two ways to do this:

• Add ’django.contrib.formtools’ to your INSTALLED_APPS setting. This will work if your
TEMPLATE_LOADERS setting includes the app_directories template loader (which is the case by
default). See the template loader docs for more.

• Otherwise, determine the full filesystem path to the django/contrib/formtools/templates
directory, and add that directory to your TEMPLATE_DIRS setting.

2. Create a FormPreview subclass that overrides the done() method:

from django.contrib.formtools.preview import FormPreview
from myapp.models import SomeModel

class SomeModelFormPreview(FormPreview):

def done(self, request, cleaned_data):
Do something with the cleaned_data, then redirect
to a "success" page.
return HttpResponseRedirect(’/form/success’)

This method takes an HttpRequest object and a dictionary of the form data after it has been validated and
cleaned. It should return an HttpResponseRedirect that is the end result of the form being submitted.

3. Change your URLconf to point to an instance of your FormPreview subclass:

from myapp.preview import SomeModelFormPreview
from myapp.forms import SomeModelForm
from django import forms

...and add the following line to the appropriate model in your URLconf:

(r’^post/$’, SomeModelFormPreview(SomeModelForm)),

where SomeModelForm is a Form or ModelForm class for the model.

4. Run the Django server and visit /post/ in your browser.

FormPreview classes

class FormPreview

A FormPreview class is a simple Python class that represents the preview workflow. FormPreview classes must
subclass django.contrib.formtools.preview.FormPreview and override the done() method. They
can live anywhere in your codebase.

430 Chapter 6. API Reference

Django Documentation, Release 1.2.7

FormPreview templates

By default, the form is rendered via the template formtools/form.html, and the preview page is ren-
dered via the template formtools/preview.html. These values can be overridden for a particular form
preview by setting preview_template and form_template attributes on the FormPreview subclass. See
django/contrib/formtools/templates for the default templates.

Advanced FormPreview methods

New in version 1.2: Please, see the release notes

FormPreview.process_preview()
Given a validated form, performs any extra processing before displaying the preview page, and saves any extra
data in context.

By default, this method is empty. It is called after the form is validated, but before the context is modified with
hash information and rendered.

Form wizard

Django comes with an optional “form wizard” application that splits forms across multiple Web pages. It maintains
state in hashed HTML <input type="hidden"> fields so that the full server-side processing can be delayed
until the submission of the final form.

You might want to use this if you have a lengthy form that would be too unwieldy for display on a single page. The
first page might ask the user for core information, the second page might ask for less important information, etc.

The term “wizard,” in this context, is explained on Wikipedia.

How it works

Here’s the basic workflow for how a user would use a wizard:

1. The user visits the first page of the wizard, fills in the form and submits it.

2. The server validates the data. If it’s invalid, the form is displayed again, with error messages. If it’s valid, the
server calculates a secure hash of the data and presents the user with the next form, saving the validated data
and hash in <input type="hidden"> fields.

3. Step 1 and 2 repeat, for every subsequent form in the wizard.

4. Once the user has submitted all the forms and all the data has been validated, the wizard processes the data –
saving it to the database, sending an e-mail, or whatever the application needs to do.

Usage

This application handles as much machinery for you as possible. Generally, you just have to do these things:

1. Define a number of Form classes – one per wizard page.

2. Create a FormWizard class that specifies what to do once all of your forms have been submitted and validated.
This also lets you override some of the wizard’s behavior.

3. Create some templates that render the forms. You can define a single, generic template to handle every one of
the forms, or you can define a specific template for each form.

6.2. contrib packages 431

http://en.wikipedia.org/wiki/Wizard_%28software%29

Django Documentation, Release 1.2.7

4. Point your URLconf at your FormWizard class.

Defining Form classes

The first step in creating a form wizard is to create the Form classes. These should be standard
django.forms.Form classes, covered in the forms documentation. These classes can live anywhere in your code-
base, but convention is to put them in a file called forms.py in your application.

For example, let’s write a “contact form” wizard, where the first page’s form collects the sender’s e-mail address and
subject, and the second page collects the message itself. Here’s what the forms.py might look like:

from django import forms

class ContactForm1(forms.Form):
subject = forms.CharField(max_length=100)
sender = forms.EmailField()

class ContactForm2(forms.Form):
message = forms.CharField(widget=forms.Textarea)

Important limitation: Because the wizard uses HTML hidden fields to store data between pages, you may not include
a FileField in any form except the last one.

Creating a FormWizard class

The next step is to create a django.contrib.formtools.wizard.FormWizard subclass. As with your
Form classes, this FormWizard class can live anywhere in your codebase, but convention is to put it in forms.py.

The only requirement on this subclass is that it implement a done() method.

FormWizard.done()
This method specifies what should happen when the data for every form is submitted and validated. This method
is passed two arguments:

•request – an HttpRequest object

•form_list – a list of Form classes

In this simplistic example, rather than perform any database operation, the method simply renders a template of the
validated data:

from django.shortcuts import render_to_response
from django.contrib.formtools.wizard import FormWizard

class ContactWizard(FormWizard):
def done(self, request, form_list):

return render_to_response(’done.html’, {
’form_data’: [form.cleaned_data for form in form_list],

})

Note that this method will be called via POST, so it really ought to be a good Web citizen and redirect after processing
the data. Here’s another example:

from django.http import HttpResponseRedirect
from django.contrib.formtools.wizard import FormWizard

class ContactWizard(FormWizard):
def done(self, request, form_list):

432 Chapter 6. API Reference

Django Documentation, Release 1.2.7

do_something_with_the_form_data(form_list)
return HttpResponseRedirect(’/page-to-redirect-to-when-done/’)

See the section Advanced FormWizard methods below to learn about more FormWizard hooks.

Creating templates for the forms

Next, you’ll need to create a template that renders the wizard’s forms. By default, every form uses a template called
forms/wizard.html. (You can change this template name by overriding get_template(), which is docu-
mented below. This hook also allows you to use a different template for each form.)

This template expects the following context:

• step_field – The name of the hidden field containing the step.

• step0 – The current step (zero-based).

• step – The current step (one-based).

• step_count – The total number of steps.

• form – The Form instance for the current step (either empty or with errors).

• previous_fields – A string representing every previous data field, plus hashes for completed forms, all
in the form of hidden fields. Note that you’ll need to run this through the safe template filter, to prevent
auto-escaping, because it’s raw HTML.

You can supply extra context to this template in two ways:

• Set the extra_context attribute on your FormWizard subclass to a dictionary.

• Pass a dictionary as a parameter named extra_context to your wizard’s URL pattern in your URLconf. See
Hooking the wizard into a URLconf .

Here’s a full example template:

{% extends "base.html" %}

{% block content %}
<p>Step {{ step }} of {{ step_count }}</p>
<form action="." method="post">{% csrf_token %}
<table>
{{ form }}
</table>
<input type="hidden" name="{{ step_field }}" value="{{ step0 }}" />
{{ previous_fields|safe }}
<input type="submit">
</form>
{% endblock %}

Note that previous_fields, step_field and step0 are all required for the wizard to work properly.

Hooking the wizard into a URLconf

Finally, we need to specify which forms to use in the wizard, and then deploy the new FormWizard object a URL in
urls.py. The wizard takes a list of your Form objects as arguments when you instantiate the Wizard:

6.2. contrib packages 433

Django Documentation, Release 1.2.7

from django.conf.urls.defaults import *
from testapp.forms import ContactForm1, ContactForm2, ContactWizard

urlpatterns = patterns(’’,
(r’^contact/$’, ContactWizard([ContactForm1, ContactForm2])),

)

Advanced FormWizard methods

class FormWizard
Aside from the done() method, FormWizard offers a few advanced method hooks that let you customize
how your wizard works.

Some of these methods take an argument step, which is a zero-based counter representing the current step of
the wizard. (E.g., the first form is 0 and the second form is 1.)

FormWizard.prefix_for_step()
Given the step, returns a form prefix to use. By default, this simply uses the step itself. For more, see the form
prefix documentation.

Default implementation:

def prefix_for_step(self, step):
return str(step)

FormWizard.render_hash_failure()
Renders a template if the hash check fails. It’s rare that you’d need to override this.

Default implementation:

def render_hash_failure(self, request, step):
return self.render(self.get_form(step), request, step,

context={’wizard_error’:
’We apologize, but your form has expired. Please’
’ continue filling out the form from this page.’})

FormWizard.security_hash()
Calculates the security hash for the given request object and Form instance.

By default, this uses an MD5 hash of the form data and your SECRET_KEY setting. It’s rare that somebody
would need to override this.

Example:

def security_hash(self, request, form):
return my_hash_function(request, form)

FormWizard.parse_params()
A hook for saving state from the request object and args / kwargs that were captured from the URL by your
URLconf.

By default, this does nothing.

Example:

def parse_params(self, request, *args, **kwargs):
self.my_state = args[0]

FormWizard.get_template()
Returns the name of the template that should be used for the given step.

434 Chapter 6. API Reference

Django Documentation, Release 1.2.7

By default, this returns ’forms/wizard.html’, regardless of step.

Example:

def get_template(self, step):
return ’myapp/wizard_%s.html’ % step

If get_template() returns a list of strings, then the wizard will use the template system’s
select_template() function. This means the system will use the first template that exists on the filesys-
tem. For example:

def get_template(self, step):
return [’myapp/wizard_%s.html’ % step, ’myapp/wizard.html’]

FormWizard.render_template()
Renders the template for the given step, returning an HttpResponse object.

Override this method if you want to add a custom context, return a different MIME type, etc. If you only need
to override the template name, use get_template() instead.

The template will be rendered with the context documented in the “Creating templates for the forms” section
above.

FormWizard.process_step()
Hook for modifying the wizard’s internal state, given a fully validated Form object. The Form is guaranteed to
have clean, valid data.

This method should not modify any of that data. Rather, it might want to set self.extra_context or
dynamically alter self.form_list, based on previously submitted forms.

Note that this method is called every time a page is rendered for all submitted steps.

The function signature:

def process_step(self, request, form, step):
...

6.2.9 GeoDjango

GeoDjango intends to be a world-class geographic Web framework. Its goal is to make it as easy as possible to build
GIS Web applications and harness the power of spatially enabled data.

GeoDjango Tutorial

Introduction

GeoDjango is an add-on for Django that turns it into a world-class geographic Web framework. GeoDjango strives
to make at as simple as possible to create geographic Web applications, like location-based services. Some features
include:

• Django model fields for OGC geometries.

• Extensions to Django’s ORM for the querying and manipulation of spatial data.

• Loosely-coupled, high-level Python interfaces for GIS geometry operations and data formats.

• Editing of geometry fields inside the admin.

6.2. contrib packages 435

http://www.opengeospatial.org/

Django Documentation, Release 1.2.7

This tutorial assumes a familiarity with Django; thus, if you’re brand new to Django please read through the regular
tutorial to introduce yourself with basic Django concepts.

Note: GeoDjango has special prerequisites overwhat is required by Django – please consult the installation docu-
mentation for more details.

This tutorial will guide you through the creation of a geographic Web application for viewing the world borders. 1

Some of the code used in this tutorial is taken from and/or inspired by the GeoDjango basic apps project. 2

Note: Proceed through the tutorial sections sequentially for step-by-step instructions.

Setting Up

Create a Spatial Database
Note: MySQL and Oracle users can skip this section because spatial types are already built into the database.

First, a spatial database needs to be created for our project. If using PostgreSQL and PostGIS, then the following
commands will create the database from a spatial database template:

$ createdb -T template_postgis geodjango

Note: This command must be issued by a database user that has permissions to create a database. Here is an example
set of commands to create such a user:

$ sudo su - postgres
$ createuser --createdb geo
$ exit

Replace geo to correspond to the system login user name will be connecting to the database. For example, johndoe
if that is the system user that will be running GeoDjango.

Users of SQLite and SpatiaLite should consult the instructions on how to create a SpatiaLite database.

Create GeoDjango Project Use the django-admin.py script like normal to create a geodjango project:

$ django-admin.py startproject geodjango

With the project initialized, now create a world Django application within the geodjango project:

$ cd geodjango
$ python manage.py startapp world

Configure settings.py The geodjango project settings are stored in the settings.py file. Edit the
database connection settings appropriately:

DATABASES = {
’default’: {

’ENGINE’: ’django.contrib.gis.db.backends.postgis’,
’NAME’: ’geodjango’,

1 Special thanks to Bjørn Sandvik of thematicmapping.org for providing and maintaining this data set.
2 GeoDjango basic apps was written by Dane Springmeyer, Josh Livni, and Christopher Schmidt.

436 Chapter 6. API Reference

http://thematicmapping.org/downloads/world_borders.php
http://code.google.com/p/geodjango-basic-apps/
http://thematicmapping.org

Django Documentation, Release 1.2.7

’USER’: ’geo’,
}

}

Note: These database settings are for Django 1.2 and above.

In addition, modify the INSTALLED_APPS setting to include django.contrib.admin,
django.contrib.gis, and world (our newly created application):

INSTALLED_APPS = (
’django.contrib.auth’,
’django.contrib.contenttypes’,
’django.contrib.sessions’,
’django.contrib.sites’,
’django.contrib.admin’,
’django.contrib.gis’,
’world’

)

Geographic Data

World Borders The world borders data is available in this zip file. Create a data directory in the world application,
download the world borders data, and unzip. On GNU/Linux platforms the following commands should do it:

$ mkdir world/data
$ cd world/data
$ wget http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip
$ unzip TM_WORLD_BORDERS-0.3.zip
$ cd ../..

The world borders ZIP file contains a set of data files collectively known as an ESRI Shapefile, one of the most popular
geospatial data formats. When unzipped the world borders data set includes files with the following extensions:

• .shp: Holds the vector data for the world borders geometries.

• .shx: Spatial index file for geometries stored in the .shp.

• .dbf: Database file for holding non-geometric attribute data (e.g., integer and character fields).

• .prj: Contains the spatial reference information for the geographic data stored in the shapefile.

Use ogrinfo to examine spatial data The GDAL ogrinfo utility is excellent for examining metadata about
shapefiles (or other vector data sources):

$ ogrinfo world/data/TM_WORLD_BORDERS-0.3.shp
INFO: Open of ‘world/data/TM_WORLD_BORDERS-0.3.shp’

using driver ‘ESRI Shapefile’ successful.
1: TM_WORLD_BORDERS-0.3 (Polygon)

Here ogrinfo is telling us that the shapefile has one layer, and that layer contains polygon data. To find out more
we’ll specify the layer name and use the -so option to get only important summary information:

$ ogrinfo -so world/data/TM_WORLD_BORDERS-0.3.shp TM_WORLD_BORDERS-0.3
INFO: Open of ‘world/data/TM_WORLD_BORDERS-0.3.shp’

using driver ‘ESRI Shapefile’ successful.

6.2. contrib packages 437

http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip
http://en.wikipedia.org/wiki/Shapefile

Django Documentation, Release 1.2.7

Layer name: TM_WORLD_BORDERS-0.3
Geometry: Polygon
Feature Count: 246
Extent: (-180.000000, -90.000000) - (180.000000, 83.623596)
Layer SRS WKT:
GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",
SPHEROID["WGS_1984",6378137.0,298.257223563]],

PRIMEM["Greenwich",0.0],
UNIT["Degree",0.0174532925199433]]

FIPS: String (2.0)
ISO2: String (2.0)
ISO3: String (3.0)
UN: Integer (3.0)
NAME: String (50.0)
AREA: Integer (7.0)
POP2005: Integer (10.0)
REGION: Integer (3.0)
SUBREGION: Integer (3.0)
LON: Real (8.3)
LAT: Real (7.3)

This detailed summary information tells us the number of features in the layer (246), the geographical extent, the
spatial reference system (“SRS WKT”), as well as detailed information for each attribute field. For example, FIPS:
String (2.0) indicates that there’s a FIPS character field with a maximum length of 2; similarly, LON: Real
(8.3) is a floating-point field that holds a maximum of 8 digits up to three decimal places. Although this information
may be found right on the world borders Web site, this shows you how to determine this information yourself when
such metadata is not provided.

Geographic Models

Defining a Geographic Model Now that we’ve examined our world borders data set using ogrinfo, we can create
a GeoDjango model to represent this data:

from django.contrib.gis.db import models

class WorldBorders(models.Model):
Regular Django fields corresponding to the attributes in the
world borders shapefile.
name = models.CharField(max_length=50)
area = models.IntegerField()
pop2005 = models.IntegerField(’Population 2005’)
fips = models.CharField(’FIPS Code’, max_length=2)
iso2 = models.CharField(’2 Digit ISO’, max_length=2)
iso3 = models.CharField(’3 Digit ISO’, max_length=3)
un = models.IntegerField(’United Nations Code’)
region = models.IntegerField(’Region Code’)
subregion = models.IntegerField(’Sub-Region Code’)
lon = models.FloatField()
lat = models.FloatField()

GeoDjango-specific: a geometry field (MultiPolygonField), and
overriding the default manager with a GeoManager instance.
mpoly = models.MultiPolygonField()
objects = models.GeoManager()

So the model is pluralized correctly in the admin.

438 Chapter 6. API Reference

http://thematicmapping.org/downloads/world_borders.php

Django Documentation, Release 1.2.7

class Meta:
verbose_name_plural = "World Borders"

Returns the string representation of the model.
def __unicode__(self):

return self.name

Two important things to note:

1. The models module is imported from django.contrib.gis.db.

2. The model overrides its default manager with GeoManager; this is required to perform spatial queries.

When declaring a geometry field on your model the default spatial reference system is WGS84 (meaning the SRID
is 4326) – in other words, the field coordinates are in longitude/latitude pairs in units of degrees. If you want the
coordinate system to be different, then SRID of the geometry field may be customized by setting the srid with an
integer corresponding to the coordinate system of your choice.

Run syncdb After you’ve defined your model, it needs to be synced with the spatial database. First, let’s look at
the SQL that will generate the table for the WorldBorders model:

$ python manage.py sqlall world

This management command should produce the following output:

BEGIN;
CREATE TABLE "world_worldborders" (

"id" serial NOT NULL PRIMARY KEY,
"name" varchar(50) NOT NULL,
"area" integer NOT NULL,
"pop2005" integer NOT NULL,
"fips" varchar(2) NOT NULL,
"iso2" varchar(2) NOT NULL,
"iso3" varchar(3) NOT NULL,
"un" integer NOT NULL,
"region" integer NOT NULL,
"subregion" integer NOT NULL,
"lon" double precision NOT NULL,
"lat" double precision NOT NULL

)
;
SELECT AddGeometryColumn(’world_worldborders’, ’mpoly’, 4326, ’MULTIPOLYGON’, 2);
ALTER TABLE "world_worldborders" ALTER "mpoly" SET NOT NULL;
CREATE INDEX "world_worldborders_mpoly_id" ON "world_worldborders" USING GIST ("mpoly" GIST_GEOMETRY_OPS);
COMMIT;

If satisfied, you may then create this table in the database by running the syncdb management command:

$ python manage.py syncdb
Creating table world_worldborders
Installing custom SQL for world.WorldBorders model

The syncdb command may also prompt you to create an admin user; go ahead and do so (not required now, may be
done at any point in the future using the createsuperuser management command).

6.2. contrib packages 439

http://en.wikipedia.org/wiki/SRID

Django Documentation, Release 1.2.7

Importing Spatial Data

This section will show you how to take the data from the world borders shapefile and import it into GeoDjango models
using the LayerMapping data import utility. There are many different different ways to import data in to a spatial
database – besides the tools included within GeoDjango, you may also use the following to populate your spatial
database:

• ogr2ogr: Command-line utility, included with GDAL, that supports loading a multitude of vector data formats
into the PostGIS, MySQL, and Oracle spatial databases.

• shp2pgsql: This utility is included with PostGIS and only supports ESRI shapefiles.

GDAL Interface Earlier we used the ogrinfo to explore the contents of the world borders shapefile. Included
within GeoDjango is an interface to GDAL’s powerful OGR library – in other words, you’ll be able explore all the
vector data sources that OGR supports via a Pythonic API.

First, invoke the Django shell:

$ python manage.py shell

If the World Borders data was downloaded like earlier in the tutorial, then we can determine the path using Python’s
built-in os module:

>>> import os
>>> from geodjango import world
>>> world_shp = os.path.abspath(os.path.join(os.path.dirname(world.__file__),
... ’data/TM_WORLD_BORDERS-0.3.shp’))

Now, the world borders shapefile may be opened using GeoDjango’s DataSource interface:

>>> from django.contrib.gis.gdal import *
>>> ds = DataSource(world_shp)
>>> print ds
/ ... /geodjango/world/data/TM_WORLD_BORDERS-0.3.shp (ESRI Shapefile)

Data source objects can have different layers of geospatial features; however, shapefiles are only allowed to have one
layer:

>>> print len(ds)
1
>>> lyr = ds[0]
>>> print lyr
TM_WORLD_BORDERS-0.3

You can see what the geometry type of the layer is and how many features it contains:

>>> print lyr.geom_type
Polygon
>>> print len(lyr)
246

Note: Unfortunately the shapefile data format does not allow for greater specificity with regards to geometry types.
This shapefile, like many others, actually includes MultiPolygon geometries in its features. You need to watch
out for this when creating your models as a GeoDjango PolygonField will not accept a MultiPolygon type
geometry – thus a MultiPolygonField is used in our model’s definition instead.

The Layer may also have a spatial reference system associated with it – if it does, the srs attribute will return a
SpatialReference object:

440 Chapter 6. API Reference

http://www.gdal.org/ogr2ogr.html
http://postgis.refractions.net/documentation/manual-1.5/ch04.html#shp2pgsql_usage

Django Documentation, Release 1.2.7

>>> srs = lyr.srs
>>> print srs
GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",
SPHEROID["WGS_1984",6378137.0,298.257223563]],

PRIMEM["Greenwich",0.0],
UNIT["Degree",0.0174532925199433]]

>>> srs.proj4 # PROJ.4 representation
’+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs ’

Here we’ve noticed that the shapefile is in the popular WGS84 spatial reference system – in other words, the data uses
units of degrees longitude and latitude.

In addition, shapefiles also support attribute fields that may contain additional data. Here are the fields on the World
Borders layer:

>>> print lyr.fields
[’FIPS’, ’ISO2’, ’ISO3’, ’UN’, ’NAME’, ’AREA’, ’POP2005’, ’REGION’, ’SUBREGION’, ’LON’, ’LAT’]

Here we are examining the OGR types (e.g., whether a field is an integer or a string) associated with each of the fields:

>>> [fld.__name__ for fld in lyr.field_types]
[’OFTString’, ’OFTString’, ’OFTString’, ’OFTInteger’, ’OFTString’, ’OFTInteger’, ’OFTInteger’, ’OFTInteger’, ’OFTInteger’, ’OFTReal’, ’OFTReal’]

You can iterate over each feature in the layer and extract information from both the feature’s geometry (accessed via
the geom attribute) as well as the feature’s attribute fields (whose values are accessed via get() method):

>>> for feat in lyr:
... print feat.get(’NAME’), feat.geom.num_points
...
Guernsey 18
Jersey 26
South Georgia South Sandwich Islands 338
Taiwan 363

Layer objects may be sliced:

>>> lyr[0:2]
[<django.contrib.gis.gdal.feature.Feature object at 0x2f47690>, <django.contrib.gis.gdal.feature.Feature object at 0x2f47650>]

And individual features may be retrieved by their feature ID:

>>> feat = lyr[234]
>>> print feat.get(’NAME’)
San Marino

Here the boundary geometry for San Marino is extracted and looking exported to WKT and GeoJSON:

>>> geom = feat.geom
>>> print geom.wkt
POLYGON ((12.415798 43.957954,12.450554 ...
>>> print geom.json
{ "type": "Polygon", "coordinates": [[[12.415798, 43.957954], [12.450554, 43.979721], ...

LayerMapping We’re going to dive right in – create a file called load.py inside the world application, and
insert the following:

import os
from django.contrib.gis.utils import LayerMapping

6.2. contrib packages 441

Django Documentation, Release 1.2.7

from models import WorldBorders

world_mapping = {
’fips’ : ’FIPS’,
’iso2’ : ’ISO2’,
’iso3’ : ’ISO3’,
’un’ : ’UN’,
’name’ : ’NAME’,
’area’ : ’AREA’,
’pop2005’ : ’POP2005’,
’region’ : ’REGION’,
’subregion’ : ’SUBREGION’,
’lon’ : ’LON’,
’lat’ : ’LAT’,
’mpoly’ : ’MULTIPOLYGON’,

}

world_shp = os.path.abspath(os.path.join(os.path.dirname(__file__), ’data/TM_WORLD_BORDERS-0.3.shp’))

def run(verbose=True):
lm = LayerMapping(WorldBorders, world_shp, world_mapping,

transform=False, encoding=’iso-8859-1’)

lm.save(strict=True, verbose=verbose)

A few notes about what’s going on:

• Each key in the world_mapping dictionary corresponds to a field in the WorldBorders model, and the
value is the name of the shapefile field that data will be loaded from.

• The key mpoly for the geometry field is MULTIPOLYGON, the geometry type we wish to import as. Even if
simple polygons are encountered in the shapefile they will automatically be converted into collections prior to
insertion into the database.

• The path to the shapefile is not absolute – in other words, if you move the world application (with data
subdirectory) to a different location, then the script will still work.

• The transform keyword is set to False because the data in the shapefile does not need to be converted – it’s
already in WGS84 (SRID=4326).

• The encoding keyword is set to the character encoding of string values in the shapefile. This ensures that
string values are read and saved correctly from their original encoding system.

Afterwards, invoke the Django shell from the geodjango project directory:

$ python manage.py shell

Next, import the load module, call the run routine, and watch LayerMapping do the work:

>>> from world import load
>>> load.run()

Try ogrinspect Now that you’ve seen how to define geographic models and import data with the LayerMapping
data import utility, it’s possible to further automate this process with use of the ogrinspectmanagement command.
The ogrinspect command introspects a GDAL-supported vector data source (e.g., a shapefile) and generates a
model definition and LayerMapping dictionary automatically.

The general usage of the command goes as follows:

442 Chapter 6. API Reference

Django Documentation, Release 1.2.7

$ python manage.py ogrinspect [options] <data_source> <model_name> [options]

Where data_source is the path to the GDAL-supported data source and model_name is the name to use for the
model. Command-line options may be used to further define how the model is generated.

For example, the following command nearly reproduces the WorldBorders model and mapping dictionary created
above, automatically:

$ python manage.py ogrinspect world/data/TM_WORLD_BORDERS-0.3.shp WorldBorders --srid=4326 --mapping --multi

A few notes about the command-line options given above:

• The --srid=4326 option sets the SRID for the geographic field.

• The --mapping option tells ogrinspect to also generate a mapping dictionary for use with
LayerMapping.

• The --multi option is specified so that the geographic field is a MultiPolygonField instead of just a
PolygonField.

The command produces the following output, which may be copied directly into the models.py of a GeoDjango
application:

This is an auto-generated Django model module created by ogrinspect.
from django.contrib.gis.db import models

class WorldBorders(models.Model):
fips = models.CharField(max_length=2)
iso2 = models.CharField(max_length=2)
iso3 = models.CharField(max_length=3)
un = models.IntegerField()
name = models.CharField(max_length=50)
area = models.IntegerField()
pop2005 = models.IntegerField()
region = models.IntegerField()
subregion = models.IntegerField()
lon = models.FloatField()
lat = models.FloatField()
geom = models.MultiPolygonField(srid=4326)
objects = models.GeoManager()

Auto-generated ‘LayerMapping‘ dictionary for WorldBorders model
worldborders_mapping = {

’fips’ : ’FIPS’,
’iso2’ : ’ISO2’,
’iso3’ : ’ISO3’,
’un’ : ’UN’,
’name’ : ’NAME’,
’area’ : ’AREA’,
’pop2005’ : ’POP2005’,
’region’ : ’REGION’,
’subregion’ : ’SUBREGION’,
’lon’ : ’LON’,
’lat’ : ’LAT’,
’geom’ : ’MULTIPOLYGON’,

}

Spatial Queries

6.2. contrib packages 443

Django Documentation, Release 1.2.7

Spatial Lookups GeoDjango extends the Django ORM and allows the use of spatial lookups. Let’s do an example
where we find the WorldBorder model that contains a point. First, fire up the management shell:

$ python manage.py shell

Now, define a point of interest 3:

>>> pnt_wkt = ’POINT(-95.3385 29.7245)’

The pnt_wkt string represents the point at -95.3385 degrees longitude, and 29.7245 degrees latitude. The geometry
is in a format known as Well Known Text (WKT), an open standard issued by the Open Geospatial Consortium (OGC).
4 Import the WorldBorders model, and perform a contains lookup using the pnt_wkt as the parameter:

>>> from world.models import WorldBorders
>>> qs = WorldBorders.objects.filter(mpoly__contains=pnt_wkt)
>>> qs
[<WorldBorders: United States>]

Here we retrieved a GeoQuerySet that has only one model: the one for the United States (which is what we would
expect). Similarly, a GEOS geometry object may also be used – here the intersects spatial lookup is combined
with the get method to retrieve only the WorldBorders instance for San Marino instead of a queryset:

>>> from django.contrib.gis.geos import Point
>>> pnt = Point(12.4604, 43.9420)
>>> sm = WorldBorders.objects.get(mpoly__intersects=pnt)
>>> sm
<WorldBorders: San Marino>

The contains and intersects lookups are just a subset of what’s available – the GeoDjango Database API
documentation has more.

Automatic Spatial Transformations When querying the spatial database GeoDjango automatically transforms ge-
ometries if they’re in a different coordinate system. In the following example, the coordinate will be expressed in
terms of EPSG SRID 32140, a coordinate system specific to south Texas only and in units of meters and not degrees:

>>> from django.contrib.gis.geos import *
>>> pnt = Point(954158.1, 4215137.1, srid=32140)

Note that pnt may also constructed with EWKT, an “extended” form of WKT that includes the SRID:

>>> pnt = GEOSGeometry(’SRID=32140;POINT(954158.1 4215137.1)’)

When using GeoDjango’s ORM, it will automatically wrap geometry values in transformation SQL, allowing the
developer to work at a higher level of abstraction:

>>> qs = WorldBorders.objects.filter(mpoly__intersects=pnt)
>>> print qs.query # Generating the SQL
SELECT "world_worldborders"."id", "world_worldborders"."name", "world_worldborders"."area",
"world_worldborders"."pop2005", "world_worldborders"."fips", "world_worldborders"."iso2",
"world_worldborders"."iso3", "world_worldborders"."un", "world_worldborders"."region",
"world_worldborders"."subregion", "world_worldborders"."lon", "world_worldborders"."lat",
"world_worldborders"."mpoly" FROM "world_worldborders"
WHERE ST_Intersects("world_worldborders"."mpoly", ST_Transform(%s, 4326))
>>> qs # printing evaluates the queryset
[<WorldBorders: United States>]

3 Here the point is for the University of Houston Law Center .
4 Open Geospatial Consortium, Inc., OpenGIS Simple Feature Specification For SQL, Document 99-049.

444 Chapter 6. API Reference

http://spatialreference.org/ref/epsg/32140/
http://www.law.uh.edu/
http://www.opengis.org/docs/99-049.pdf

Django Documentation, Release 1.2.7

Lazy Geometries Geometries come to GeoDjango in a standardized textual representation. Upon access of the
geometry field, GeoDjango creates a GEOS geometry object <ref-geos>, exposing powerful functionality, such as
serialization properties for popular geospatial formats:

>>> sm = WorldBorders.objects.get(name=’San Marino’)
>>> sm.mpoly
<MultiPolygon object at 0x24c6798>
>>> sm.mpoly.wkt # WKT
MULTIPOLYGON (((12.4157980000000006 43.9579540000000009, 12.4505540000000003 43.9797209999999978, ...
>>> sm.mpoly.wkb # WKB (as Python binary buffer)
<read-only buffer for 0x1fe2c70, size -1, offset 0 at 0x2564c40>
>>> sm.mpoly.geojson # GeoJSON (requires GDAL)
’{ "type": "MultiPolygon", "coordinates": [[[[12.415798, 43.957954], [12.450554, 43.979721], ...

This includes access to all of the advanced geometric operations provided by the GEOS library:

>>> pnt = Point(12.4604, 43.9420)
>>> sm.mpoly.contains(pnt)
True
>>> pnt.contains(sm.mpoly)
False

GeoQuerySet Methods

Putting your data on the map

Google

Geographic Admin GeoDjango extends Django’s admin application to enable support for editing geometry fields.

Basics GeoDjango also supplements the Django admin by allowing users to create and modify geometries on a
JavaScript slippy map (powered by OpenLayers).

Let’s dive in again – create a file called admin.py inside the world application, and insert the following:

from django.contrib.gis import admin
from models import WorldBorders

admin.site.register(WorldBorders, admin.GeoModelAdmin)

Next, edit your urls.py in the geodjango project folder to look as follows:

from django.conf.urls.defaults import *
from django.contrib.gis import admin

admin.autodiscover()

urlpatterns = patterns(’’,
(r’^admin/’, include(admin.site.urls)),

)

Start up the Django development server:

$ python manage.py runserver

6.2. contrib packages 445

http://openlayers.org/

Django Documentation, Release 1.2.7

Finally, browse to http://localhost:8000/admin/, and log in with the admin user created after running
syncdb. Browse to any of the WorldBorders entries – the borders may be edited by clicking on a polygon and
dragging the vertexes to the desired position.

OSMGeoAdmin With the OSMGeoAdmin, GeoDjango uses a Open Street Map layer in the admin. This provides
more context (including street and thoroughfare details) than available with the GeoModelAdmin (which uses the
Vector Map Level 0 WMS data set hosted at Metacarta).

First, there are some important requirements and limitations:

• OSMGeoAdmin requires that the spherical mercator projection be added to the to be added to the
spatial_ref_sys table (PostGIS 1.3 and below, only).

• The PROJ.4 datum shifting files must be installed (see the PROJ.4 installation instructions for more details).

If you meet these requirements, then just substitute in the OSMGeoAdmin option class in your admin.py file:

admin.site.register(WorldBorders, admin.OSMGeoAdmin)

GeoDjango Installation

Overview

In general, GeoDjango installation requires:

1. Python 2.4+ and Django

2. Spatial Database

3. Geospatial Libraries

Details for each of the requirements and installation instructions are provided in the sections below. In addition,
platform-specific instructions are available for:

• Mac OS X

• Ubuntu & Debian GNU/Linux

• Windows

Use the Source

Because GeoDjango takes advantage of the latest in the open source geospatial software technology, recent versions
of the libraries are necessary. If binary packages aren’t available for your platform, installation from source may
be required. When compiling the libraries from source, please follow the directions closely, especially if you’re a
beginner.

Requirements

Python 2.4+ Python 2.4 is the minimum version supported by Django, however Python 2.5+ is recommended be-
cause the ctypes module comes included; otherwise, 2.4 users will need to download and install ctypes.

Django Because GeoDjango is included with Django, please refer to Django’s installation instructions for details
on how to install.

446 Chapter 6. API Reference

http://openstreetmap.org/
http://earth-info.nga.mil/publications/vmap0.html
http://metacarta.com
http://docs.python.org/lib/module-ctypes.html
http://sourceforge.net/projects/ctypes/files/

Django Documentation, Release 1.2.7

Spatial Database PostgreSQL (with PostGIS), MySQL, Oracle, and SQLite (with SpatiaLite) are the spatial
databases currently supported.

Note: PostGIS is recommended, because it is the most mature and feature-rich open source spatial database.

The geospatial libraries required for a GeoDjango installation depends on the spatial database used. The following
lists the library requirements, supported versions, and any notes for each of the supported database backends:

Database Library Requirements Supported
Versions

Notes

Post-
greSQL

GEOS, PROJ.4, PostGIS 8.1+ Requires PostGIS.

MySQL GEOS 5.x Not OGC-compliant; limited functionality.
Oracle GEOS 10.2, 11 XE not supported; not tested with 9.
SQLite GEOS, GDAL, PROJ.4,

SpatiaLite
3.6.+ Requires SpatiaLite 2.3+, pysqlite2 2.5+, and

Django 1.1.

Geospatial Libraries GeoDjango uses and/or provides interfaces for the following open source geospatial libraries:

Program Description Required Supported Versions
GEOS Geometry Engine Open Source Yes 3.2, 3.1, 3.0
PROJ.4 Cartographic Projections library Yes (PostgreSQL and SQLite only) 4.7, 4.6, 4.5, 4.4
GDAL Geospatial Data Abstraction Library No (but, required for SQLite) 1.8, 1.7, 1.6, 1.5, 1.4
GeoIP IP-based geolocation library No 1.4
PostGIS Spatial extensions for PostgreSQL Yes (PostgreSQL only) 1.5, 1.4, 1.3
SpatiaLite Spatial extensions for SQLite Yes (SQLite only) 2.4, 2.3

Install GDAL

While GDAL is technically not required, it is recommended. Important features of GeoDjango (including the Lay-
erMapping data import utility, geometry reprojection, and the geographic admin) depend on its functionality.

Note: The GeoDjango interfaces to GEOS, GDAL, and GeoIP may be used independently of Django. In other words,
no database or settings file required – just import them as normal from django.contrib.gis.

Building from Source

When installing from source on UNIX and GNU/Linux systems, please follow the installation instructions carefully,
and install the libraries in the given order. If using MySQL or Oracle as the spatial database, only GEOS is required.

Note: On Linux platforms, it may be necessarry to run the ldconfig command after installing each library. For
example:

$ sudo make install
$ sudo ldconfig

Note: OS X users are required to install Apple Developer Tools in order to compile software from source. This is
typically included on your OS X installation DVDs.

6.2. contrib packages 447

http://trac.osgeo.org/proj/
http://postgis.refractions.net/
http://www.gaia-gis.it/spatialite/index.html
http://developer.apple.com/tools/xcode/

Django Documentation, Release 1.2.7

GEOS GEOS is a C++ library for performing geometric operations, and is the default internal geometry repre-
sentation used by GeoDjango (it’s behind the “lazy” geometries). Specifically, the C API library is called (e.g.,
libgeos_c.so) directly from Python using ctypes.

First, download GEOS 3.2 from the refractions Web site and untar the source archive:

$ wget http://download.osgeo.org/geos/geos-3.2.2.tar.bz2
$ tar xjf geos-3.2.2.tar.bz2

Next, change into the directory where GEOS was unpacked, run the configure script, compile, and install:

$ cd geos-3.2.2
$./configure
$ make
$ sudo make install
$ cd ..

Troubleshooting

Can’t find GEOS Library When GeoDjango can’t find GEOS, this error is raised:

ImportError: Could not find the GEOS library (tried "geos_c"). Try setting GEOS_LIBRARY_PATH in your settings.

The most common solution is to properly configure your Library Environment Settings or set GEOS_LIBRARY_PATH
in your settings.

If using a binary package of GEOS (e.g., on Ubuntu), you may need to Install binutils.

GEOS_LIBRARY_PATH If your GEOS library is in a non-standard location, or you don’t want to modify the sys-
tem’s library path then the GEOS_LIBRARY_PATH setting may be added to your Django settings file with the full
path to the GEOS C library. For example:

GEOS_LIBRARY_PATH = ’/home/bob/local/lib/libgeos_c.so’

Note: The setting must be the full path to the C shared library; in other words you want to use libgeos_c.so, not
libgeos.so.

PROJ.4 PROJ.4 is a library for converting geospatial data to different coordinate reference systems.

First, download the PROJ.4 source code and datum shifting files 5:

$ wget http://download.osgeo.org/proj/proj-4.7.0.tar.gz
$ wget http://download.osgeo.org/proj/proj-datumgrid-1.5.zip

Next, untar the source code archive, and extract the datum shifting files in the nad subdirectory. This must be done
prior to configuration:

$ tar xzf proj-4.7.0.tar.gz
$ cd proj-4.7.0/nad
$ unzip ../../proj-datumgrid-1.5.zip
$ cd ..

5 The datum shifting files are needed for converting data to and from certain projections. For example, the PROJ.4 string for the Google
projection (900913) requires the null grid file only included in the extra datum shifting files. It is easier to install the shifting files now, then to
have debug a problem caused by their absence later.

448 Chapter 6. API Reference

http://trac.osgeo.org/proj/
http://spatialreference.org/ref/epsg/900913/proj4
http://spatialreference.org/ref/epsg/900913/proj4

Django Documentation, Release 1.2.7

Finally, configure, make and install PROJ.4:

$./configure
$ make
$ sudo make install
$ cd ..

PostGIS PostGIS adds geographic object support to PostgreSQL, turning it into a spatial database. GEOS and
PROJ.4 should be installed prior to building PostGIS.

Note: The psycopg2 module is required for use as the database adaptor when using GeoDjango with PostGIS.

First download the source archive, and extract:

$ wget http://postgis.refractions.net/download/postgis-1.5.2.tar.gz
$ tar xzf postgis-1.5.2.tar.gz
$ cd postgis-1.5.2

Next, configure, make and install PostGIS:

$./configure

Finally, make and install:

$ make
$ sudo make install
$ cd ..

Note: GeoDjango does not automatically create a spatial database. Please consult the section on Creating a Spatial
Database Template for PostGIS for more information.

GDAL GDAL is an excellent open source geospatial library that has support for reading most vector and raster
spatial data formats. Currently, GeoDjango only supports GDAL’s vector data capabilities 6. GEOS and PROJ.4
should be installed prior to building GDAL.

First download the latest GDAL release version and untar the archive:

$ wget http://download.osgeo.org/gdal/gdal-1.8.0.tar.gz
$ tar xzf gdal-1.8.0.tar.gz
$ cd gdal-1.8.0

Configure, make and install:

$./configure
$ make # Go get some coffee, this takes a while.
$ sudo make install
$ cd ..

Note: Because GeoDjango has it’s own Python interface, the preceding instructions do not build GDAL’s own
Python bindings. The bindings may be built by adding the --with-python flag when running configure. See
GDAL/OGR In Python for more information on GDAL’s bindings.

If you have any problems, please see the troubleshooting section below for suggestions and solutions.
6 Specifically, GeoDjango provides support for the OGR library, a component of GDAL.

6.2. contrib packages 449

http://postgis.refractions.net/
http://initd.org/projects/psycopg2
http://trac.osgeo.org/gdal/
http://trac.osgeo.org/gdal/wiki/GdalOgrInPython
http://gdal.org/ogr

Django Documentation, Release 1.2.7

Troubleshooting

Can’t find GDAL Library When GeoDjango can’t find the GDAL library, the HAS_GDAL flag will be false:

>>> from django.contrib.gis import gdal
>>> gdal.HAS_GDAL
False

The solution is to properly configure your Library Environment Settings or set GDAL_LIBRARY_PATH in your set-
tings.

GDAL_LIBRARY_PATH If your GDAL library is in a non-standard location, or you don’t want to modify the
system’s library path then the GDAL_LIBRARY_PATH setting may be added to your Django settings file with the
full path to the GDAL library. For example:

GDAL_LIBRARY_PATH = ’/home/sue/local/lib/libgdal.so’

Can’t find GDAL data files (GDAL_DATA) When installed from source, GDAL versions 1.5.1 and below have an
autoconf bug that places data in the wrong location. 7 This can lead to error messages like this:

ERROR 4: Unable to open EPSG support file gcs.csv.
...
OGRException: OGR failure.

The solution is to set the GDAL_DATA environment variable to the location of the GDAL data files before invoking
Python (typically /usr/local/share; use gdal-config --datadir to find out). For example:

$ export GDAL_DATA=‘gdal-config --datadir‘
$ python manage.py shell

If using Apache, you may need to add this environment variable to your configuration file:

SetEnv GDAL_DATA /usr/local/share

SpatiaLite New in version 1.1: Please, see the release notes

Note: Mac OS X users should follow the instructions in the KyngChaos Packages section, as it is much easier than
building from source.

SpatiaLite adds spatial support to SQLite, turning it into a full-featured spatial database. Because SpatiaLite has
special requirements, it typically requires SQLite and pysqlite2 (the Python SQLite DB-API adaptor) to be built from
source. GEOS and PROJ.4 should be installed prior to building SpatiaLite.

After installation is complete, don’t forget to read the post-installation docs on Creating a Spatial Database for Spa-
tiaLite.

SQLite Typically, SQLite packages are not compiled to include the R*Tree module – thus it must be compiled from
source. First download the latest amalgamation source archive from the SQLite download page, and extract:

$ wget http://sqlite.org/sqlite-amalgamation-3.6.23.1.tar.gz
$ tar xzf sqlite-amalgamation-3.6.23.1.tar.gz
$ cd sqlite-3.6.23.1

7 See GDAL ticket #2382.

450 Chapter 6. API Reference

http://www.gaia-gis.it/spatialite/index.html
http://www.sqlite.org/rtree.html
http://www.sqlite.org/download.html
http://trac.osgeo.org/gdal/ticket/2382

Django Documentation, Release 1.2.7

Next, run the configure script – however the CFLAGS environment variable needs to be customized so that SQLite
knows to build the R*Tree module:

$ CFLAGS="-DSQLITE_ENABLE_RTREE=1" ./configure
$ make
$ sudo make install
$ cd ..

Note: If using Ubuntu, installing a newer SQLite from source can be very difficult because it links to the existing
libsqlite3.so in /usr/lib which many other packages depend on. Unfortunately, the best solution at this time
is to overwrite the existing library by adding --prefix=/usr to the configure command.

SpatiaLite Library (libspatialite) and Tools (spatialite) After SQLite has been built with the R*Tree
module enabled, get the latest SpatiaLite library source and tools bundle from the download page:

$ wget http://www.gaia-gis.it/spatialite/libspatialite-amalgamation-2.3.1.tar.gz
$ wget http://www.gaia-gis.it/spatialite/spatialite-tools-2.3.1.tar.gz
$ tar xzf libspatialite-amalgamation-2.3.1.tar.gz
$ tar xzf spatialite-tools-2.3.1.tar.gz

Prior to attempting to build, please read the important notes below to see if customization of the configure com-
mand is necessary. If not, then run the configure script, make, and install for the SpatiaLite library:

$ cd libspatialite-amalgamation-2.3.1
$./configure # May need to modified, see notes below.
$ make
$ sudo make install
$ cd ..

Finally, do the same for the SpatiaLite tools:

$ cd spatialite-tools-2.3.1
$./configure # May need to modified, see notes below.
$ make
$ sudo make install
$ cd ..

Note: If you’ve installed GEOS and PROJ.4 from binary packages, you will have to specify their paths when running
the configure scripts for both the library and the tools (the configure scripts look, by default, in /usr/local).
For example, on Debian/Ubuntu distributions that have GEOS and PROJ.4 packages, the command would be:

$./configure --with-proj-include=/usr/include --with-proj-lib=/usr/lib --with-geos-include=/usr/include --with-geos-lib=/usr/lib

Note: For Mac OS X users building from source, the SpatiaLite library and tools need to have their target
configured:

$./configure --target=macosx

pysqlite2 Because SpatiaLite must be loaded as an external extension, it requires the enable_load_extension
method, which is only available in versions 2.5+. Thus, download pysqlite2 2.6, and untar:

6.2. contrib packages 451

http://www.gaia-gis.it/spatialite/sources.html

Django Documentation, Release 1.2.7

$ wget http://pysqlite.googlecode.com/files/pysqlite-2.6.0.tar.gz
$ tar xzf pysqlite-2.6.0.tar.gz
$ cd pysqlite-2.6.0

Next, use a text editor (e.g., emacs or vi) to edit the setup.cfg file to look like the following:

[build_ext]
#define=
include_dirs=/usr/local/include
library_dirs=/usr/local/lib
libraries=sqlite3
#define=SQLITE_OMIT_LOAD_EXTENSION

Note: The important thing here is to make sure you comment out the
define=SQLITE_OMIT_LOAD_EXTENSION flag and that the include_dirs and library_dirs settings
are uncommented and set to the appropriate path if the SQLite header files and libraries are not in /usr/include
and /usr/lib, respectively.

After modifying setup.cfg appropriately, then run the setup.py script to build and install:

$ sudo python setup.py install

Post-Installation

Creating a Spatial Database Template for PostGIS Creating a spatial database with PostGIS is different than
normal because additional SQL must be loaded to enable spatial functionality. Because of the steps in this process,
it’s better to create a database template that can be reused later.

First, you need to be able to execute the commands as a privileged database user. For example, you can use the
following to become the postgres user:

$ sudo su - postgres

Note: The location and name of the PostGIS SQL files (e.g., from POSTGIS_SQL_PATH below) depends on the
version of PostGIS. PostGIS versions 1.3 and below use <pg_sharedir>/contrib/lwpostgis.sql;
whereas version 1.4 uses <sharedir>/contrib/postgis.sql and version 1.5 uses
<sharedir>/contrib/postgis-1.5/postgis.sql.

To complicate matters, Ubuntu & Debian GNU/Linux distributions have their own separate directory naming system
that changes each release.

The example below assumes PostGIS 1.5, thus you may need to modify POSTGIS_SQL_PATH and the name of the
SQL file for the specific version of PostGIS you are using.

Once you’re a database super user, then you may execute the following commands to create a PostGIS spatial database
template:

$ POSTGIS_SQL_PATH=‘pg_config --sharedir‘/contrib/postgis-1.5
Creating the template spatial database.
$ createdb -E UTF8 template_postgis
$ createlang -d template_postgis plpgsql # Adding PLPGSQL language support.
Allows non-superusers the ability to create from this template
$ psql -d postgres -c "UPDATE pg_database SET datistemplate=’true’ WHERE datname=’template_postgis’;"
Loading the PostGIS SQL routines
$ psql -d template_postgis -f $POSTGIS_SQL_PATH/postgis.sql

452 Chapter 6. API Reference

Django Documentation, Release 1.2.7

$ psql -d template_postgis -f $POSTGIS_SQL_PATH/spatial_ref_sys.sql
Enabling users to alter spatial tables.
$ psql -d template_postgis -c "GRANT ALL ON geometry_columns TO PUBLIC;"
$ psql -d template_postgis -c "GRANT ALL ON geography_columns TO PUBLIC;"
$ psql -d template_postgis -c "GRANT ALL ON spatial_ref_sys TO PUBLIC;"

These commands may be placed in a shell script for later use; for convenience the following scripts are available:

PostGIS Version Bash Shell Script
1.3 create_template_postgis-1.3.sh
1.4 create_template_postgis-1.4.sh
1.5 create_template_postgis-1.5.sh
Debian/Ubuntu create_template_postgis-debian.sh

Afterwards, you may create a spatial database by simply specifying template_postgis as the template to use (via
the -T option):

$ createdb -T template_postgis <db name>

Note: While the createdb command does not require database super-user privileges, it must be executed by a
database user that has permissions to create databases. You can create such a user with the following command:

$ createuser --createdb <user>

Creating a Spatial Database for SpatiaLite After the SpatiaLite library and tools have been installed, it is now pos-
sible to create spatial database for use with GeoDjango. In order to do this, download the spatial database initialization
SQL from the SpatiaLite Resources page:

$ wget http://www.gaia-gis.it/spatialite/init_spatialite-2.3.sql.gz
$ gunzip init_spatialite-2.3.sql.gz

Now, the spatialite command can be used to initialize a spatial database:

$ spatialite geodjango.db < init_spatialite-2.3.sql

Note: The parameter geodjango.db is the filename of the SQLite database you want to use. Use the same in the
DATABASE_NAME inside your settings.py.

Add django.contrib.gis to INSTALLED_APPS Like other Django contrib applications, you will only need
to add django.contrib.gis to INSTALLED_APPS in your settings. This is the so that gis templates can be
located – if not done, then features such as the geographic admin or KML sitemaps will not function properly.

Add Google Projection to spatial_ref_sys table Changed in version 1.2: Please, see the release notes

Note: If running PostGIS 1.4 and above, the entry is already included in the default spatial_ref_sys table. You
can skip this step.

In order to conduct database transformations to the so-called “Google” projection (a spherical mercator projection
used by Google Maps), an entry must be added to your spatial database’s spatial_ref_sys table. Invoke the
Django shell from your project and execute the add_srs_entry function:

6.2. contrib packages 453

http://www.gaia-gis.it/spatialite/resources.html

Django Documentation, Release 1.2.7

$ python manage shell
>>> from django.contrib.gis.utils import add_srs_entry
>>> add_srs_entry(900913)

Note: In Django 1.1 the name of this function is add_postgis_srs.

This adds an entry for the 900913 SRID to the spatial_ref_sys (or equivalent) table, making it possible for the
spatial database to transform coordinates in this projection. You only need to execute this command once per spatial
database.

Troubleshooting

If you can’t find the solution to your problem here then participate in the community! You can:

• Join the #geodjango IRC channel on FreeNode (may be accessed on the Web via Mibbit). Please be patient
and polite – while you may not get an immediate response, someone will attempt to answer your question as
soon as they see it.

• Ask your question on the GeoDjango mailing list.

• File a ticket on the Django trac if you think there’s a bug. Make sure to provide a complete description of the
problem, versions used, and specify the component as “GIS”.

Library Environment Settings By far, the most common problem when installing GeoDjango is that the external
shared libraries (e.g., for GEOS and GDAL) cannot be located. 8 Typically, the cause of this problem is that the
operating system isn’t aware of the directory where the libraries built from source were installed.

In general, the library path may be set on a per-user basis by setting an environment variable, or by configuring the
library path for the entire system.

LD_LIBRARY_PATH environment variable A user may set this environment variable to customize the library
paths they want to use. The typical library directory for software built from source is /usr/local/lib. Thus,
/usr/local/lib needs to be included in the LD_LIBRARY_PATH variable. For example, the user could place
the following in their bash profile:

export LD_LIBRARY_PATH=/usr/local/lib

Setting System Library Path On GNU/Linux systems, there is typically a file in /etc/ld.so.conf, which may
include additional paths from files in another directory, such as /etc/ld.so.conf.d. As the root user, add the
custom library path (like /usr/local/lib) on a new line in ld.so.conf. This is one example of how to do so:

$ sudo echo /usr/local/lib >> /etc/ld.so.conf
$ sudo ldconfig

For OpenSolaris users, the system library path may be modified using the crle utility. Run crle with no options to
see the current configuration and use crle -l to set with the new library path. Be very careful when modifying the
system library path:

crle -l $OLD_PATH:/usr/local/lib

8 GeoDjango uses the find_library routine from ctypes.util to locate shared libraries.

454 Chapter 6. API Reference

http://www.mibbit.com/?server=irc.freenode.net&channel=%23geodjango
http://groups.google.com/group/geodjango
http://code.djangoproject.com/simpleticket
http://docs.python.org/library/ctypes.html#finding-shared-libraries

Django Documentation, Release 1.2.7

Install binutils GeoDjango uses the find_library function (from the ctypes.util Python module) to
discover libraries. The find_library routine uses a program called objdump (part of the binutils package)
to verify a shared library on GNU/Linux systems. Thus, if binutils is not installed on your Linux system then
Python’s ctypes may not be able to find your library even if your library path is set correctly and geospatial libraries
were built perfectly.

The binutils package may be installed on Debian and Ubuntu systems using the following command:

$ sudo apt-get install binutils

Similarly, on Red Hat and CentOS systems:

$ sudo yum install binutils

Platform Specific Instructions

Mac OS X Because of the variety of packaging systems available for OS X, users have several different options for
installing GeoDjango. These options are:

• KyngChaos Packages

• Fink

• MacPorts

• Building from Source

Note: Currently, the easiest and recommended approach for installing GeoDjango on OS X is to use the KyngChaos
packages.

This section also includes instructions for installing an upgraded version of Python from packages provided by the
Python Software Foundation, however, this is not required.

Python Although OS X comes with Python installed, users can use framework installers (2.5 and 2.6 are available)
provided by the Python Software Foundation. An advantage to using the installer is that OS X’s Python will remain
“pristine” for internal operating system use.

Note: You will need to modify the PATH environment variable in your .profile file so that the new version of
Python is used when python is entered at the command-line:

export PATH=/Library/Frameworks/Python.framework/Versions/Current/bin:$PATH

KyngChaos Packages William Kyngesburye provides a number of geospatial library binary packages that make it
simple to get GeoDjango installed on OS X without compiling them from source. However, the Apple Developer Tools
are still necessary for compiling the Python database adapters psycopg2 (for PostGIS) and pysqlite2 (for SpatiaLite).

Note: SpatiaLite users should consult the SpatiaLite section after installing the packages for additional instructions.

Download the framework packages for:

• UnixImageIO

• PROJ

6.2. contrib packages 455

http://python.org/ftp/python/2.5.4/python-2.5.4-macosx.dmg
http://python.org/ftp/python/2.6.2/python-2.6.2-macosx2009-04-16.dmg
http://www.kyngchaos.com/software/frameworks
http://developer.apple.com/tools/xcode/

Django Documentation, Release 1.2.7

• GEOS

• SQLite3 (includes the SpatiaLite library)

• GDAL

Install the packages in the order they are listed above, as the GDAL and SQLite packages require the packages listed
before them. Afterwards, you can also install the KyngChaos binary packages for PostgreSQL and PostGIS.

After installing the binary packages, you’ll want to add the following to your .profile to be able to run the package
programs from the command-line:

export PATH=/Library/Frameworks/UnixImageIO.framework/Programs:$PATH
export PATH=/Library/Frameworks/PROJ.framework/Programs:$PATH
export PATH=/Library/Frameworks/GEOS.framework/Programs:$PATH
export PATH=/Library/Frameworks/SQLite3.framework/Programs:$PATH
export PATH=/Library/Frameworks/GDAL.framework/Programs:$PATH
export PATH=/usr/local/pgsql/bin:$PATH

Note: Use of these binaries requires Django 1.0.3 and above. If you are using a previous version of Django (like
1.0.2), then you will have to add the following in your settings:

GEOS_LIBRARY_PATH=’/Library/Frameworks/GEOS.framework/GEOS’
GDAL_LIBRARY_PATH=’/Library/Frameworks/GDAL.framework/GDAL’

psycopg2 After you’ve installed the KyngChaos binaries and modified your PATH, as described above, psycopg2
may be installed using the following command:

$ sudo python easy_install psycopg2

Note: To use easy_install you’ll need to install Python’s setuptools.

pysqlite2 Follow the pysqlite2 source install instructions, however, when editing the setup.cfg use the following
instead:

[build_ext]
#define=
include_dirs=/Library/Frameworks/SQLite3.framework/unix/include
library_dirs=/Library/Frameworks/SQLite3.framework/unix/lib
libraries=sqlite3
#define=SQLITE_OMIT_LOAD_EXTENSION

SpatiaLite When Creating a Spatial Database for SpatiaLite, the spatialite program is required. However,
instead of attempting to compile the SpatiaLite tools from source, download the SpatiaLite Binaries for OS X, and
install spatialite in a location available in your PATH. For example:

$ curl -O http://www.gaia-gis.it/spatialite/spatialite-tools-osx-x86-2.3.1.tar.gz
$ tar xzf spatialite-tools-osx-x86-2.3.1.tar.gz
$ cd spatialite-tools-osx-x86-2.3.1/bin
$ sudo cp spatialite /Library/Frameworks/SQLite3.framework/Programs

Finally, for GeoDjango to be able to find the KyngChaos SpatiaLite library, add the following to your settings.py:

456 Chapter 6. API Reference

http://www.kyngchaos.com/software/postgres
http://pypi.python.org/pypi/setuptools
http://www.gaia-gis.it/spatialite/binaries.html

Django Documentation, Release 1.2.7

SPATIALITE_LIBRARY_PATH=’/Library/Frameworks/SQLite3.framework/SQLite3’

Fink Kurt Schwehr has been gracious enough to create GeoDjango packages for users of the Fink package system.
The following packages are available, depending on which version of Python you want to use:

• django-gis-py26

• django-gis-py25

• django-gis-py24

MacPorts MacPorts may be used to install GeoDjango prerequisites on Macintosh computers running OS X. Be-
cause MacPorts still builds the software from source, the Apple Developer Tools are required.

Summary:

$ sudo port install postgresql83-server
$ sudo port install geos
$ sudo port install proj
$ sudo port install postgis
$ sudo port install gdal
$ sudo port install libgeoip

Note: You will also have to modify the PATH in your .profile so that the MacPorts programs are accessible from
the command-line:

export PATH=/opt/local/bin:/opt/local/lib/postgresql83/bin

In addition, add the FALLBACK_DYLD_LIBRARY_PATH setting so that the libraries can be found by Python:

export FALLBACK_DYLD_LIBRARY_PATH=/opt/local/lib:/opt/local/lib/postgresql83

Ubuntu & Debian GNU/Linux
Note: The PostGIS SQL files are not placed the PostgreSQL share directory in the Debian and Ubuntu packages, and
are located instead special directory depending on the release. Thus, when Creating a Spatial Database Template for
PostGIS use the create_template_postgis-debian.sh script instead

Ubuntu

10.04 and 10.10 In Ubuntu 10 PostgreSQL was upgraded to 8.4 and GDAL was upgraded to 1.6. Ubuntu 10.04 uses
PostGIS 1.4, while Ubuntu 10.10 uses PostGIS 1.5 (with geography support). The installation commands are:

$ sudo apt-get install binutils gdal-bin postgresql-8.4-postgis \
postgresql-server-dev-8.4 python-psycopg2 python-setuptools

$ sudo easy_install Django

8.10 Use the synaptic package manager to install the following packages:

$ sudo apt-get install binutils gdal-bin postgresql-8.3-postgis \
postgresql-server-dev-8.3 python-psycopg2 python-setuptools

6.2. contrib packages 457

http://schwehr.org/blog/
http://www.finkproject.org/
http://www.macports.org/
http://developer.apple.com/tools/xcode/

Django Documentation, Release 1.2.7

Afterwards, you may install Django with Python’s easy_install script (the Ubuntu package python-django
uses an older version missing several important bug fixes for GeoDjango):

$ sudo easy_install Django

That’s it! For the curious, the required binary prerequisites packages are:

• binutils: for ctypes to find libraries

• postgresql-8.3

• postgresql-server-dev-8.3: for pg_config

• postgresql-8.3-postgis: for PostGIS 1.3.3

• libgeos-3.0.0, and libgeos-c1: for GEOS 3.0.0

• libgdal1-1.5.0: for GDAL 1.5.0 library

• proj: for PROJ 4.6.0 – but no datum shifting files, see note below

• python-psycopg2

• python-setuptools: for easy_install

Optional packages to consider:

• libgeoip1: for GeoIP support

• gdal-bin: for GDAL command line programs like ogr2ogr

• python-gdal for GDAL’s own Python bindings – includes interfaces for raster manipulation

Note: On this version of Ubuntu the proj package does not come with the datum shifting files installed, which will
cause problems with the geographic admin because the null datum grid is not available for transforming geometries
to the spherical mercator projection. A solution is to download the datum-shifting files, create the grid file, and install
it yourself:

$ wget http://download.osgeo.org/proj/proj-datumgrid-1.4.tar.gz
$ mkdir nad
$ cd nad
$ tar xzf ../proj-datumgrid-1.4.tar.gz
$ nad2bin null < null.lla
$ sudo cp null /usr/share/proj

Otherwise, the Ubuntu proj package is fine for general use as long as you do not plan on doing any database
transformation of geometries to the Google projection (900913).

8.04 and lower The 8.04 (and lower) versions of Ubuntu use GEOS v2.2.3 in their binary packages, which is in-
compatible with GeoDjango. Thus, do not use the binary packages for GEOS or PostGIS and build some prerequisites
from source, per the instructions in this document; however, it is okay to use the PostgreSQL binary packages.

For more details, please see the Debian instructions for 4.0 (Etch) below.

Debian

4.0 (Etch) The situation here is the same as that of Ubuntu 8.04 and lower – in other words, some packages must be
built from source to work properly with GeoDjango.

458 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Binary Packages The following command will install acceptable binary packages, as well as the development tools
necessary to build the rest of the requirements:

$ sudo apt-get install binutils bzip2 gcc g++ flex make postgresql-8.1 postgresql-server-dev-8.1 python-ctypes python-psycopg2 python-setuptools

Required package information:

• binutils: for ctypes to find libraries

• bzip2: for decompressing the source packages

• gcc, g++, make: GNU developer tools used to compile the libraries

• flex: required to build PostGIS

• postgresql-8.1

• postgresql-server-dev-8.1: for pg_config

• python-ctypes: Python 2.4 needs to have ctypes installed separately

• python-psycopg2

• python-setuptools: for easy_install

Optional packages:

• libgeoip: for GeoIP support

Source Packages You will still have to install GEOS, PROJ.4, PostGIS, and GDAL from source. Please follow the
directions carefully.

5.0 (Lenny) This version is comparable to Ubuntu 8.10, so the command is very similar:

$ sudo apt-get install binutils libgdal1-1.5.0 postgresql-8.3 postgresql-8.3-postgis postgresql-server-dev-8.3 python-psycopg2 python-setuptools

This assumes that you are using PostgreSQL version 8.3. Else, replace 8.3 in the above command with the appropriate
PostgreSQL version.

Note: Please read the note in the Ubuntu 8.10 install documentation about the proj package – it also applies here
because the package does not include the datum shifting files.

Post-installation Notes If the PostgreSQL database cluster was not initiated after installing, then it can be created
(and started) with the following command:

$ sudo pg_createcluster --start 8.3 main

Afterwards, the /etc/init.d/postgresql-8.3 script should be used to manage the starting and stopping of
PostgreSQL.

In addition, the SQL files for PostGIS are placed in a different location on Debian 5.0 . Thus when Creating a Spatial
Database Template for PostGIS either:

• Create a symbolic link to these files:

$ sudo ln -s /usr/share/postgresql-8.3-postgis/{lwpostgis,spatial_ref_sys}.sql /usr/share/postgresql/8.3

If not running PostgreSQL 8.3, then replace 8.3 in the command above with the correct version.

• Or use the create_template_postgis-debian.sh to create the spatial database.

6.2. contrib packages 459

Django Documentation, Release 1.2.7

Windows Proceed through the following sections sequentially in order to install GeoDjango on Windows. These
instructions assume at least Django 1.2.6, for support to find OSGeo4W libraries.

Note: These instructions assume that you are using 32-bit versions of all programs. While 64-bit versions of Python
and PostgreSQL 9.0 are available, 64-bit versions of spatial libraries, like GEOS and GDAL, are not yet provided by
the OSGeo4W installer.

Python First, download the latest Python 2.7 installer from the Python Web site. Next, run the installer and keep the
defaults – for example, keep ‘Install for all users’ checked and the installation path set as C:\Python27.

Note: You may already have a version of Python installed in C:\python as ESRI products sometimes install a copy
there. You should still install a fresh version of Python 2.7.

PostgreSQL First, download the latest PostgreSQL 9.0 installer from the EnterpriseDB Web site. After down-
loading, simply run the installer, follow the on-screen directions, and keep the default options unless you know the
consequences of changing them.

Note: The PostgreSQL installer creates both a new Windows user to be the ‘postgres service account’ and a
postgres database superuser You will be prompted once to set the password for both accounts – make sure to
remember it!

When the installer completes, it will ask to launch the Application Stack Builder (ASB) on exit – keep this checked,
as it is necessary to install PostGIS.

Note: If installed successfully, the PostgreSQL server will run in the background each time the system as started as a
Windows service. A PostgreSQL 9.0 start menu group will created and contains shortcuts for the ASB as well as the
‘SQL Shell’, which will launch a psql command window.

PostGIS From within the Application Stack Builder (to run outside of the installer, Start → Programs → PostgreSQL
9.0), select PostgreSQL Database Server 9.0 on port 5432 from the drop down menu. Next, expand the Categories →
Spatial Extensions menu tree and select PostGIS 1.5 for PostgreSQL 9.0.

After clicking next, you will be prompted to select your mirror, PostGIS will be downloaded, and the PostGIS installer
will begin. Select only the default options during install (e.g., do not uncheck the option to create a default PostGIS
database).

Note: You will be prompted to enter your postgres database superuser password in the ‘Database Connection
Information’ dialog.

psycopg2 The psycopg2 Python module provides the interface between Python and the PostgreSQL database.
Download the latest Windows installer for your version of Python and PostgreSQL and run using the default settings.
9

9 The psycopg2 Windows installers are packaged and maintained by Jason Erickson.

460 Chapter 6. API Reference

http://python.org/download/
http://www.enterprisedb.com/products-services-training/pgdownload
http://www.enterprisedb.com
http://www.stickpeople.com/projects/python/win-psycopg/
http://www.stickpeople.com/projects/python/win-psycopg/

Django Documentation, Release 1.2.7

OSGeo4W The OSGeo4W installer makes it simple to install the PROJ.4, GDAL, and GEOS libraries required by
GeoDjango. First, download the OSGeo4W installer, and run it. Select Express Web-GIS Install and click next. In
the ‘Select Packages’ list, ensure that GDAL is selected; MapServer and Apache are also enabled by default, but are
not required by GeoDjango and may be unchecked safely. After clicking next, the packages will be automatically
downloaded and installed, after which you may exit the installer.

Modify Windows Environment In order to use GeoDjango, you will need to add your Python and OSGeo4W
directories to your Windows system Path, as well as create GDAL_DATA and PROJ_LIB environment variables.
The following set of commands, executable with cmd.exe, will set this up:

set OSGEO4W_ROOT=C:\OSGeo4W
set PYTHON_ROOT=C:\Python27
set GDAL_DATA=%OSGEO4W_ROOT%\share\gdal
set PROJ_LIB=%OSGEO4W_ROOT%\share\proj
set PATH=%PATH%;%PYTHON_ROOT%;%OSGEO4W_ROOT%\bin
reg ADD "HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment" /v Path /t REG_EXPAND_SZ /f /d "%PATH%"
reg ADD "HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment" /v GDAL_DATA /t REG_EXPAND_SZ /f /d "%GDAL_DATA%"
reg ADD "HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment" /v PROJ_LIB /t REG_EXPAND_SZ /f /d "%PROJ_LIB%"

For your convenience, these commands are available in the execuatble batch script, geodjango_setup.bat.

Note: Administrator privileges are required to execute these commands. To do this, right-click on
geodjango_setup.bat and select Run as administrator. You need to log out and log back in again for the
settings to take effect.

Note: If you customized the Python or OSGeo4W installation directories, then you will need to modify the
OSGEO4W_ROOT and/or PYTHON_ROOT variables accordingly.

Install Django and Setup Database Finally, install Django on your system. You do not need to create a spatial
database template, as one named template_postgis is created for you when installing PostGIS.

To administer the database, you can either use the pgAdmin III program (Start → PostgreSQL 9.0 → pgAdmin III) or
the SQL Shell (Start → PostgreSQL 9.0 → SQL Shell). For example, to create a geodjango spatial database and
user, the following may be executed from the SQL Shell as the postgres user:

postgres# CREATE USER geodjango PASSWORD ’my_passwd’;
postgres# CREATE DATABASE geodjango OWNER geodjango TEMPLATE template_postgis ENCODING ’utf8’;

GeoDjango Model API

This document explores the details of the GeoDjango Model API. Throughout this section, we’ll be using the following
geographic model of a ZIP code as our example:

from django.contrib.gis.db import models

class Zipcode(models.Model):
code = models.CharField(max_length=5)
poly = models.PolygonField()
objects = models.GeoManager()

6.2. contrib packages 461

http://trac.osgeo.org/osgeo4w/
http://trac.osgeo.org/osgeo4w/
http://en.wikipedia.org/wiki/ZIP_code

Django Documentation, Release 1.2.7

Geometry Field Types

Each of the following geometry field types correspond with the OpenGIS Simple Features specification 10.

GeometryField
class GeometryField

PointField
class PointField

LineStringField
class LineStringField

PolygonField
class PolygonField

MultiPointField
class MultiPointField

MultiLineStringField
class MultiLineStringField

MultiPolygonField
class MultiPolygonField

GeometryCollectionField
class GeometryCollectionField

Geometry Field Options

In addition to the regular Field options available for Django model fields, geometry fields have the following additional
options. All are optional.

srid
GeometryField.srid
Sets the SRID 11 (Spatial Reference System Identity) of the geometry field to the given value. Defaults to 4326 (also
known as WGS84, units are in degrees of longitude and latitude).

10 OpenGIS Consortium, Inc., Simple Feature Specification For SQL, Document 99-049 (May 5, 1999).
11 See id. at Ch. 2.3.8, p. 39 (Geometry Values and Spatial Reference Systems).

462 Chapter 6. API Reference

http://en.wikipedia.org/wiki/WGS84
http://www.opengis.org/docs/99-049.pdf

Django Documentation, Release 1.2.7

Selecting an SRID Choosing an appropriate SRID for your model is an important decision that the developer should
consider carefully. The SRID is an integer specifier that corresponds to the projection system that will be used to
interpret the data in the spatial database. 12 Projection systems give the context to the coordinates that specify a
location. Although the details of geodesy are beyond the scope of this documentation, the general problem is that the
earth is spherical and representations of the earth (e.g., paper maps, Web maps) are not.

Most people are familiar with using latitude and longitude to reference a location on the earth’s surface. However,
latitude and longitude are angles, not distances. 13 In other words, while the shortest path between two points on a flat
surface is a straight line, the shortest path between two points on a curved surface (such as the earth) is an arc of a
great circle. 14 Thus, additional computation is required to obtain distances in planar units (e.g., kilometers and miles).
Using a geographic coordinate system may introduce complications for the developer later on. For example, PostGIS
versions 1.4 and below do not have the capability to perform distance calculations between non-point geometries using
geographic coordinate systems, e.g., constructing a query to find all points within 5 miles of a county boundary stored
as WGS84. 15

Portions of the earth’s surface may projected onto a two-dimensional, or Cartesian, plane. Projected coordinate sys-
tems are especially convenient for region-specific applications, e.g., if you know that your database will only cover
geometries in North Kansas, then you may consider using projection system specific to that region. Moreover, pro-
jected coordinate systems are defined in Cartesian units (such as meters or feet), easing distance calculations.

Note: If you wish to peform arbitrary distance queries using non-point geometries in WGS84, consider upgrading
to PostGIS 1.5. For better performance, enable the GeometryField.geography keyword so that geography
database type is used instead.

Additional Resources:

• spatialreference.org: A Django-powered database of spatial reference systems.

• The State Plane Coordinate System: A Web site covering the various projection systems used in the United
States. Much of the U.S. spatial data encountered will be in one of these coordinate systems rather than in a
geographic coordinate system such as WGS84.

spatial_index
GeometryField.spatial_index
Defaults to True. Creates a spatial index for the given geometry field.

Note: This is different from the db_index field option because spatial indexes are created in a different manner
than regular database indexes. Specifically, spatial indexes are typically created using a variant of the R-Tree, while
regular database indexes typically use B-Trees.

dim New in version 1.2: Please, see the release notes

GeometryField.dim

12 Typically, SRID integer corresponds to an EPSG (European Petroleum Survey Group) identifier. However, it may also be associated with
custom projections defined in spatial database’s spatial reference systems table.

13 Harvard Graduate School of Design, An Overview of Geodesy and Geographic Referencing Systems. This is an excellent resource for an
overview of principles relating to geographic and Cartesian coordinate systems.

14 Terry A. Slocum, Robert B. McMaster, Fritz C. Kessler, & Hugh H. Howard, Thematic Cartography and Geographic Visualization (Prentice
Hall, 2nd edition), at Ch. 7.1.3.

15 This limitation does not apply to PostGIS 1.5. It should be noted that even in previous versions of PostGIS, this isn’t impossible using
GeoDjango; you could for example, take a known point in a projected coordinate system, buffer it to the appropriate radius, and then perform an
intersection operation with the buffer transformed to the geographic coordinate system.

6.2. contrib packages 463

http://en.wikipedia.org/wiki/Geodesy
http://en.wikipedia.org/wiki/Great_circle
http://www.spatialreference.org/ref/epsg/2796/
http://spatialreference.org/
http://welcome.warnercnr.colostate.edu/class_info/nr502/lg3/datums_coordinates/spcs.html
http://www.epsg.org
http://www.gsd.harvard.edu/gis/manual/projections/fundamentals/

Django Documentation, Release 1.2.7

This option may be used for customizing the coordinate dimension of the geometry field. By default, it is set to 2, for
representing two-dimensional geometries. For spatial backends that support it, it may be set to 3 for three-dimensonal
support.

Note: At this time 3D support requires that GEOS 3.1 be installed, and is limited only to the PostGIS spatial backend.

geography New in version 1.2: Please, see the release notes

GeometryField.geography

If set to True, this option will create a database column of type geography, rather than geometry. Please refer to the
geography type section below for more details.

Note: Geography support is limited only to PostGIS 1.5+, and will force the SRID to be 4326.

Geography Type In PostGIS 1.5, the geography type was introduced – it provides provides native support for spatial
features represented with geographic coordinates (e.g., WGS84 longitude/latitude). 16 Unlike the plane used by a
geometry type, the geography type uses a spherical representation of its data. Distance and measurement operations
performed on a geography column automatically employ great circle arc calculations and return linear units. In other
words, when ST_Distance is called on two geographies, a value in meters is returned (as opposed to degrees if
called on a geometry column in WGS84).

Because geography calculations involve more mathematics, only a subset of the PostGIS spatial lookups are available
for the geography type. Practically, this means that in addition to the distance lookups only the following additional
spatial lookups are available for geography columns:

• bboverlaps

• coveredby

• covers

• intersects

For more information, the PostGIS documentation contains a helpful section on determining when to use geography
data type over geometry data type.

GeoManager

class GeoManager

In order to conduct geographic queries, each geographic model requires a GeoManager model manager. This man-
ager allows for the proper SQL construction for geographic queries; thus, without it, all geographic filters will fail. It
should also be noted that GeoManager is required even if the model does not have a geographic field itself, e.g., in
the case of a ForeignKey relation to a model with a geographic field. For example, if we had an Address model
with a ForeignKey to our Zipcode model:

from django.contrib.gis.db import models
from django.contrib.localflavor.us.models import USStateField

class Address(models.Model):
num = models.IntegerField()
street = models.CharField(max_length=100)

16 Please refer to the PostGIS Geography Type documentation for more details.

464 Chapter 6. API Reference

http://postgis.refractions.net/documentation/manual-1.5/ch04.html#PostGIS_GeographyVSGeometry
http://postgis.refractions.net/documentation/manual-1.5/ch04.html#PostGIS_GeographyVSGeometry
http://postgis.refractions.net/documentation/manual-1.5/ch04.html#PostGIS_Geography

Django Documentation, Release 1.2.7

city = models.CharField(max_length=100)
state = USStateField()
zipcode = models.ForeignKey(Zipcode)
objects = models.GeoManager()

The geographic manager is needed to do spatial queries on related Zipcode objects, for example:

qs = Address.objects.filter(zipcode__poly__contains=’POINT(-104.590948 38.319914)’)

GeoDjango Database API

Spatial Backends

New in version 1.2: Please, see the release notes In Django 1.2, support for multiple databases was introduced.
In order to support multiple databases, GeoDjango has segregated its functionality into full-fledged spatial database
backends:

• django.contrib.gis.db.backends.postgis

• django.contrib.gis.db.backends.mysql

• django.contrib.gis.db.backends.oracle

• django.contrib.gis.db.backends.spatialite

Database Settings Backwards-Compatibility In Django 1.2, the way to specify databases in your settings was
changed. The old database settings format (e.g., the DATABASE_* settings) is backwards compatible with GeoD-
jango, and will automatically use the appropriate spatial backend as long as django.contrib.gis is in your
INSTALLED_APPS. For example, if you have the following in your settings:

DATABASE_ENGINE=’postgresql_psycopg2’

...

INSTALLED_APPS = (
...
’django.contrib.gis’,
...

)

Then, django.contrib.gis.db.backends.postgis is automatically used as your spatial backend.

MySQL Spatial Limitations MySQL’s spatial extensions only support bounding box operations (what MySQL
calls minimum bounding rectangles, or MBR). Specifically, MySQL does not conform to the OGC standard:

Currently, MySQL does not implement these functions [Contains, Crosses, Disjoint,
Intersects, Overlaps, Touches, Within] according to the specification. Those that are im-
plemented return the same result as the corresponding MBR-based functions.

In other words, while spatial lookups such as contains are available in GeoDjango when using MySQL, the results
returned are really equivalent to what would be returned when using bbcontains on a different spatial backend.

6.2. contrib packages 465

http://dev.mysql.com/doc/refman/5.1/en/functions-that-test-spatial-relationships-between-geometries.html

Django Documentation, Release 1.2.7

Warning: True spatial indexes (R-trees) are only supported with MyISAM tables on MySQL. a In other words,
when using MySQL spatial extensions you have to choose between fast spatial lookups and the integrity of your
data – MyISAM tables do not support transactions or foreign key constraints.

a See Creating Spatial Indexes in the MySQL 5.1 Reference Manual:

For MyISAM tables, SPATIAL INDEX creates an R-tree index. For storage engines that support nonspatial indexing of spatial
columns, the engine creates a B-tree index. A B-tree index on spatial values will be useful for exact-value lookups, but not for
range scans.

Creating and Saving Geographic Models

Here is an example of how to create a geometry object (assuming the Zipcode model):

>>> from zipcode.models import Zipcode
>>> z = Zipcode(code=77096, poly=’POLYGON((10 10, 10 20, 20 20, 20 15, 10 10))’)
>>> z.save()

GEOSGeometry objects may also be used to save geometric models:

>>> from django.contrib.gis.geos import GEOSGeometry
>>> poly = GEOSGeometry(’POLYGON((10 10, 10 20, 20 20, 20 15, 10 10))’)
>>> z = Zipcode(code=77096, poly=poly)
>>> z.save()

Moreover, if the GEOSGeometry is in a different coordinate system (has a different SRID value) than that of the
field, then it will be implicitly transformed into the SRID of the model’s field, using the spatial database’s transform
procedure:

>>> poly_3084 = GEOSGeometry(’POLYGON((10 10, 10 20, 20 20, 20 15, 10 10))’, srid=3084) # SRID 3084 is ’NAD83(HARN) / Texas Centric Lambert Conformal’
>>> z = Zipcode(code=78212, poly=poly_3084)
>>> z.save()
>>> from django.db import connection
>>> print connection.queries[-1][’sql’] # printing the last SQL statement executed (requires DEBUG=True)
INSERT INTO "geoapp_zipcode" ("code", "poly") VALUES (78212, ST_Transform(ST_GeomFromWKB(’\\001 ... ’, 3084), 4326))

Thus, geometry parameters may be passed in using the GEOSGeometry object, WKT (Well Known Text 17), HEX-
EWKB (PostGIS specific – a WKB geometry in hexadecimal 18), and GeoJSON 19 (requires GDAL). Essentially, if
the input is not a GEOSGeometry object, the geometry field will attempt to create a GEOSGeometry instance from
the input.

For more information creating GEOSGeometry objects, refer to the GEOS tutorial.

Spatial Lookups

GeoDjango’s lookup types may be used with any manager method like filter(), exclude(), etc. However, the
lookup types unique to GeoDjango are only available on geometry fields. Filters on ‘normal’ fields (e.g. CharField)
may be chained with those on geographic fields. Thus, geographic queries take the following general form (assuming
the Zipcode model used in the GeoDjango Model API):

17 See Open Geospatial Consortium, Inc., OpenGIS Simple Feature Specification For SQL, Document 99-049 (May 5, 1999), at Ch. 3.2.5, p.
3-11 (SQL Textual Representation of Geometry).

18 See PostGIS EWKB, EWKT and Canonical Forms, PostGIS documentation at Ch. 4.1.2.
19 See Howard Butler, Martin Daly, Allan Doyle, Tim Schaub, & Christopher Schmidt, The GeoJSON Format Specification, Revision 1.0 (June

16, 2008).

466 Chapter 6. API Reference

http://dev.mysql.com/doc/refman/5.1/en/creating-spatial-indexes.html
http://www.opengis.org/docs/99-049.pdf
http://postgis.refractions.net/documentation/manual-1.5/ch04.html#EWKB_EWKT
http://geojson.org/geojson-spec.html

Django Documentation, Release 1.2.7

>>> qs = Zipcode.objects.filter(<field>__<lookup_type>=<parameter>)
>>> qs = Zipcode.objects.exclude(...)

For example:

>>> qs = Zipcode.objects.filter(poly__contains=pnt)

In this case, poly is the geographic field, contains is the spatial lookup type, and pnt is the parameter (which
may be a GEOSGeometry object or a string of GeoJSON , WKT, or HEXEWKB).

A complete reference can be found in the spatial lookup reference.

Note: GeoDjango constructs spatial SQL with the GeoQuerySet, a subclass of QuerySet. The GeoManager
instance attached to your model is what enables use of GeoQuerySet.

Distance Queries

Introduction Distance calculations with spatial data is tricky because, unfortunately, the Earth is not flat. Some dis-
tance queries with fields in a geographic coordinate system may have to be expressed differently because of limitations
in PostGIS. Please see the Selecting an SRID section in the GeoDjango Model API documentation for more details.

Distance Lookups Availability: PostGIS, Oracle, SpatiaLite

The following distance lookups are available:

• distance_lt

• distance_lte

• distance_gt

• distance_gte

• dwithin

Note: For measuring, rather than querying on distances, use the GeoQuerySet.distance() method.

Distance lookups take a tuple parameter comprising:

1. A geometry to base calculations from; and

2. A number or Distance object containing the distance.

If a Distance object is used, it may be expressed in any units (the SQL generated will use units converted to those
of the field); otherwise, numeric parameters are assumed to be in the units of the field.

Note: For users of PostGIS 1.4 and below, the routine ST_Distance_Sphere is used by default for calculating
distances on geographic coordinate systems (e.g., WGS84) – which may only be called with point geometries 20.
Thus, geographic distance lookups on traditional PostGIS geometry columns are only allowed on PointField
model fields using a point for the geometry parameter.

Note: In PostGIS 1.5, ST_Distance_Sphere does not limit the geometry types geographic distance queries are
performed with. 21 However, these queries may take a long time, as great-circle distances must be calculated on the

20 See PostGIS 1.4 documentation on ST_distance_sphere.
21 See PostGIS 1.5 documentation on ST_distance_sphere.

6.2. contrib packages 467

http://postgis.refractions.net/documentation/manual-1.4/ST_Distance_Sphere.html
http://postgis.refractions.net/documentation/manual-1.5/ST_Distance_Sphere.html

Django Documentation, Release 1.2.7

fly for every row in the query. This is because the spatial index on traditional geometry fields cannot be used.

For much better performance on WGS84 distance queries, consider using geography columns in your database instead
because they are able to use their spatial index in distance queries. You can tell GeoDjango to use a geography column
by setting geography=True in your field definition.

For example, let’s say we have a SouthTexasCity model (from the GeoDjango distance tests) on a projected
coordinate system valid for cities in southern Texas:

from django.contrib.gis.db import models

class SouthTexasCity(models.Model):
name = models.CharField(max_length=30)
A projected coordinate system (only valid for South Texas!)
is used, units are in meters.
point = models.PointField(srid=32140)
objects = models.GeoManager()

Then distance queries may be performed as follows:

>>> from django.contrib.gis.geos import *
>>> from django.contrib.gis.measure import D # ‘‘D‘‘ is a shortcut for ‘‘Distance‘‘
>>> from geoapp import SouthTexasCity
Distances will be calculated from this point, which does not have to be projected.
>>> pnt = fromstr(’POINT(-96.876369 29.905320)’, srid=4326)
If numeric parameter, units of field (meters in this case) are assumed.
>>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, 7000))
Find all Cities within 7 km, > 20 miles away, and > 100 chains away (an obscure unit)
>>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, D(km=7)))
>>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(mi=20)))
>>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(chain=100)))

Compatibility Tables

Spatial Lookups The following table provides a summary of what spatial lookups are available for each spatial
database backend.

Lookup Type PostGIS Oracle MySQL 22 SpatiaLite
bbcontains X X X
bboverlaps X X X
contained X X X
contains X X X X
contains_properly X
coveredby X X
covers X X
crosses X X
disjoint X X X X
distance_gt X X X
distance_gte X X X
distance_lt X X X
distance_lte X X X
dwithin X X
equals X X X X
exact X X X X

Continued on next page

468 Chapter 6. API Reference

http://code.djangoproject.com/browser/django/trunk/django/contrib/gis/tests/distapp/models.py

Django Documentation, Release 1.2.7

Table 6.1 – continued from previous page
Lookup Type PostGIS Oracle MySQL 23 SpatiaLite

intersects X X X X
overlaps X X X X
relate X X X
same_as X X X X
touches X X X X
within X X X X
left X
right X
overlaps_left X
overlaps_right X
overlaps_above X
overlaps_below X
strictly_above X
strictly_below X

GeoQuerySet Methods The following table provides a summary of what GeoQuerySet methods are available
on each spatial backend. Please note that MySQL does not support any of these methods, and is thus excluded from
the table.

Method PostGIS Oracle SpatiaLite
GeoQuerySet.area() X X X
GeoQuerySet.centroid() X X X
GeoQuerySet.collect() X
GeoQuerySet.difference() X X X
GeoQuerySet.distance() X X X
GeoQuerySet.envelope() X X
GeoQuerySet.extent() X X
GeoQuerySet.extent3d() X
GeoQuerySet.force_rhr() X
GeoQuerySet.geohash() X
GeoQuerySet.geojson() X
GeoQuerySet.gml() X X
GeoQuerySet.intersection() X X X
GeoQuerySet.kml() X
GeoQuerySet.length() X X X
GeoQuerySet.make_line() X
GeoQuerySet.mem_size() X
GeoQuerySet.num_geom() X X X
GeoQuerySet.num_points() X X X
GeoQuerySet.perimeter() X X

GeoQuerySet.point_on_surface() X X X
GeoQuerySet.reverse_geom() X X
GeoQuerySet.scale() X X
GeoQuerySet.snap_to_grid() X
GeoQuerySet.svg() X X
GeoQuerySet.sym_difference() X X X
GeoQuerySet.transform() X X X
GeoQuerySet.translate() X X
GeoQuerySet.union() X X X

Continued on next page

6.2. contrib packages 469

Django Documentation, Release 1.2.7

Table 6.2 – continued from previous page
Method PostGIS Oracle SpatiaLite

GeoQuerySet.unionagg() X X X

GeoQuerySet API Reference

class GeoQuerySet([model=None])

Spatial Lookups

Just like when using the QuerySet API, interaction with GeoQuerySet by chaining filters. Instead of the regular
Django Field lookups, the spatial lookups in this section are available for GeometryField.

For an introduction, see the spatial lookups introduction. For an overview of what lookups are compatible with a
particular spatial backend, refer to the spatial lookup compatibility table.

bbcontains Availability: PostGIS, MySQL, SpatiaLite

Tests if the geometry field’s bounding box completely contains the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__bbcontains=geom)

Backend SQL Equivalent
PostGIS poly ~ geom
MySQL MBRContains(poly, geom)
SpatiaLite MbrContains(poly, geom)

bboverlaps Availability: PostGIS, MySQL, SpatiaLite

Tests if the geometry field’s bounding box overlaps the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__bboverlaps=geom)

Backend SQL Equivalent
PostGIS poly && geom
MySQL MBROverlaps(poly, geom)
SpatiaLite MbrOverlaps(poly, geom)

contained Availability: PostGIS, MySQL, SpatiaLite

Tests if the geometry field’s bounding box is completely contained by the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__contained=geom)

Backend SQL Equivalent
PostGIS poly @ geom
MySQL MBRWithin(poly, geom)
SpatiaLite MbrWithin(poly, geom)

470 Chapter 6. API Reference

Django Documentation, Release 1.2.7

contains Availability: PostGIS, Oracle, MySQL, SpatiaLite

Tests if the geometry field spatially contains the lookup geometry.

Example:

Zipcode.objects.filter(poly__contains=geom)

Backend SQL Equivalent
PostGIS ST_Contains(poly, geom)
Oracle SDO_CONTAINS(poly, geom)
MySQL MBRContains(poly, geom)
SpatiaLite Contains(poly, geom)

contains_properly New in version 1.2: Please, see the release notes Availability: PostGIS

Returns true if the lookup geometry intersects the interior of the geometry field, but not the boundary (or exterior). 24

Note: Requires PostGIS 1.4 and above.

Example:

Zipcode.objects.filter(poly__contains_properly=geom)

Backend SQL Equivalent
PostGIS ST_ContainsProperly(poly, geom)

coveredby Availability: PostGIS, Oracle

Tests if no point in the geometry field is outside the lookup geometry. 25

Example:

Zipcode.objects.filter(poly__coveredby=geom)

Backend SQL Equivalent
PostGIS ST_CoveredBy(poly, geom)
Oracle SDO_COVEREDBY(poly, geom)

covers Availability: PostGIS, Oracle

Tests if no point in the lookup geometry is outside the geometry field. 3

Example:

Zipcode.objects.filter(poly__covers=geom)

Backend SQL Equivalent
PostGIS ST_Covers(poly, geom)
Oracle SDO_COVERS(poly, geom)

24 Refer to the PostGIS ST_ContainsProperly documentation for more details.
25 For an explanation of this routine, read Quirks of the “Contains” Spatial Predicate by Martin Davis (a PostGIS developer).

6.2. contrib packages 471

http://postgis.refractions.net/documentation/manual-1.4/ST_ContainsProperly.html
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html

Django Documentation, Release 1.2.7

crosses Availability: PostGIS, SpatiaLite

Tests if the geometry field spatially crosses the lookup geometry.

Example:

Zipcode.objects.filter(poly__crosses=geom)

Backend SQL Equivalent
PostGIS ST_Crosses(poly, geom)
SpatiaLite Crosses(poly, geom)

disjoint Availability: PostGIS, Oracle, MySQL, SpatiaLite

Tests if the geometry field is spatially disjoint from the lookup geometry.

Example:

Zipcode.objects.filter(poly__disjoint=geom)

Backend SQL Equivalent
PostGIS ST_Disjoint(poly, geom)
Oracle SDO_GEOM.RELATE(poly, ’DISJOINT’, geom, 0.05)
MySQL MBRDisjoint(poly, geom)
SpatiaLite Disjoint(poly, geom)

equals Availability: PostGIS, Oracle, MySQL, SpatiaLite

exact, same_as Availability: PostGIS, Oracle, MySQL, SpatiaLite

intersects Availability: PostGIS, Oracle, MySQL, SpatiaLite

Tests if the geometry field spatially intersects the lookup geometry.

Example:

Zipcode.objects.filter(poly__intersects=geom)

Backend SQL Equivalent
PostGIS ST_Intersects(poly, geom)
Oracle SDO_OVERLAPBDYINTERSECT(poly, geom)
MySQL MBRIntersects(poly, geom)
SpatiaLite Intersects(poly, geom)

overlaps Availability: PostGIS, Oracle, MySQL, SpatiaLite

relate Availability: PostGIS, Oracle, SpatiaLite

Tests if the geometry field is spatially related to the lookup geometry by the values given in the given pattern. This
lookup requires a tuple parameter, (geom, pattern); the form of pattern will depend on the spatial backend:

472 Chapter 6. API Reference

Django Documentation, Release 1.2.7

PostGIS & SpatiaLite On these spatial backends the intersection pattern is a string comprising nine characters,
which define intersections between the interior, boundary, and exterior of the geometry field and the lookup geometry.
The intersection pattern matrix may only use the following characters: 1, 2, T, F, or *. This lookup type allows users
to “fine tune” a specific geometric relationship consistent with the DE-9IM model. 26

Example:

A tuple lookup parameter is used to specify the geometry and
the intersection pattern (the pattern here is for ’contains’).
Zipcode.objects.filter(poly__relate(geom, ’T*T***FF*’))

PostGIS SQL equivalent:

SELECT ... WHERE ST_Relate(poly, geom, ’T*T***FF*’)

SpatiaLite SQL equivalent:

SELECT ... WHERE Relate(poly, geom, ’T*T***FF*’)

Oracle Here the relation pattern is compreised at least one of the nine relation strings: TOUCH,
OVERLAPBDYDISJOINT, OVERLAPBDYINTERSECT, EQUAL, INSIDE, COVEREDBY, CONTAINS, COVERS,
ON, and ANYINTERACT. Multiple strings may be combined with the logical Boolean operator OR, for example,
’inside+touch’. 27 The relation strings are case-insensitive.

Example:

Zipcode.objects.filter(poly__relate(geom, ’anyinteract’))

Oracle SQL equivalent:

SELECT ... WHERE SDO_RELATE(poly, geom, ’anyinteract’)

touches Availability: PostGIS, Oracle, MySQL, SpatiaLite

Tests if the geometry field spatially touches the lookup geometry.

Example:

Zipcode.objects.filter(poly__touches=geom)

Backend SQL Equivalent
PostGIS ST_Touches(poly, geom)
MySQL MBRTouches(poly, geom)
Oracle SDO_TOUCH(poly, geom)
SpatiaLite Touches(poly, geom)

within Availability: PostGIS, Oracle, MySQL, SpatiaLite

Tests if the geometry field is spatially within the lookup geometry.

Example:

Zipcode.objects.filter(poly__within=geom)

26 See OpenGIS Simple Feature Specification For SQL, at Ch. 2.1.13.2, p. 2-13 (The Dimensionally Extended Nine-Intersection Model).
27 See SDO_RELATE documentation, from Ch. 11 of the Oracle Spatial User’s Guide and Manual.

6.2. contrib packages 473

http://www.opengis.org/docs/99-049.pdf
http://download.oracle.com/docs/cd/B19306_01/appdev.102/b14255/sdo_operat.htm#sthref845

Django Documentation, Release 1.2.7

Backend SQL Equivalent
PostGIS ST_Within(poly, geom)
MySQL MBRWithin(poly, geom)
Oracle SDO_INSIDE(poly, geom)
SpatiaLite Within(poly, geom)

left Availability: PostGIS

Tests if the geometry field’s bounding box is strictly to the left of the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__left=geom)

PostGIS equivalent:

SELECT ... WHERE poly << geom

right Availability: PostGIS

Tests if the geometry field’s bounding box is strictly to the right of the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__right=geom)

PostGIS equivalent:

SELECT ... WHERE poly >> geom

overlaps_left Availability: PostGIS

Tests if the geometry field’s bounding box overlaps or is to the left of the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__overlaps_left=geom)

PostGIS equivalent:

SELECT ... WHERE poly &< geom

overlaps_right Availability: PostGIS

Tests if the geometry field’s bounding box overlaps or is to the right of the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__overlaps_right=geom)

PostGIS equivalent:

SELECT ... WHERE poly &> geom

474 Chapter 6. API Reference

Django Documentation, Release 1.2.7

overlaps_above Availability: PostGIS

Tests if the geometry field’s bounding box overlaps or is above the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__overlaps_above=geom)

PostGIS equivalent:

SELECT ... WHERE poly |&> geom

overlaps_below Availability: PostGIS

Tests if the geometry field’s bounding box overlaps or is below the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__overlaps_below=geom)

PostGIS equivalent:

SELECT ... WHERE poly &<| geom

strictly_above Availability: PostGIS

Tests if the geometry field’s bounding box is strictly above the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__strictly_above=geom)

PostGIS equivalent:

SELECT ... WHERE poly |>> geom

strictly_below Availability: PostGIS

Tests if the geometry field’s bounding box is strictly above the lookup geometry’s bounding box.

Example:

Zipcode.objects.filter(poly__strictly_above=geom)

PostGIS equivalent:

SELECT ... WHERE poly |>> geom

Distance Lookups

Availability: PostGIS, Oracle, SpatiaLite

For an overview on performing distance queries, please refer to the distance queries introduction.

Distance lookups take the following form:

<field>__<distance lookup>=(<geometry>, <distance value>[, ’spheroid’])

6.2. contrib packages 475

Django Documentation, Release 1.2.7

The value passed into a distance lookup is a tuple; the first two values are mandatory, and are the geometry to cal-
culate distances to, and a distance value (either a number in units of the field or a Distance object). On ev-
ery distance lookup but dwithin, an optional third element, ’spheroid’, may be included to tell GeoDjango
to use the more accurate spheroid distance calculation functions on fields with a geodetic coordinate system (e.g.,
ST_Distance_Spheroid would be used instead of ST_Distance_Sphere).

distance_gt Returns models where the distance to the geometry field from the lookup geometry is greater than the
given distance value.

Example:

Zipcode.objects.filter(poly__distance_gt=(geom, D(m=5)))

Backend SQL Equivalent
PostGIS ST_Distance(poly, geom) > 5
Oracle SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) > 5
SpatiaLite Distance(poly, geom) > 5

distance_gte Returns models where the distance to the geometry field from the lookup geometry is greater than or
equal to the given distance value.

Example:

Zipcode.objects.filter(poly__distance_gte=(geom, D(m=5)))

Backend SQL Equivalent
PostGIS ST_Distance(poly, geom) >= 5
Oracle SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) >= 5
SpatiaLite Distance(poly, geom) >= 5

distance_lt Returns models where the distance to the geometry field from the lookup geometry is less than the given
distance value.

Example:

Zipcode.objects.filter(poly__distance_lt=(geom, D(m=5)))

Backend SQL Equivalent
PostGIS ST_Distance(poly, geom) < 5
Oracle SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) < 5
SpatiaLite Distance(poly, geom) < 5

distance_lte Returns models where the distance to the geometry field from the lookup geometry is less than or equal
to the given distance value.

Example:

Zipcode.objects.filter(poly__distance_lte=(geom, D(m=5)))

Backend SQL Equivalent
PostGIS ST_Distance(poly, geom) <= 5
Oracle SDO_GEOM.SDO_DISTANCE(poly, geom, 0.05) <= 5
SpatiaLite Distance(poly, geom) <= 5

476 Chapter 6. API Reference

Django Documentation, Release 1.2.7

dwithin Returns models where the distance to the geometry field from the lookup geometry are within the given
distance from one another.

Example:

Zipcode.objects.filter(poly__dwithin=(geom, D(m=5)))

Backend SQL Equivalent
PostGIS ST_DWithin(poly, geom, 5)
Oracle SDO_WITHIN_DISTANCE(poly, geom, 5)

Note: This lookup is not available on SpatiaLite.

GeoQuerySet Methods

GeoQuerySet methods specify that a spatial operation be performed on each patial operation on each geographic
field in the queryset and store its output in a new attribute on the model (which is generally the name of the
GeoQuerySet method).

There are also aggregate GeoQuerySet methods which return a single value instead of a queryset. This section will
describe the API and availability of every GeoQuerySet method available in GeoDjango.

Note: What methods are available depend on your spatial backend. See the compatibility table for more details.

With a few exceptions, the following keyword arguments may be used with all GeoQuerySet methods:

Keyword
Argument

Description

field_name By default, GeoQuerySet methods use the first geographic field encountered in the model. This
keyword should be used to specify another geographic field (e.g., field_name=’point2’)
when there are multiple geographic fields in a model.
On PostGIS, the field_name keyword may also be used on geometry fields in models that are
related via a ForeignKey relation (e.g., field_name=’related__point’).

model_att By default, GeoQuerySet methods typically attach their output in an attribute with the same
name as the GeoQuerySet method. Setting this keyword with the desired attribute name will
override this default behavior. For example, qs =
Zipcode.objects.centroid(model_att=’c’) will attach the centroid of the
Zipcode geometry field in a c attribute on every model rather than in a centroid attribute.
This keyword is required if a method name clashes with an existing GeoQuerySet method – if
you wanted to use the area() method on model with a PolygonField named area, for
example.

Measurement Availability: PostGIS, Oracle, SpatiaLite

area
GeoQuerySet.area(**kwargs)
Returns the area of the geographic field in an area attribute on each element of this GeoQuerySet.

distance
GeoQuerySet.distance(geom, **kwargs)

6.2. contrib packages 477

Django Documentation, Release 1.2.7

This method takes a geometry as a parameter, and attaches a distance attribute to every model in the returned
queryset that contains the distance (as a Distance object) to the given geometry.

In the following example (taken from the GeoDjango distance tests), the distance from the Tasmanian city of Hobart
to every other PointField in the AustraliaCity queryset is calculated:

>>> pnt = AustraliaCity.objects.get(name=’Hobart’).point
>>> for city in AustraliaCity.objects.distance(pnt): print city.name, city.distance
Wollongong 990071.220408 m
Shellharbour 972804.613941 m
Thirroul 1002334.36351 m
Mittagong 975691.632637 m
Batemans Bay 834342.185561 m
Canberra 598140.268959 m
Melbourne 575337.765042 m
Sydney 1056978.87363 m
Hobart 0.0 m
Adelaide 1162031.83522 m
Hillsdale 1049200.46122 m

Note: Because the distance attribute is a Distance object, you can easily express the value in the units of your
choice. For example, city.distance.mi is the distance value in miles and city.distance.km is the distance
value in kilometers. See the Measurement Objects for usage details and the list of Supported units.

length
GeoQuerySet.length(**kwargs)
Returns the length of the geometry field in a length attribute (a Distance object) on each model in the queryset.

perimeter
GeoQuerySet.perimeter(**kwargs)
Returns the perimeter of the geometry field in a perimeter attribute (a Distance object) on each model in the
queryset.

Geometry Relationships The following methods take no arguments, and attach geometry objects each element of
the GeoQuerySet that is the result of relationship function evaluated on the geometry field.

centroid
GeoQuerySet.centroid(**kwargs)
Availability: PostGIS, Oracle, SpatiaLite

Returns the centroid value for the geographic field in a centroid attribute on each element of the
GeoQuerySet.

envelope
GeoQuerySet.envelope(**kwargs)
Availability: PostGIS, SpatiaLite

Returns a geometry representing the bounding box of the geometry field in an envelope attribute on each element
of the GeoQuerySet.

478 Chapter 6. API Reference

http://code.djangoproject.com/browser/django/trunk/django/contrib/gis/tests/distapp/models.py
http://en.wikipedia.org/wiki/Tasmania

Django Documentation, Release 1.2.7

point_on_surface
GeoQuerySet.point_on_surface(**kwargs)
Availability: PostGIS, Oracle, SpatiaLite

Returns a Point geometry guaranteed to lie on the surface of the geometry field in a point_on_surface attribute
on each element of the queryset; otherwise sets with None.

Geometry Editors

force_rhr
GeoQuerySet.force_rhr(**kwargs)
New in version 1.2: Please, see the release notes Availability: PostGIS

Returns a modified version of the polygon/multipolygon in which all of the vertices follow the Right-Hand-Rule, and
attaches as a force_rhr attribute on each element of the queryset.

reverse_geom
GeoQuerySet.reverse_geom(**kwargs)
New in version 1.2: Please, see the release notes Availability: PostGIS, Oracle

Reverse the coordinate order of the geometry field, and attaches as a reverse attribute on each element of the
queryset.

scale
GeoQuerySet.scale(x, y, z=0.0, **kwargs)
Availability: PostGIS, SpatiaLite

snap_to_grid
GeoQuerySet.snap_to_grid(*args, **kwargs)
New in version 1.1: Please, see the release notes Snap all points of the input geometry to the grid. How the geometry
is snapped to the grid depends on how many numeric (either float, integer, or long) arguments are given.

Number of Arguments Description
1 A single size to snap bot the X and Y grids to.
2 X and Y sizes to snap the grid to.
4 X, Y sizes and the corresponding X, Y origins.

transform
GeoQuerySet.transform(srid=4326, **kwargs)
Availability: PostGIS, Oracle, SpatiaLite

The transform method transforms the geometry field of a model to the spatial reference system specified by the
srid parameter. If no srid is given, then 4326 (WGS84) is used by default.

Note: Unlike other GeoQuerySet methods, transform stores its output “in-place”. In other words, no new
attribute for the transformed geometry is placed on the models.

Note: What spatial reference system an integer SRID corresponds to may depend on the spatial database used. In
other words, the SRID numbers used for Oracle are not necessarily the same as those used by PostGIS.

Example:

6.2. contrib packages 479

Django Documentation, Release 1.2.7

>>> qs = Zipcode.objects.all().transform() # Transforms to WGS84
>>> qs = Zipcode.objects.all().transform(32140) # Transforming to "NAD83 / Texas South Central"
>>> print qs[0].poly.srid
32140
>>> print qs[0].poly
POLYGON ((234055.1698884720099159 4937796.9232223574072123 ...

translate
GeoQuerySet.translate(x, y, z=0.0, **kwargs)
Availability: PostGIS, SpatiaLite

Translates the geometry field to a new location using the given numeric parameters as offsets.

Geometry Operations Availability: PostGIS, Oracle, SpatiaLite

The following methods all take a geometry as a parameter and attach a geometry to each element of the
GeoQuerySet that is the result of the operation.

difference
GeoQuerySet.difference(geom)
Returns the spatial difference of the geographic field with the given geometry in a difference attribute on each
element of the GeoQuerySet.

intersection
GeoQuerySet.intersection(geom)
Returns the spatial intersection of the geographic field with the given geometry in an intersection attribute on
each element of the GeoQuerySet.

sym_difference
GeoQuerySet.sym_difference(geom)
Returns the symmetric difference of the geographic field with the given geometry in a sym_difference attribute
on each element of the GeoQuerySet.

union
GeoQuerySet.union(geom)
Returns the union of the geographic field with the given geometry in an union attribute on each element of the
GeoQuerySet.

Geometry Output The following GeoQuerySetmethods will return an attribute that has the value of the geometry
field in each model converted to the requested output format.

geohash
GeoQuerySet.geohash(preceision=20, **kwargs)
New in version 1.2: Please, see the release notes Attaches a geohash attribute to every model the queryset containing
the GeoHash representation of the geometry.

480 Chapter 6. API Reference

http://geohash.org/

Django Documentation, Release 1.2.7

geojson
GeoQuerySet.geojson(**kwargs)
New in version 1.1: Please, see the release notes Availability: PostGIS

Attaches a geojson attribute to every model in the queryset that contains the GeoJSON representation of the geom-
etry.

Keyword
Argument

Description

precision It may be used to specify the number of significant digits for the coordinates in the GeoJSON
representation – the default value is 8.

crs Set this to True if you want the coordinate reference system to be included in the returned
GeoJSON.

bbox Set this to True if you want the bounding box to be included in the returned GeoJSON.

gml
GeoQuerySet.gml(**kwargs)
Availability: PostGIS, Oracle

Attaches a gml attribute to every model in the queryset that contains the Geographic Markup Language (GML)
representation of the geometry.

Example:

>>> qs = Zipcode.objects.all().gml()
>>> print qs[0].gml
<gml:Polygon srsName="EPSG:4326"><gml:OuterBoundaryIs>-147.78711,70.245363 ... -147.78711,70.245363</gml:OuterBoundaryIs></gml:Polygon>

Keyword
Argument

Description

precision This keyword is for PostGIS only. It may be used to specify the number of significant digits for
the coordinates in the GML representation – the default value is 8.

version This keyword is for PostGIS only. It may be used to specify the GML version used, and may only
be values of 2 or 3. The default value is 2.

kml
GeoQuerySet.kml(**kwargs)
Availability: PostGIS

Attaches a kml attribute to every model in the queryset that contains the Keyhole Markup Language (KML) rep-
resentation of the geometry fields. It should be noted that the contents of the KML are transformed to WGS84 if
necessary.

Example:

>>> qs = Zipcode.objects.all().kml()
>>> print qs[0].kml
<Polygon><outerBoundaryIs><LinearRing><coordinates>-103.04135,36.217596,0 ... -103.04135,36.217596,0</coordinates></LinearRing></outerBoundaryIs></Polygon>

Keyword
Argument

Description

precision This keyword may be used to specify the number of significant digits for the coordinates in the
KML representation – the default value is 8.

svg
GeoQuerySet.svg(**kwargs)

6.2. contrib packages 481

http://geojson.org/
http://en.wikipedia.org/wiki/Geography_Markup_Language
http://code.google.com/apis/kml/documentation/

Django Documentation, Release 1.2.7

Availability: PostGIS, SpatiaLite

Attaches a svg attribute to every model in the queryset that contains the Scalable Vector Graphics (SVG) path data of
the geometry fields.

Keyword
Argument

Description

relative If set to True, the path data will be implemented in terms of relative moves. Defaults to
False, meaning that absolute moves are used instead.

precision This keyword may be used to specify the number of significant digits for the coordinates in the
SVG representation – the default value is 8.

Miscellaneous

mem_size
GeoQuerySet.mem_size(**kwargs)
Availability: PostGIS

Returns the memory size (number of bytes) that the geometry field takes in a mem_size attribute on each element of
the GeoQuerySet.

num_geom
GeoQuerySet.num_geom(**kwargs)
Availability: PostGIS, Oracle, SpatiaLite

Returns the number of geometries in a num_geom attribute on each element of the GeoQuerySet if the geometry
field is a collection (e.g., a GEOMETRYCOLLECTION or MULTI* field); otherwise sets with None.

num_points
GeoQuerySet.num_points(**kwargs)
Availability: PostGIS, Oracle, SpatiaLite

Returns the number of points in the first linestring in the geometry field in a num_points attribute on each element
of the GeoQuerySet; otherwise sets with None.

Spatial Aggregates

New in version 1.1: Please, see the release notes

Aggregate Methods

collect
GeoQuerySet.collect(**kwargs)
New in version 1.1: Please, see the release notes Availability: PostGIS

Returns a GEOMETRYCOLLECTION or a MULTI geometry object from the geometry column. This is analagous
to a simplified version of the GeoQuerySet.unionagg() method, except it can be several orders of magnitude
faster than peforming a union because it simply rolls up geometries into a collection or multi object, not caring about
dissolving boundaries.

482 Chapter 6. API Reference

http://www.w3.org/Graphics/SVG/

Django Documentation, Release 1.2.7

extent
GeoQuerySet.extent(**kwargs)
Availability: PostGIS, Oracle

Returns the extent of the GeoQuerySet as a four-tuple, comprising the lower left coordinate and the upper right
coordinate.

Example:

>>> qs = City.objects.filter(name__in=(’Houston’, ’Dallas’))
>>> print qs.extent()
(-96.8016128540039, 29.7633724212646, -95.3631439208984, 32.782058715820)

extent3d
GeoQuerySet.extent3d(**kwargs)
New in version 1.2: Please, see the release notes Availability: PostGIS

Returns the 3D extent of the GeoQuerySet as a six-tuple, comprising the lower left coordinate and upper right
coordinate.

Example:

>>> qs = City.objects.filter(name__in=(’Houston’, ’Dallas’))
>>> print qs.extent3d()
(-96.8016128540039, 29.7633724212646, 0, -95.3631439208984, 32.782058715820, 0)

make_line
GeoQuerySet.make_line(**kwargs)
Availability: PostGIS

Returns a LineString constructed from the point field geometries in the GeoQuerySet. Currently, ordering the
queryset has no effect.

Example:

>>> print City.objects.filter(name__in=(’Houston’, ’Dallas’)).make_line()
LINESTRING (-95.3631510000000020 29.7633739999999989, -96.8016109999999941 32.7820570000000018)

unionagg
GeoQuerySet.unionagg(**kwargs)
Availability: PostGIS, Oracle, SpatiaLite

This method returns a GEOSGeometry object comprising the union of every geometry in the queryset. Please note
that use of unionagg is processor intensive and may take a significant amount of time on large querysets.

Note: If the computation time for using this method is too expensive, consider using GeoQuerySet.collect()
instead.

Example:

>>> u = Zipcode.objects.unionagg() # This may take a long time.
>>> u = Zipcode.objects.filter(poly__within=bbox).unionagg() # A more sensible approach.

Keyword
Argument

Description

tolerance This keyword is for Oracle only. It is for the tolerance value used by the SDOAGGRTYPE
procedure; the Oracle documentation has more details.

6.2. contrib packages 483

http://download.oracle.com/docs/html/B14255_01/sdo_intro.htm#sthref150

Django Documentation, Release 1.2.7

Aggregate Functions Example:

>>> from django.contrib.gis.db.models import Extent, Union
>>> WorldBorders.objects.aggregate(Extent(’mpoly’), Union(’mpoly’))

Collect
class Collect(geo_field)
Returns the same as the GeoQuerySet.collect() aggregate method.

Extent
class Extent(geo_field)
Returns the same as the GeoQuerySet.extent() aggregate method.

Extent3D
class Extent3D(geo_field)
New in version 1.2: Please, see the release notes Returns the same as the GeoQuerySet.extent3d() aggregate
method.

MakeLine
class MakeLine(geo_field)
Returns the same as the GeoQuerySet.make_line() aggregate method.

Union
class Union(geo_field)
Returns the same as the GeoQuerySet.union() aggregate method.

Measurement Objects

The django.contrib.gis.measure module contains objects that allow for convenient representation of dis-
tance and area units of measure. 28 Specifically, it implements two objects, Distance and Area – both of which
may be accessed via the D and A convenience aliases, respectively.

Example

Distance objects may be instantiated using a keyword argument indicating the context of the units. In the example
below, two different distance objects are instantiated in units of kilometers (km) and miles (mi):

>>> from django.contrib.gis.measure import Distance, D
>>> d1 = Distance(km=5)
>>> print d1
5.0 km
>>> d2 = D(mi=5) # ‘D‘ is an alias for ‘Distance‘
>>> print d2
5.0 mi

Conversions are easy, just access the preferred unit attribute to get a converted distance quantity:

28 Robert Coup is the initial author of the measure objects, and was inspired by Brian Beck’s work in geopy and Geoff Biggs’ PhD work on
dimensioned units for robotics.

484 Chapter 6. API Reference

http://koordinates.com/
http://code.google.com/p/geopy/

Django Documentation, Release 1.2.7

>>> print d1.mi # Converting 5 kilometers to miles
3.10685596119
>>> print d2.km # Converting 5 miles to kilometers
8.04672

Moreover, arithmetic operations may be performed between the distance objects:

>>> print d1 + d2 # Adding 5 miles to 5 kilometers
13.04672 km
>>> print d2 - d1 # Subtracting 5 kilometers from 5 miles
1.89314403881 mi

Two Distance objects multiplied together will yield an Area object, which uses squared units of measure:

>>> a = d1 * d2 # Returns an Area object.
>>> print a
40.2336 sq_km

To determine what the attribute abbreviation of a unit is, the unit_attname class method may be used:

>>> print Distance.unit_attname(’US Survey Foot’)
survey_ft
>>> print Distance.unit_attname(’centimeter’)
cm

Supported units

Unit Attribute Full name or alias(es)
km Kilometre, Kilometer
mi Mile
m Meter, Metre
yd Yard
ft Foot, Foot (International)
survey_ft U.S. Foot, US survey foot
inch Inches
cm Centimeter
mm Millimetre, Millimeter
um Micrometer, Micrometre
british_ft British foot (Sears 1922)
british_yd British yard (Sears 1922)
british_chain_sears British chain (Sears 1922)
indian_yd Indian yard, Yard (Indian)
sears_yd Yard (Sears)
clarke_ft Clarke’s Foot
chain Chain
chain_benoit Chain (Benoit)
chain_sears Chain (Sears)
british_chain_benoit British chain (Benoit 1895 B)

british_chain_sears_truncated British chain (Sears 1922 truncated)
gold_coast_ft Gold Coast foot
link Link
link_benoit Link (Benoit)
link_sears Link (Sears)

Continued on next page

6.2. contrib packages 485

Django Documentation, Release 1.2.7

Table 6.3 – continued from previous page
Unit Attribute Full name or alias(es)

clarke_link Clarke’s link
fathom Fathom
rod Rod
nm Nautical Mile
nm_uk Nautical Mile (UK)
german_m German legal metre

Note: Area attributes are the same as Distance attributes, except they are prefixed with sq_ (area units are square
in nature). For example, Area(sq_m=2) creates an Area object representing two square meters.

Measurement API

Distance
class Distance(**kwargs)

To initialize a distance object, pass in a keyword corresponding to the desired unit attribute name set with desired
value. For example, the following creates a distance object representing 5 miles:

>>> dist = Distance(mi=5)

__getattr__(unit_att)

Returns the distance value in units corresponding to the given unit attribute. For example:

>>> print dist.km
8.04672

classmethod unit_attname(unit_name)

Returns the distance unit attribute name for the given full unit name. For example:

>>> Distance.unit_attname(’Mile’)
’mi’

class D
Alias for Distance class.

Area
class Area(**kwargs)

To initialize a distance object, pass in a keyword corresponding to the desired unit attribute name set with desired
value. For example, the following creates a distance object representing 5 square miles:

>>> a = Area(sq_mi=5)

__getattr__(unit_att)

Returns the area value in units corresponding to the given unit attribute. For example:

>>> print a.sq_km
12.949940551680001

classmethod unit_attname(unit_name)

Returns the area unit attribute name for the given full unit name. For example:

486 Chapter 6. API Reference

Django Documentation, Release 1.2.7

>>> Area.unit_attname(’Kilometer’)
’sq_km’

class A
Alias for Area class.

GEOS API

Background

What is GEOS? GEOS stands for Geometry Engine - Open Source, and is a C++ library, ported from the Java
Topology Suite. GEOS implements the OpenGIS Simple Features for SQL spatial predicate functions and spatial
operators. GEOS, now an OSGeo project, was initially developed and maintained by Refractions Research of Victoria,
Canada.

Features GeoDjango implements a high-level Python wrapper for the GEOS library, its features include:

• A BSD-licensed interface to the GEOS geometry routines, implemented purely in Python using ctypes.

• Loosely-coupled to GeoDjango. For example, GEOSGeometry objects may be used outside of a django
project/application. In other words, no need to have DJANGO_SETTINGS_MODULE set or use a database,
etc.

• Mutability: GEOSGeometry objects may be modified.

• Cross-platform and tested; compatible with Windows, Linux, Solaris, and Mac OS X platforms.

Tutorial

This section contains a brief introduction and tutorial to using GEOSGeometry objects.

Creating a Geometry GEOSGeometry objects may be created in a few ways. The first is to simply instantiate the
object on some spatial input – the following are examples of creating the same geometry from WKT, HEX, WKB, and
GeoJSON:

>>> from django.contrib.gis.geos import GEOSGeometry
>>> pnt = GEOSGeometry(’POINT(5 23)’) # WKT
>>> pnt = GEOSGeometry(’010100000000000000000014400000000000003740’) # HEX
>>> pnt = GEOSGeometry(buffer(’\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14@\x00\x00\x00\x00\x00\x007@’))
>>> pnt = GEOSGeometry(’{ "type": "Point", "coordinates": [5.000000, 23.000000] }’) # GeoJSON

Another option is to use the constructor for the specific geometry type that you wish to create. For example, a Point
object may be created by passing in the X and Y coordinates into its constructor:

>>> from django.contrib.gis.geos import Point
>>> pnt = Point(5, 23)

Finally, there are fromstr() and fromfile() factory methods, which return a GEOSGeometry object from an
input string or a file:

>>> from django.contrib.gis.geos import fromstr, fromfile
>>> pnt = fromstr(’POINT(5 23)’)
>>> pnt = fromfile(’/path/to/pnt.wkt’)
>>> pnt = fromfile(open(’/path/to/pnt.wkt’))

6.2. contrib packages 487

http://trac.osgeo.org/geos/
http://sourceforge.net/projects/jts-topo-suite/
http://sourceforge.net/projects/jts-topo-suite/
http://www.opengeospatial.org/standards/sfs
http://www.refractions.net/

Django Documentation, Release 1.2.7

Geometries are Pythonic GEOSGeometry objects are ‘Pythonic’, in other words components may be accessed,
modified, and iterated over using standard Python conventions. For example, you can iterate over the coordinates in a
Point:

>>> pnt = Point(5, 23)
>>> [coord for coord in pnt]
[5.0, 23.0]

With any geometry object, the GEOSGeometry.coords property may be used to get the geometry coordinates as
a Python tuple:

>>> pnt.coords
(5.0, 23.0)

You can get/set geometry components using standard Python indexing techniques. However, what is returned depends
on the geometry type of the object. For example, indexing on a LineString returns a coordinate tuple:

>>> from django.contrib.gis.geos import LineString
>>> line = LineString((0, 0), (0, 50), (50, 50), (50, 0), (0, 0))
>>> line[0]
(0.0, 0.0)
>>> line[-2]
(50.0, 0.0)

Whereas indexing on a Polygon will return the ring (a LinearRing object) corresponding to the index:

>>> from django.contrib.gis.geos import Polygon
>>> poly = Polygon(((0.0, 0.0), (0.0, 50.0), (50.0, 50.0), (50.0, 0.0), (0.0, 0.0)))
>>> poly[0]
<LinearRing object at 0x1044395b0>
>>> poly[0][-2] # second-to-last coordinate of external ring
(50.0, 0.0)

In addition, coordinates/components of the geometry may added or modified, just like a Python list:

>>> line[0] = (1.0, 1.0)
>>> line.pop()
(0.0, 0.0)
>>> line.append((1.0, 1.0))
>>> line.coords
((1.0, 1.0), (0.0, 50.0), (50.0, 50.0), (50.0, 0.0), (1.0, 1.0))

Geometry Objects

GEOSGeometry
class GEOSGeometry(geo_input[, srid=None])

Parameters

• geo_input (string or buffer) – Geometry input value

• srid (integer) – spatial reference identifier
This is the base class for all GEOS geometry objects. It initializes on the given geo_input argument, and then
assumes the proper geometry subclass (e.g., GEOSGeometry(’POINT(1 1)’) will create a Point object).

The following input formats, along with their corresponding Python types, are accepted:

488 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Format Input Type
WKT / EWKT str or unicode
HEX / HEXEWKB str or unicode
WKB / EWKB buffer
GeoJSON str or unicode

Properties
GEOSGeometry.coords
Returns the coordinates of the geometry as a tuple.

GEOSGeometry.empty

Returns whether or not the set of points in the geometry is empty.

GEOSGeometry.geom_type

Returns a string corresponding to the type of geometry. For example:

>>> pnt = GEOSGeometry(’POINT(5 23)’)
>>> pnt.geom_type
’Point’

GEOSGeometry.geom_typeid

Returns the GEOS geometry type identification number. The following table shows the value for each geometry type:

Geometry ID
Point 0
LineString 1
LinearRing 2
Polygon 3
MultiPoint 4
MultiLineString 5
MultiPolygon 6
GeometryCollection 7

GEOSGeometry.num_coords

Returns the number of coordinates in the geometry.

GEOSGeometry.num_geom

Returns the number of geometries in this geometry. In other words, will return 1 on anything but geometry collections.

GEOSGeometry.hasz

Returns a boolean indicating whether the geometry is three-dimensional.

GEOSGeometry.ring

Returns a boolean indicating whether the geometry is a LinearRing.

GEOSGeometry.simple

Returns a boolean indicating whether the geometry is ‘simple’. A geometry is simple if and only if it does not
intersect itself (except at boundary points). For example, a LineString object is not simple if it intersects itself.
Thus, LinearRing and :class‘Polygon‘ objects are always simple because they do cannot intersect themselves, by
definition.

GEOSGeometry.valid

Returns a boolean indicating whether the geometry is valid.

6.2. contrib packages 489

Django Documentation, Release 1.2.7

GEOSGeometry.srid

Property that may be used to retrieve or set the SRID associated with the geometry. For example:

>>> pnt = Point(5, 23)
>>> print pnt.srid
None
>>> pnt.srid = 4326
>>> pnt.srid
4326

Output Properties The properties in this section export the GEOSGeometry object into a different. This output
may be in the form of a string, buffer, or even another object.

GEOSGeometry.ewkt

Returns the “extended” Well-Known Text of the geometry. This representation is specific to PostGIS and is a su-
per set of the OGC WKT standard. 29 Essentially the SRID is prepended to the WKT representation, for example
SRID=4326;POINT(5 23).

Note: The output from this property does not include the 3dm, 3dz, and 4d information that PostGIS supports in its
EWKT representations.

GEOSGeometry.hex

Returns the WKB of this Geometry in hexadecimal form. Please note that the SRID and Z values are not included in
this representation because it is not a part of the OGC specification (use the GEOSGeometry.hexewkb property
instead).

GEOSGeometry.hexewkb

New in version 1.2: Please, see the release notes Returns the EWKB of this Geometry in hexadecimal form. This is
an extension of the WKB specification that includes SRID and Z values that are a part of this geometry.

Note: GEOS 3.1 is required if you want valid 3D HEXEWKB.

GEOSGeometry.json

Returns the GeoJSON representation of the geometry.

Note: Requires GDAL.

GEOSGeometry.geojson

Alias for GEOSGeometry.json.

GEOSGeometry.kml

Returns a KML (Keyhole Markup Language) representation of the geometry. This should only be used for geometries
with an SRID of 4326 (WGS84), but this restriction is not enforced.

GEOSGeometry.ogr

Returns an OGRGeometry object correspondg to the GEOS geometry.

Note: Requires GDAL.

29 See PostGIS EWKB, EWKT and Canonical Forms, PostGIS documentation at Ch. 4.1.2.

490 Chapter 6. API Reference

http://code.google.com/apis/kml/documentation/
http://postgis.refractions.net/docs/ch04.html#id2591381

Django Documentation, Release 1.2.7

GEOSGeometry.wkb

Returns the WKB (Well-Known Binary) representation of this Geometry as a Python buffer. SRID and Z values are
not included, use the GEOSGeometry.ewkb property instead.

GEOSGeometry.ewkb

New in version 1.2: Please, see the release notes Return the EWKB representation of this Geometry as a Python buffer.
This is an extension of the WKB specification that includes any SRID and Z values that are a part of this geometry.

Note: GEOS 3.1 is required if you want valid 3D EWKB.

GEOSGeometry.wkt

Returns the Well-Known Text of the geometry (an OGC standard).

Spatial Predicate Methods All of the following spatial predicate methods take another GEOSGeometry instance
(other) as a parameter, and return a boolean.

GEOSGeometry.contains(other)

Returns True if GEOSGeometry.within() is False.

GEOSGeometry.crosses(other)

Returns True if the DE-9IM intersection matrix for the two Geometries is T*T****** (for a point and a curve,a
point and an area or a line and an area) 0******** (for two curves).

GEOSGeometry.disjoint(other)

Returns True if the DE-9IM intersection matrix for the two geometries is FF*FF****.

GEOSGeometry.equals(other)

Returns True if the DE-9IM intersection matrix for the two geometries is T*F**FFF*.

GEOSGeometry.equals_exact(other, tolerance=0)

Returns true if the two geometries are exactly equal, up to a specified tolerance. The tolerance value should be
a floating point number representing the error tolerance in the comparison, e.g., poly1.equals_exact(poly2,
0.001) will compare equality to within one thousandth of a unit.

GEOSGeometry.intersects(other)

Returns True if GEOSGeometry.disjoint() is False.

GEOSGeometry.overlaps(other)

Returns true if the DE-9IM intersection matrix for the two geometries is T*T***T** (for two points or two surfaces)
1*T***T** (for two curves).

GEOSGeometry.relate_pattern(other, pattern)

Returns True if the elements in the DE-9IM intersection matrix for this geometry and the other matches the given
pattern – a string of nine characters from the alphabet: {T, F, *, 0}.

GEOSGeometry.touches(other)

Returns True if the DE-9IM intersection matrix for the two geometries is FT*******, F**T***** or
F***T****.

GEOSGeometry.within(other)

6.2. contrib packages 491

Django Documentation, Release 1.2.7

Returns True if the DE-9IM intersection matrix for the two geometries is T*F**F***.

Topological Methods
GEOSGeometry.buffer(width, quadsegs=8)
Returns a GEOSGeometry that represents all points whose distance from this geometry is less than or equal to the
given width. The optional quadsegs keyword sets the number of segments used to approximate a quarter circle
(defaults is 8).

GEOSGeometry.difference(other)

Returns a GEOSGeometry representing the points making up this geometry that do not make up other.

GEOSGeometry:intersection(other)

Returns a GEOSGeometry representing the points shared by this geometry and other.

GEOSGeometry.relate(other)

Returns the DE-9IM intersection matrix (a string) representing the topological relationship between this geometry and
the other.

GEOSGeometry.simplify(tolerance=0.0, preserve_topology=False)

Returns a new GEOSGeometry, simplified using the Douglas-Peucker algorithm to the specified tolerance. A higher
tolerance value implies less points in the output. If no tolerance is tolerance provided, it defaults to 0.

By default, this function does not preserve topology - e.g., Polygon objects can be split, collapsed into
lines or disappear. Polygon holes can be created or disappear, and lines can cross. By specifying
preserve_topology=True, the result will have the same dimension and number of components as the input,
however, this is significantly slower.

GEOSGeometry.sym_difference(other)

Returns a GEOSGeometry combining the points in this geometry not in other, and the points in other not in this
geometry.

GEOSGeometry.union(other)

Returns a GEOSGeometry representing all the points in this geometry and the other.

Topological Properties
GEOSGeometry.boundary
Returns the boundary as a newly allocated Geometry object.

GEOSGeometry.centroid

Returns a Point object representing the geometric center of the geometry. The point is not guaranteed to be on the
interior of the geometry.

GEOSGeometry.convex_hull

Returns the smallest Polygon that contains all the points in the geometry.

GEOSGeometry.envelope

Returns a Polygon that represents the bounding envelope of this geometry.

GEOSGeometry.point_on_surface

Computes and returns a Point guaranteed to be on the interior of this geometry.

492 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Other Properties & Methods
GEOSGeometry.area
This property returns the area of the Geometry.

GEOSGeometry.extent

This property returns the extent of this geometry as a 4-tuple, consisting of (xmin, ymin, xmax, ymax).

GEOSGeometry.clone()

This method returns a GEOSGeometry that is a clone of the original.

GEOSGeometry.distance(geom)

Returns the distance between the closest points on this geometry and the given geom (another GEOSGeometry
object).

Note: GEOS distance calculations are linear – in other words, GEOS does not perform a spherical calculation even if
the SRID specifies a geographic coordinate system.

GEOSGeometry.length

Returns the length of this geometry (e.g., 0 for a Point, the length of a LineString, or the circumference of a
Polygon).

GEOSGeometry.prepared

New in version 1.1: Please, see the release notes

Note: Support for prepared geometries requires GEOS 3.1.

Returns a GEOS PreparedGeometry for the contents of this geometry. PreparedGeometry objects are opti-
mized for the contains, intersects, and covers operations. Refer to the Prepared Geometries documentation for more
information.

GEOSGeometry.srs

Returns a SpatialReference object corresponding to the SRID of the geometry or None.

Note: Requires GDAL.

transform(ct, clone=False)

Transforms the geometry according to the given coordinate transformation paramter (ct), which may be an integer
SRID, spatial reference WKT string, a PROJ.4 string, a SpatialReference object, or a CoordTransform
object. By default, the geometry is transformed in-place and nothing is returned. However if the clone keyword is
set, then the geometry is not modified and a transformed clone of the geometry is returned instead.

Note: Requires GDAL.

Point
class Point(x, y, z=None, srid=None)

Point objects are instantiated using arguments that represent the component coordinates of the point or with a
single sequence coordinates. For example, the following are equivalent:

6.2. contrib packages 493

Django Documentation, Release 1.2.7

>>> pnt = Point(5, 23)
>>> pnt = Point([5, 23])

LineString
class LineString(*args, **kwargs)

LineString objects are instantiated using arguments that are either a sequence of coordinates or Point
objects. For example, the following are equivalent:

>>> ls = LineString((0, 0), (1, 1))
>>> ls = LineString(Point(0, 0), Point(1, 1))

In addition, LineString objects may also be created by passing in a single sequence of coordinate or Point
objects:

>>> ls = LineString(((0, 0), (1, 1)))
>>> ls = LineString([Point(0, 0), Point(1, 1)])

LinearRing
class LinearRing(*args, **kwargs)

LinearRing objects are constructed in the exact same way as LineString objects, however the coordinates
must be closed, in other words, the first coordinates must be the same as the last coordinates. For example:

>>> ls = LinearRing((0, 0), (0, 1), (1, 1), (0, 0))

Notice that (0, 0) is the first and last coordinate – if they were not equal, an error would be raised.

Polygon
class Polygon(*args, **kwargs)

Polygon objects may be instantiated by passing in one or more parameters that represent the rings of the
polygon. The parameters must either be LinearRing instances, or a sequence that may be used to construct a
LinearRing:

>>> ext_coords = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))
>>> int_coords = ((0.4, 0.4), (0.4, 0.6), (0.6, 0.6), (0.6, 0.4), (0.4, 0.4))
>>> poly = Polygon(ext_coords, int_coords)
>>> poly = Polygon(LinearRing(ext_coords), LinearRing(int_coords))

classmethod from_bbox(bbox)

New in version 1.1: Please, see the release notes Returns a polygon object from the given bounding-box, a
4-tuple comprising (xmin, ymin, xmax, ymax).

num_interior_rings

Returns the number of interior rings in this geometry.

Geometry Collections

MultiPoint
class MultiPoint(*args, **kwargs)

MultiPoint objects may be instantiated by passing in one or more Point objects as arguments, or a single
sequence of Point objects:

494 Chapter 6. API Reference

Django Documentation, Release 1.2.7

>>> mp = MultiPoint(Point(0, 0), Point(1, 1))
>>> mp = MultiPoint((Point(0, 0), Point(1, 1)))

MultiLineString
class MultiLineString(*args, **kwargs)

MultiLineString objects may be instantiated by passing in one or more LineString objects as argu-
ments, or a single sequence of LineString objects:

>>> ls1 = LineString((0, 0), (1, 1))
>>> ls2 = LineString((2, 2), (3, 3))
>>> mls = MultiLineString(ls1, ls2)
>>> mls = MultiLineString([ls1, ls2])

merged

New in version 1.1: Please, see the release notes Returns a LineString representing the line merge of all the
components in this MultiLineString.

MultiPolygon
class MultiPolygon(*args, **kwargs)

MultiPolygon objects may be instantiated by passing one or more Polygon objects as arguments, or a
single sequence of Polygon objects:

>>> p1 = Polygon(((0, 0), (0, 1), (1, 1), (0, 0)))
>>> p2 = Polygon(((1, 1), (1, 2), (2, 2), (1, 1)))
>>> mp = MultiPolygon(p1, p2)
>>> mp = MultiPolygon([p1, p2])

cascaded_union

New in version 1.1: Please, see the release notes Returns a Polygon that is the union of all of the component
polygons in this collection. The algorithm employed is significantly more efficient (faster) than trying to union
the geometries together individually. 30

Note: GEOS 3.1 is required to peform cascaded unions.

GeometryCollection
class GeometryCollection(*args, **kwargs)

GeometryCollection objects may be instantiated by passing in one or more other GEOSGeometry as
arguments, or a single sequence of GEOSGeometry objects:

>>> poly = Polygon(((0, 0), (0, 1), (1, 1), (0, 0)))
>>> gc = GeometryCollection(Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly)
>>> gc = GeometryCollection((Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly))

Prepared Geometries

In order to obtain a prepared geometry, just access the GEOSGeometry.prepared property. Once you have a
PreparedGeometry instance its spatial predicate methods, listed below, may be used with other GEOSGeometry
objects. An operation with a prepared geometry can be orders of magnitude faster – the more complex the geometry

30 For more information, read Paul Ramsey’s blog post about (Much) Faster Unions in PostGIS 1.4 and Martin Davis’ blog post on Fast polygon
merging in JTS using Cascaded Union.

6.2. contrib packages 495

http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html
http://lin-ear-th-inking.blogspot.com/2007/11/fast-polygon-merging-in-jts-using.html
http://lin-ear-th-inking.blogspot.com/2007/11/fast-polygon-merging-in-jts-using.html

Django Documentation, Release 1.2.7

that is prepared, the larger the speedup in the operation. For more information, please consult the GEOS wiki page on
prepared geometries.

Note: GEOS 3.1 is required in order to use prepared geometries.

For example:

>>> from django.contrib.gis.geos import Point, Polygon
>>> poly = Polygon.from_bbox((0, 0, 5, 5))
>>> prep_poly = poly.prepared
>>> prep_poly.contains(Point(2.5, 2.5))
True

PreparedGeometry
class PreparedGeometry

All methods on PreparedGeometry take an other argument, which must be a GEOSGeometry instance.

contains(other)

contains_properly(other)

covers(other)

intersects(other)

Geometry Factories

fromfile(file_h)

Parameters file_h (a Python file object or a string path to the file) – input file that contains spatial
data

Return type a GEOSGeometry corresponding to the spatial data in the file

Example:

>>> from django.contrib.gis.geos import fromfile
>>> g = fromfile(’/home/bob/geom.wkt’)

fromstr(string[, srid=None])
Parameters

• string (string) – string that contains spatial data

• srid (integer) – spatial reference identifier

Return type a GEOSGeometry corresponding to the spatial data in the string

Example:

>>> from django.contrib.gis.geos import fromstr
>>> pnt = fromstr(’POINT(-90.5 29.5)’, srid=4326)

496 Chapter 6. API Reference

http://trac.osgeo.org/geos/wiki/PreparedGeometry
http://trac.osgeo.org/geos/wiki/PreparedGeometry

Django Documentation, Release 1.2.7

I/O Objects

Reader Objects The reader I/O classes simply return a GEOSGeometry instance from the WKB and/or WKT
input given to their read(geom) method.

class WKBReader

Example:

>>> from django.contrib.gis.geos import WKBReader
>>> wkb_r = WKBReader()
>>> wkb_r.read(’0101000000000000000000F03F000000000000F03F’)
<Point object at 0x103a88910>

class WKTReader

Example:

>>> from django.contrib.gis.geos import WKTReader
>>> wkt_r = WKTReader()
>>> wkt_r.read(’POINT(1 1)’)
<Point object at 0x103a88b50>

Writer Objects All writer objects have a write(geom) method that returns either the WKB or WKT of the given
geometry. In addition, WKBWriter objects also have properties that may be used to change the byte order, and or
include the SRID and 3D values (in other words, EWKB).

class WKBWriter

WKBWriter provides the most control over its output. By default it returns OGC-compliant WKB when it’s write
method is called. However, it has properties that allow for the creation of EWKB, a superset of the WKB standard that
includes additional information.

WKBWriter.write(geom)

Returns the WKB of the given geometry as a Python buffer object. Example:

>>> from django.contrib.gis.geos import Point, WKBWriter
>>> pnt = Point(1, 1)
>>> wkb_w = WKBWriter()
>>> wkb_w.write(pnt)
<read-only buffer for 0x103a898f0, size -1, offset 0 at 0x103a89930>

WKBWriter.write_hex(geom)

Returns WKB of the geometry in hexadecimal. Example:

>>> from django.contrib.gis.geos import Point, WKBWriter
>>> pnt = Point(1, 1)
>>> wkb_w = WKBWriter()
>>> wkb_w.write_hex(pnt)
’0101000000000000000000F03F000000000000F03F’

WKBWriter.byteorder

This property may be be set to change the byte-order of the geometry representation.

Byteorder Value Description
0 Big Endian (e.g., compatible with RISC systems)
1 Little Endian (e.g., compatible with x86 systems)

Example:

6.2. contrib packages 497

Django Documentation, Release 1.2.7

>>> from django.contrib.gis.geos import Point, WKBWriter
>>> wkb_w = WKBWriter()
>>> pnt = Point(1, 1)
>>> wkb_w.write_hex(pnt)
’0101000000000000000000F03F000000000000F03F’
>>> wkb_w.byteorder = 0
’00000000013FF00000000000003FF0000000000000’

WKBWriter.outdim

This property may be set to change the output dimension of the geometry representation. In other words, if you have
a 3D geometry then set to 3 so that the Z value is included in the WKB.

Outdim Value Description
2 The default, output 2D WKB.
3 Output 3D EWKB.

Example:

>>> from django.contrib.gis.geos import Point, WKBWriter
>>> wkb_w = WKBWriter()
>>> wkb_w.outdim
2
>>> pnt = Point(1, 1, 1)
>>> wkb_w.write_hex(pnt) # By default, no Z value included:
’0101000000000000000000F03F000000000000F03F’
>>> wkb_w.outdim = 3 # Tell writer to include Z values
>>> wkb_w.write_hex(pnt)
’0101000080000000000000F03F000000000000F03F000000000000F03F’

WKBWriter.srid

Set this property with a boolean to indicate whether the SRID of the geometry should be included with the WKB
representation. Example:

>>> from django.contrib.gis.geos import Point, WKBWriter
>>> wkb_w = WKBWriter()
>>> pnt = Point(1, 1, srid=4326)
>>> wkb_w.write_hex(pnt) # By default, no SRID included:
’0101000000000000000000F03F000000000000F03F’
>>> wkb_w.srid = True # Tell writer to include SRID
>>> wkb_w.write_hex(pnt)
’0101000020E6100000000000000000F03F000000000000F03F’

class WKTWriter

WKTWriter.write(geom)

Returns the WKT of the given geometry. Example:

>>> from django.contrib.gis.geos import Point, WKTWriter
>>> pnt = Point(1, 1)
>>> wkt_w = WKTWriter()
>>> wkt_w.write(pnt)
’POINT (1.0000000000000000 1.0000000000000000)’

Settings

GEOS_LIBRARY_PATH A string specifying the location of the GEOS C library. Typically, this setting is only
used if the GEOS C library is in a non-standard location (e.g., /home/bob/lib/libgeos_c.so).

498 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Note: The setting must be the full path to the C shared library; in other words you want to use libgeos_c.so, not
libgeos.so.

GDAL API

GDAL stands for Geospatial Data Abstraction Library, and is a veritable “swiss army knife” of GIS data functionality.
A subset of GDAL is the OGR Simple Features Library, which specializes in reading and writing vector geographic
data in a variety of standard formats.

GeoDjango provides a high-level Python interface for some of the capabilities of OGR, including the reading and
coordinate transformation of vector spatial data.

Note: Although the module is named gdal, GeoDjango only supports some of the capabilities of OGR. Thus, none
of GDAL’s features with respect to raster (image) data are supported at this time.

Overview

Sample Data The GDAL/OGR tools described here are designed to help you read in your geospatial data, in order
for most of them to be useful you have to have some data to work with. If you’re starting out and don’t yet have any
data of your own to use, GeoDjango comes with a number of simple data sets that you can use for testing. This snippet
will determine where these sample files are installed on your computer:

>>> import os
>>> import django.contrib.gis
>>> GIS_PATH = os.path.dirname(django.contrib.gis.__file__)
>>> CITIES_PATH = os.path.join(GIS_PATH, ’tests/data/cities/cities.shp’)

Vector Data Source Objects

DataSource DataSource is a wrapper for the OGR data source object that supports reading data from a variety
of OGR-supported geospatial file formats and data sources using a simple, consistent interface. Each data source is
represented by a DataSource object which contains one or more layers of data. Each layer, represented by a Layer
object, contains some number of geographic features (Feature), information about the type of features contained in
that layer (e.g. points, polygons, etc.), as well as the names and types of any additional fields (Field) of data that
may be associated with each feature in that layer.

class DataSource(ds_input)
The constructor for DataSource just a single parameter: the path of the file you want to read. However, OGR
also supports a variety of more complex data sources, including databases, that may be accessed by passing a
special name string instead of a path. For more information, see the OGR Vector Formats documentation. The
name property of a DataSource instance gives the OGR name of the underlying data source that it is using.

Once you’ve created your DataSource, you can find out how many layers of data it contains by accessing
the layer_count property, or (equivalently) by using the len() function. For information on accessing the
layers of data themselves, see the next section:

>>> from django.contrib.gis.gdal import DataSource
>>> ds = DataSource(CITIES_PATH)
>>> ds.name # The exact filename may be different on your computer
’/usr/local/lib/python2.6/site-packages/django/contrib/gis/tests/data/cities/cities.shp’

6.2. contrib packages 499

http://www.gdal.org/
http://www.gdal.org/ogr/
http://www.gdal.org/ogr/ogr_formats.html

Django Documentation, Release 1.2.7

>>> ds.layer_count # This file only contains one layer
1

layer_count

Returns the number of layers in the data source.

name

Returns the name of the data source.

Layer
class Layer

Layer is a wrapper for a layer of data in a DataSource object. You never create a Layer object directly.
Instead, you retrieve them from a DataSource object, which is essentially a standard Python container of
Layer objects. For example, you can access a specific layer by its index (e.g. ds[0] to access the first layer),
or you can iterate over all the layers in the container in a for loop. The Layer itself acts as a container for
geometric features.

Typically, all the features in a given layer have the same geometry type. The geom_type property of a layer is
an OGRGeomType that identifies the feature type. We can use it to print out some basic information about each
layer in a DataSource:

>>> for layer in ds:
... print ’Layer "%s": %i %ss’ % (layer.name, len(layer), layer.geom_type.name)
...
Layer "cities": 3 Points

The example output is from the cities data source, loaded above, which evidently contains one layer, called
"cities", which contains three point features. For simplicity, the examples below assume that you’ve stored
that layer in the variable layer:

>>> layer = ds[0]

name

Returns the name of this layer in the data source.

>>> layer.name
’cities’

num_feat

Returns the number of features in the layer. Same as len(layer):

>>> layer.num_feat
3

geom_type

Returns the geometry type of the layer, as an OGRGeomType object:

>>> layer.geom_type.name
’Point’

num_fields

Returns the number of fields in the layer, i.e the number of fields of data associated with each feature in the
layer:

500 Chapter 6. API Reference

Django Documentation, Release 1.2.7

>>> layer.num_fields
4

fields

Returns a list of the names of each of the fields in this layer:

>>> layer.fields
[’Name’, ’Population’, ’Density’, ’Created’]

Returns a list of the data types of each of the fields in this layer. These are subclasses of Field, discussed
below:

>>> [ft.__name__ for ft in layer.field_types]
[’OFTString’, ’OFTReal’, ’OFTReal’, ’OFTDate’]

field_widths

Returns a list of the maximum field widths for each of the fields in this layer:

>>> layer.field_widths
[80, 11, 24, 10]

field_precisions

Returns a list of the numeric precisions for each of the fields in this layer. This is meaningless (and set to zero)
for non-numeric fields:

>>> layer.field_precisions
[0, 0, 15, 0]

extent

Returns the spatial extent of this layer, as an Envelope object:

>>> layer.extent.tuple
(-104.609252, 29.763374, -95.23506, 38.971823)

srs

Property that returns the SpatialReference associated with this layer:

>>> print layer.srs
GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",
SPHEROID["WGS_1984",6378137,298.257223563]],

PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]]

If the Layer has no spatial reference information associated with it, None is returned.

spatial_filter

New in version 1.2: Please, see the release notes Property that may be used to retrieve or set a spatial filter for
this layer. A spatial filter can only be set with an OGRGeometry instance, a 4-tuple extent, or None. When set
with something other than None, only features that intersect the filter will be returned when iterating over the
layer:

>>> print layer.spatial_filter
None
>>> print len(layer)
3

6.2. contrib packages 501

Django Documentation, Release 1.2.7

>>> [feat.get(’Name’) for feat in layer]
[’Pueblo’, ’Lawrence’, ’Houston’]
>>> ks_extent = (-102.051, 36.99, -94.59, 40.00) # Extent for state of Kansas
>>> layer.spatial_filter = ks_extent
>>> len(layer)
1
>>> [feat.get(’Name’) for feat in layer]
[’Lawrence’]
>>> layer.spatial_filter = None
>>> len(layer)
3

get_fields()

A method that returns a list of the values of a given field for each feature in the layer:

>>> layer.get_fields(’Name’)
[’Pueblo’, ’Lawrence’, ’Houston’]

get_geoms([geos=False])
A method that returns a list containing the geometry of each feature in the layer. If the optional argument geos
is set to True then the geometries are converted to GEOSGeometry objects. Otherwise, they are returned as
OGRGeometry objects:

>>> [pt.tuple for pt in layer.get_geoms()]
[(-104.609252, 38.255001), (-95.23506, 38.971823), (-95.363151, 29.763374)]

test_capability(capability)

Returns a boolean indicating whether this layer supports the given capability (a string). Examples
of valid capability strings include: ’RandomRead’, ’SequentialWrite’, ’RandomWrite’,
’FastSpatialFilter’, ’FastFeatureCount’, ’FastGetExtent’, ’CreateField’,
’Transactions’, ’DeleteFeature’, and ’FastSetNextByIndex’.

Feature
class Feature

Feature wraps an OGR feature. You never create a Feature object directly. Instead, you retrieve them from
a Layer object. Each feature consists of a geometry and a set of fields containing additional properties. The
geometry of a field is accessible via its geom property, which returns an OGRGeometry object. A Feature
behaves like a standard Python container for its fields, which it returns as Field objects: you can access a field
directly by its index or name, or you can iterate over a feature’s fields, e.g. in a for loop.

geom

Returns the geometry for this feature, as an OGRGeometry object:

>>> city.geom.tuple
(-104.609252, 38.255001)

get

A method that returns the value of the given field (specified by name) for this feature, not a Field wrapper
object:

>>> city.get(’Population’)
102121

geom_type

502 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Returns the type of geometry for this feature, as an OGRGeomType object. This will be the same for all features
in a given layer, and is equivalent to the Layer.geom_type property of the Layer‘ object the feature came
from.

num_fields

Returns the number of fields of data associated with the feature. This will be the same for all features in a given
layer, and is equivalent to the Layer.num_fields property of the Layer object the feature came from.

fields

Returns a list of the names of the fields of data associated with the feature. This will be the same for all features
in a given layer, and is equivalent to the Layer.fields property of the Layer object the feature came from.

fid

Returns the feature identifier within the layer:

>>> city.fid
0

layer_name

Returns the name of the Layer that the feature came from. This will be the same for all features in a given
layer:

>>> city.layer_name
’cities’

index

A method that returns the index of the given field name. This will be the same for all features in a given layer:

>>> city.index(’Population’)
1

Field
class Field

name

Returns the name of this field:

>>> city[’Name’].name
’Name’

type

Returns the OGR type of this field, as an integer. The FIELD_CLASSES dictionary maps these values onto
subclasses of Field:

>>> city[’Density’].type
2

type_name

Returns a string with the name of the data type of this field:

>>> city[’Name’].type_name
’String’

6.2. contrib packages 503

Django Documentation, Release 1.2.7

value

Returns the value of this field. The Field class itself returns the value as a string, but each subclass returns the
value in the most appropriate form:

>>> city[’Population’].value
102121

width

Returns the width of this field:

>>> city[’Name’].width
80

precision

Returns the numeric precision of this field. This is meaningless (and set to zero) for non-numeric fields:

>>> city[’Density’].precision
15

as_double()

Returns the value of the field as a double (float):

>>> city[’Density’].as_double()
874.7

as_int()

Returns the value of the field as an integer:

>>> city[’Population’].as_int()
102121

as_string()

Returns the value of the field as a string:

>>> city[’Name’].as_string()
’Pueblo’

as_datetime()

Returns the value of the field as a tuple of date and time components:

>>> city[’Created’].as_datetime()
(c_long(1999), c_long(5), c_long(23), c_long(0), c_long(0), c_long(0), c_long(0))

Driver
class Driver(dr_input)

The Driver class is used internally to wrap an OGR DataSource driver.

driver_count

Returns the number of OGR vector drivers currently registered.

OGR Geometries

504 Chapter 6. API Reference

Django Documentation, Release 1.2.7

OGRGeometry OGRGeometry objects share similar functionality with GEOSGeometry objects, and are thin
wrappers around OGR’s internal geometry representation. Thus, they allow for more efficient access to data when us-
ing DataSource. Unlike its GEOS counterpart, OGRGeometry supports spatial reference systems and coordinate
transformation:

>>> from django.contrib.gis.gdal import OGRGeometry
>>> polygon = OGRGeometry(’POLYGON((0 0, 5 0, 5 5, 0 5))’)

class OGRGeometry(geom_input[, srs=None])
This object is a wrapper for the OGR Geometry class. These objects are instantiated directly from the given
geom_input parameter, which may be a string containing WKT or HEX, a buffer containing WKB data, or
an OGRGeomType object. These objects are also returned from the Feature.geom attribute, when reading
vector data from Layer (which is in turn a part of a DataSource).

classmethod from_bbox(bbox)

New in version 1.1: Please, see the release notes Constructs a Polygon from the given bounding-box (a
4-tuple).

__len__()

Returns the number of points in a LineString, the number of rings in a Polygon, or the number of geome-
tries in a GeometryCollection. Not applicable to other geometry types.

__iter__()

Iterates over the points in a LineString, the rings in a Polygon, or the geometries in a
GeometryCollection. Not applicable to other geometry types.

__getitem__()

Returns the point at the specified index for a LineString, the interior ring at the specified index for a
Polygon, or the geometry at the specified index in a GeometryCollection. Not applicable to other
geometry types.

dimension

Returns the number of coordinated dimensions of the geometry, i.e. 0 for points, 1 for lines, and so forth:

>> polygon.dimension
2

coord_dim

Changed in version 1.2: Please, see the release notes Returns or sets the coordinate dimension of this geometry.
For example, the value would be 2 for two-dimensional geometries.

Note: Setting this property is only available in versions 1.2 and above.

geom_count

Returns the number of elements in this geometry:

>>> polygon.geom_count
1

point_count

Returns the number of points used to describe this geometry:

>>> polygon.point_count
4

6.2. contrib packages 505

http://www.gdal.org/ogr/classOGRGeometry.html

Django Documentation, Release 1.2.7

num_points

Alias for point_count.

num_coords

Alias for point_count.

geom_type

Returns the type of this geometry, as an OGRGeomType object.

geom_name

Returns the name of the type of this geometry:

>>> polygon.geom_name
’POLYGON’

area

Returns the area of this geometry, or 0 for geometries that do not contain an area:

>>> polygon.area
25.0

envelope

Returns the envelope of this geometry, as an Envelope object.

extent

Returns the envelope of this geometry as a 4-tuple, instead of as an Envelope object:

>>> point.extent
(0.0, 0.0, 5.0, 5.0)

srs

This property controls the spatial reference for this geometry, or None if no spatial reference system has been
assigned to it. If assigned, accessing this property returns a SpatialReference object. It may be set with
another SpatialReference object, or any input that SpatialReference accepts. Example:

>>> city.geom.srs.name
’GCS_WGS_1984’

srid

Returns or sets the spatial reference identifier corresponding to SpatialReference of this geometry. Re-
turns None if there is no spatial reference information associated with this geometry, or if an SRID cannot be
determined.

geos

Returns a GEOSGeometry object corresponding to this geometry.

gml

Returns a string representation of this geometry in GML format:

>>> OGRGeometry(’POINT(1 2)’).gml
’<gml:Point><gml:coordinates>1,2</gml:coordinates></gml:Point>’

hex

Returns a string representation of this geometry in HEX WKB format:

506 Chapter 6. API Reference

Django Documentation, Release 1.2.7

>>> OGRGeometry(’POINT(1 2)’).hex
’0101000000000000000000F03F0000000000000040’

json

Returns a string representation of this geometry in JSON format:

>>> OGRGeometry(’POINT(1 2)’).json
’{ "type": "Point", "coordinates": [1.000000, 2.000000] }’

kml

New in version 1.1: Please, see the release notes Returns a string representation of this geometry in KML
format.

wkb_size

Returns the size of the WKB buffer needed to hold a WKB representation of this geometry:

>>> OGRGeometry(’POINT(1 2)’).wkb_size
21

wkb

Returns a buffer containing a WKB representation of this geometry.

wkt

Returns a string representation of this geometry in WKT format.

ewkt

New in version 1.2: Please, see the release notes Returns the EWKT representation of this geometry.

clone()

Returns a new OGRGeometry clone of this geometry object.

close_rings()

If there are any rings within this geometry that have not been closed, this routine will do so by adding the starting
point to the end:

>>> triangle = OGRGeometry(’LINEARRING (0 0,0 1,1 0)’)
>>> triangle.close_rings()
>>> triangle.wkt
’LINEARRING (0 0,0 1,1 0,0 0)’

transform(coord_trans, clone=False)

Transforms this geometry to a different spatial reference system. May take a CoordTransform object, a
SpatialReference object, or any other input accepted by SpatialReference (including spatial ref-
erence WKT and PROJ.4 strings, or an integer SRID). By default nothing is returned and the geometry is
transformed in-place. However, if the clone keyword is set to True then a transformed clone of this geometry
is returned instead.

intersects(other)

Returns True if this geometry intersects the other, otherwise returns False.

equals(other)

Returns True if this geometry is equivalent to the other, otherwise returns False.

disjoint(other)

6.2. contrib packages 507

Django Documentation, Release 1.2.7

Returns True if this geometry is spatially disjoint to (i.e. does not intersect) the other, otherwise returns False.

touches(other)

Returns True if this geometry touches the other, otherwise returns False.

crosses(other)

Returns True if this geometry crosses the other, otherwise returns False.

within(other)

Returns True if this geometry is contained within the other, otherwise returns False.

contains(other)

Returns True if this geometry contains the other, otherwise returns False.

overlaps(other)

Returns True if this geometry overlaps the other, otherwise returns False.

boundary()

The boundary of this geometry, as a new OGRGeometry object.

convex_hull

The smallest convex polygon that contains this geometry, as a new OGRGeometry object.

difference()

Returns the region consisting of the difference of this geometry and the other, as a new OGRGeometry object.

intersection()

Returns the region consisting of the intersection of this geometry and the other, as a new OGRGeometry object.

sym_difference()

Returns the region consisting of the symmetric difference of this geometry and the other, as a new
OGRGeometry object.

union()

Returns the region consisting of the union of this geometry and the other, as a new OGRGeometry object.

tuple

Returns the coordinates of a point geometry as a tuple, the coordinates of a line geometry as a tuple of tuples,
and so forth:

>>> OGRGeometry(’POINT (1 2)’).tuple
(1.0, 2.0)
>>> OGRGeometry(’LINESTRING (1 2,3 4)’).tuple
((1.0, 2.0), (3.0, 4.0))

coords

An alias for tuple.

class Point

x

508 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Returns the X coordinate of this point:

>>> OGRGeometry(’POINT (1 2)’).x
1.0

y

Returns the Y coordinate of this point:

>>> OGRGeometry(’POINT (1 2)’).y
2.0

z

Returns the Z coordinate of this point, or None if the the point does not have a Z coordinate:

>>> OGRGeometry(’POINT (1 2 3)’).z
3.0

class LineString

x

Returns a list of X coordinates in this line:

>>> OGRGeometry(’LINESTRING (1 2,3 4)’).x
[1.0, 3.0]

y

Returns a list of Y coordinates in this line:

>>> OGRGeometry(’LINESTRING (1 2,3 4)’).y
[2.0, 4.0]

z

Returns a list of Z coordinates in this line, or None if the line does not have Z coordinates:

>>> OGRGeometry(’LINESTRING (1 2 3,4 5 6)’).z
[3.0, 6.0]

class Polygon

shell

Returns the shell or exterior ring of this polygon, as a LinearRing geometry.

exterior_ring

An alias for shell.

centroid

Returns a Point representing the centroid of this polygon.

class GeometryCollection

add(geom)

Adds a geometry to this geometry collection. Not applicable to other geometry types.

6.2. contrib packages 509

Django Documentation, Release 1.2.7

OGRGeomType
class OGRGeomType(type_input)

This class allows for the representation of an OGR geometry type in any of several ways:

>>> from django.contrib.gis.gdal import OGRGeomType
>>> gt1 = OGRGeomType(3) # Using an integer for the type
>>> gt2 = OGRGeomType(’Polygon’) # Using a string
>>> gt3 = OGRGeomType(’POLYGON’) # It’s case-insensitive
>>> print gt1 == 3, gt1 == ’Polygon’ # Equivalence works w/non-OGRGeomType objects
True True

name

Returns a short-hand string form of the OGR Geometry type:

>>> gt1.name
’Polygon’

num

Returns the number corresponding to the OGR geometry type:

>>> gt1.num
3

django

Returns the Django field type (a subclass of GeometryField) to use for storing this OGR type, or None if there
is no appropriate Django type:

>>> gt1.django
’PolygonField’

Envelope
class Envelope(*args)

Represents an OGR Envelope structure that contains the minimum and maximum X, Y coordinates for a rect-
angle bounding box. The naming of the variables is compatible with the OGR Envelope C structure.

min_x

The value of the minimum X coordinate.

min_y

The value of the maximum X coordinate.

max_x

The value of the minimum Y coordinate.

max_y

The value of the maximum Y coordinate.

ur

The upper-right coordinate, as a tuple.

ll

The lower-left coordinate, as a tuple.

tuple

A tuple representing the envelope.

510 Chapter 6. API Reference

Django Documentation, Release 1.2.7

wkt

A string representing this envelope as a polygon in WKT format.

expand_to_include(self, *args)

New in version 1.1: Please, see the release notes

Coordinate System Objects

SpatialReference
class SpatialReference(srs_input)

Spatial reference objects are initialized on the given srs_input, which may be one of the following:

•OGC Well Known Text (WKT) (a string)

•EPSG code (integer or string)

•PROJ.4 string

•A shorthand string for well-known standards (’WGS84’, ’WGS72’, ’NAD27’, ’NAD83’)

Example:

>>> wgs84 = SpatialReference(’WGS84’) # shorthand string
>>> wgs84 = SpatialReference(4326) # EPSG code
>>> wgs84 = SpatialReference(’EPSG:4326’) # EPSG string
>>> proj4 = ’+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs ’
>>> wgs84 = SpatialReference(proj4) # PROJ.4 string
>>> wgs84 = SpatialReference("""GEOGCS["WGS 84",
DATUM["WGS_1984",

SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0,

AUTHORITY["EPSG","8901"]],
UNIT["degree",0.01745329251994328,

AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4326"]]""") # OGC WKT

__getitem__(target)

Returns the value of the given string attribute node, None if the node doesn’t exist. Can also take a tuple as a
parameter, (target, child), where child is the index of the attribute in the WKT. For example:

>>> wkt = ’GEOGCS["WGS 84", DATUM["WGS_1984, ... AUTHORITY["EPSG","4326"]]’)
>>> srs = SpatialReference(wkt) # could also use ’WGS84’, or 4326
>>> print srs[’GEOGCS’]
WGS 84
>>> print srs[’DATUM’]
WGS_1984
>>> print srs[’AUTHORITY’]
EPSG
>>> print srs[’AUTHORITY’, 1] # The authority value
4326
>>> print srs[’TOWGS84’, 4] # the fourth value in this wkt
0
>>> print srs[’UNIT|AUTHORITY’] # For the units authority, have to use the pipe symbole.
EPSG
>>> print srs[’UNIT|AUTHORITY’, 1] # The authority value for the untis
9122

6.2. contrib packages 511

Django Documentation, Release 1.2.7

attr_value(target, index=0)

The attribute value for the given target node (e.g. ’PROJCS’). The index keyword specifies an index of the
child node to return.

auth_name(target)

Returns the authority name for the given string target node.

auth_code(target)

Returns the authority code for the given string target node.

clone()

Returns a clone of this spatial reference object.

identify_epsg()

This method inspects the WKT of this SpatialReference, and will add EPSG authority nodes where an EPSG
identifier is applicable.

from_esri()

Morphs this SpatialReference from ESRI’s format to EPSG

to_esri()

Morphs this SpatialReference to ESRI’s format.

validate()

Checks to see if the given spatial reference is valid, if not an exception will be raised.

import_epsg(epsg)

Import spatial reference from EPSG code.

import_proj(proj)

Import spatial reference from PROJ.4 string.

import_user_input(user_input)

New in version 1.1: Please, see the release notes

import_wkt(wkt)

Import spatial reference from WKT.

import_xml(xml)

Import spatial reference from XML.

name

Returns the name of this Spatial Reference.

srid

Returns the SRID of top-level authority, or None if undefined.

linear_name

Returns the name of the linear units.

linear_units

Returns the value of the linear units.

angular_name

512 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Returns the name of the angular units.”

angular_units

Returns the value of the angular units.

units

Returns a 2-tuple of the units value and the units name, and will automatically determines whether to return the
linear or angular units.

ellisoid

Returns a tuple of the ellipsoid parameters for this spatial reference: (semimajor axis, semiminor axis, and
inverse flattening)

semi_major

Returns the semi major axis of the ellipsoid for this spatial reference.

semi_minor

Returns the semi minor axis of the ellipsoid for this spatial reference.

inverse_flattening

Returns the inverse flattening of the ellipsoid for this spatial reference.

geographic

Returns True if this spatial reference is geographic (root node is GEOGCS).

local

Returns True if this spatial reference is local (root node is LOCAL_CS).

projected

Returns True if this spatial reference is a projected coordinate system (root node is PROJCS).

wkt

Returns the WKT representation of this spatial reference.

pretty_wkt

Returns the ‘pretty’ representation of the WKT.

proj

Returns the PROJ.4 representation for this spatial reference.

proj4

Alias for SpatialReference.proj.

xml

Returns the XML representation of this spatial reference.

CoordTransform
class CoordTransform(source, target)
Represents a coordinate system transform. It is initialized with two SpatialReference, representing the source
and target coordinate systems, respectively. These objects should be used when performing the same coordinate
transformation repeatedly on different geometries:

6.2. contrib packages 513

Django Documentation, Release 1.2.7

>>> ct = CoordTransform(SpatialReference(’WGS84’), SpatialReference(’NAD83’))
>>> for feat in layer:
... geom = feat.geom # getting clone of feature geometry
... geom.transform(ct) # transforming

Settings

GDAL_LIBRARY_PATH A string specifying the location of the GDAL library. Typically, this setting is only used
if the GDAL library is in a non-standard location (e.g., /home/john/lib/libgdal.so).

GeoDjango Utilities

The django.contrib.gis.utils module contains various utilities that are useful in creating geospatial Web
applications.

Geolocation with GeoIP

The GeoIP object is a ctypes wrapper for the MaxMind GeoIP C API. 31 This interface is a BSD-licensed alternative
to the GPL-licensed Python GeoIP interface provided by MaxMind.

In order to perform IP-based geolocation, the GeoIP object requires the GeoIP C libary and either the GeoIP Country
or City datasets in binary format (the CSV files will not work!). These datasets may be downloaded from MaxMind.
Grab the GeoIP.dat.gz and GeoLiteCity.dat.gz and unzip them in a directory corresponding to what you
set GEOIP_PATH with in your settings. See the example and reference below for more details.

Example Assuming you have the GeoIP C library installed, here is an example of its usage:

>>> from django.contrib.gis.utils import GeoIP
>>> g = GeoIP()
>>> g.country(’google.com’)
{’country_code’: ’US’, ’country_name’: ’United States’}
>>> g.city(’72.14.207.99’)
{’area_code’: 650,
’city’: ’Mountain View’,
’country_code’: ’US’,
’country_code3’: ’USA’,
’country_name’: ’United States’,
’dma_code’: 807,
’latitude’: 37.419200897216797,
’longitude’: -122.05740356445312,
’postal_code’: ’94043’,
’region’: ’CA’}
>>> g.lat_lon(’salon.com’)
(37.789798736572266, -122.39420318603516)
>>> g.lon_lat(’uh.edu’)
(-95.415199279785156, 29.77549934387207)
>>> g.geos(’24.124.1.80’).wkt
’POINT (-95.2087020874023438 39.0392990112304688)’

GeoIP Settings
31 GeoIP(R) is a registered trademark of MaxMind, LLC of Boston, Massachusetts.

514 Chapter 6. API Reference

http://www.maxmind.com/app/c
http://www.maxmind.com/app/python
http://www.maxmind.com/app/country
http://www.maxmind.com/app/city
http://www.maxmind.com/download/geoip/database/

Django Documentation, Release 1.2.7

GEOIP_PATH A string specifying the directory where the GeoIP data files are located. This setting is required
unless manually specified with path keyword when initializing the GeoIP object.

GEOIP_LIBRARY_PATH A string specifying the location of the GeoIP C library. Typically, this setting is only
used if the GeoIP C library is in a non-standard location (e.g., /home/sue/lib/libGeoIP.so).

GEOIP_COUNTRY The basename to use for the GeoIP country data file. Defaults to ’GeoIP.dat’.

GEOIP_CITY The basename to use for the GeoIP city data file. Defaults to ’GeoLiteCity.dat’.

GeoIP API
class GeoIP([path=None, cache=0, country=None, city=None])
The GeoIP object does not require any parameters to use the default settings. However, at the very least the
GEOIP_PATH setting should be set with the path of the location of your GeoIP data sets. The following intialization
keywords may be used to customize any of the defaults.

Keyword
Arguments

Description

path Base directory to where GeoIP data is located or the full path to where the city or country data
files (.dat) are located. Assumes that both the city and country data sets are located in this
directory; overrides the GEOIP_PATH settings attribute.

cache The cache settings when opening up the GeoIP datasets, and may be an integer in (0, 1, 2, 4)
corresponding to the GEOIP_STANDARD, GEOIP_MEMORY_CACHE,
GEOIP_CHECK_CACHE, and GEOIP_INDEX_CACHE GeoIPOptions C API settings,
respectively. Defaults to 0 (GEOIP_STANDARD).

country The name of the GeoIP country data file. Defaults to GeoIP.dat. Setting this keyword
overrides the GEOIP_COUNTRY settings attribute.

city The name of the GeoIP city data file. Defaults to GeoLiteCity.dat. Setting this keyword
overrides the GEOIP_CITY settings attribute.

GeoIP Methods

Querying All the following querying routines may take either a string IP address or a fully qualified domain name
(FQDN). For example, both ’24.124.1.80’ and ’djangoproject.com’ would be valid query parameters.

GeoIP.city(query)

Returns a dictionary of city information for the given query. Some of the values in the dictionary may be undefined
(None).

GeoIPcountry(query)

Returns a dictionary with the country code and country for the given query.

GeoIP.country_code(query)

Returns only the country code corresponding to the query.

GeoIP.country_name(query)

Returns only the country name corresponding to the query.

6.2. contrib packages 515

Django Documentation, Release 1.2.7

Coordinate Retrieval
GeoIP.coords(query)
Returns a coordinate tuple of (longitude, latitude).

GeoIP.lon_lat(query)

Returns a coordinate tuple of (longitude, latitude).

GeoIP.lat_lon(query)

Returns a coordinate tuple of (latitude, longitude),

GeoIP.geos(query)

Returns a django.contrib.gis.geos.Point object corresponding to the query.

Database Information
GeoIP.country_info
This property returns information about the GeoIP country database.

GeoIP.city_info

This property returns information about the GeoIP city database.

GeoIP.info

This property returns information about all GeoIP databases (both city and country).

GeoIP-Python API compatibility methods These methods exist to ease compatibility with any code using Max-
Mind’s existing Python API.

classmethod GeoIP.open(path, cache)

This classmethod instantiates the GeoIP object from the given database path and given cache setting.

GeoIP.region_by_addr(query)

GeoIP.region_by_name(query)

GeoIP.record_by_addr(query)

GeoIP.record_by_name(query)

GeoIP.country_code_by_addr(query)

GeoIP.country_code_by_name(query)

GeoIP.country_name_by_addr(query)

GeoIP.country_name_by_name(query)

LayerMapping data import utility

The LayerMapping class provides a way to map the contents of vector spatial data files (e.g. shapefiles) intoto
GeoDjango models.

This utility grew out of the author’s personal needs to eliminate the code repetition that went into pulling geometries
and fields out of a vector layer, converting to another coordinate system (e.g. WGS84), and then inserting into a
GeoDjango model.

Note: Use of LayerMapping requires GDAL.

516 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Warning: GIS data sources, like shapefiles, may be very large. If you find that LayerMapping is using too
much memory, set DEBUG to False in your settings. When DEBUG is set to True, Django automatically logs
every SQL query – thus, when SQL statements contain geometries, it is easy to consume more memory than is
typical.

Example

1. You need a GDAL-supported data source, like a shapefile (here we’re using a simple polygon shapefile,
test_poly.shp, with three features):

>>> from django.contrib.gis.gdal import DataSource
>>> ds = DataSource(’test_poly.shp’)
>>> layer = ds[0]
>>> print layer.fields # Exploring the fields in the layer, we only want the ’str’ field.
[’float’, ’int’, ’str’]
>>> print len(layer) # getting the number of features in the layer (should be 3)
3
>>> print layer.geom_type # Should be ’Polygon’
Polygon
>>> print layer.srs # WGS84 in WKT
GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",
SPHEROID["WGS_1984",6378137,298.257223563]],

PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]]

2. Now we define our corresponding Django model (make sure to use syncdb):

from django.contrib.gis.db import models

class TestGeo(models.Model):
name = models.CharField(max_length=25) # corresponds to the ’str’ field
poly = models.PolygonField(srid=4269) # we want our model in a different SRID
objects = models.GeoManager()
def __unicode__(self):

return ’Name: %s’ % self.name

3. Use LayerMapping to extract all the features and place them in the database:

>>> from django.contrib.gis.utils import LayerMapping
>>> from geoapp.models import TestGeo
>>> mapping = {’name’ : ’str’, # The ’name’ model field maps to the ’str’ layer field.

’poly’ : ’POLYGON’, # For geometry fields use OGC name.
} # The mapping is a dictionary

>>> lm = LayerMapping(TestGeo, ’test_poly.shp’, mapping)
>>> lm.save(verbose=True) # Save the layermap, imports the data.
Saved: Name: 1
Saved: Name: 2
Saved: Name: 3

Here, LayerMapping just transformed the three geometries from the shapefile in their original spatial reference
system (WGS84) to the spatial reference system of the GeoDjango model (NAD83). If no spatial reference system is
defined for the layer, use the source_srs keyword with a SpatialReference object to specify one.

LayerMapping API
class LayerMapping(model, data_source, mapping[, layer=0, source_srs=None, encoding=None, transac-

tion_mode=’commit_on_success’, transform=True, unique=True, using=’default’])

6.2. contrib packages 517

Django Documentation, Release 1.2.7

The following are the arguments and keywords that may be used during instantiation of LayerMapping objects.

Argu-
ment

Description

model The geographic model, not an instance.
data_sourceThe path to the OGR-supported data source file (e.g., a shapefile). Also accepts

django.contrib.gis.gdal.DataSource instances.
mapping A dictionary: keys are strings corresponding to the model field, and values correspond to string field

names for the OGR feature, or if the model field is a geographic then it should correspond to the
OGR geometry type, e.g., ’POINT’, ’LINESTRING’, ’POLYGON’.

Keyword
Arguments
layer The index of the layer to use from the Data Source (defaults to 0)
source_srs Use this to specify the source SRS manually (for example, some shapefiles don’t come with a

‘.prj’ file). An integer SRID, WKT or PROJ.4 strings, and
django.contrib.gis.gdal.SpatialReference objects are accepted.

encoding Specifies the character set encoding of the strings in the OGR data source. For example,
’latin-1’, ’utf-8’, and ’cp437’ are all valid encoding parameters.

transaction_modeMay be ’commit_on_success’ (default) or ’autocommit’.
transform Setting this to False will disable coordinate transformations. In other words, geometries will be

inserted into the database unmodified from their original state in the data source.
unique Setting this to the name, or a tuple of names, from the given model will create models unique

only to the given name(s). Geometries will from each feature will be added into the collection
associated with the unique model. Forces the transaction mode to be ’autocommit’.

using New in version 1.2. Sets the database to use when importing spatial data. Default is ’default’

save() Keyword Arguments
LayerMapping.save([verbose=False, fid_range=False, step=False, progress=False, silent=False,

stream=sys.stdout, strict=False])
The save() method also accepts keywords. These keywords are used for controlling output logging, error handling,
and for importing specific feature ranges.

Save Keyword
Arguments

Description

fid_range May be set with a slice or tuple of (begin, end) feature ID’s to map from the data source. In
other words, this keyword enables the user to selectively import a subset range of features in
the geographic data source.

progress When this keyword is set, status information will be printed giving the number of features
processed and successfully saved. By default, progress information will be printed every 1000
features processed, however, this default may be overridden by setting this keyword with an
integer for the desired interval.

silent By default, non-fatal error notifications are printed to sys.stdout, but this keyword may be
set to disable these notifications.

step If set with an integer, transactions will occur at every step interval. For example, if
step=1000, a commit would occur after the 1,000th feature, the 2,000th feature etc.

stream Status information will be written to this file handle. Defaults to using sys.stdout, but any
object with a write method is supported.

strict Execution of the model mapping will cease upon the first error encountered. The default value
(False) behavior is to attempt to continue.

verbose If set, information will be printed subsequent to each model save executed on the database.

Troubleshooting

518 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Running out of memory As noted in the warning at the top of this section, Django stores all SQL queries when
DEBUG=True. Set DEBUG=False in your settings, and this should stop excessive memory use when running
LayerMapping scripts.

MySQL: max_allowed_packet error If you encounter the following error when using LayerMapping and
MySQL:

OperationalError: (1153, "Got a packet bigger than ’max_allowed_packet’ bytes")

Then the solution is to increase the value of the max_allowed_packet setting in your MySQL configuration.
For example, the default value may be something low like one megabyte – the setting may be modified in MySQL’s
configuration file (my.cnf) in the [mysqld] section:

max_allowed_packet = 10M

OGR Inspection

ogrinspect
ogrinspect(data_source, model_name[, **kwargs])

mapping
mapping(data_source[, geom_name=’geom’, layer_key=0, multi_geom=False])

GeoIP

Interface to the MaxMind GeoIP library for performing IP-based geolocation from GeoDjango. See GeoIP reference
documentation for more information.

LayerMapping

The LayerMapping simplifies the process of importing spatial data and attributes into your GeoDjango models.

GeoDjango Management Commands

inspectdb

django-admin.py inspectdb

When django.contrib.gis is in your INSTALLED_APPS, the inspectdb management command is over-
ridden with one from GeoDjango. The overridden command is spatially-aware, and places geometry fields in the
auto-generated model definition, where appropriate.

ogrinspect <data_source> <model_name>

django-admin.py ogrinspect

The ogrinpsect management command will inspect the given OGR-compatible DataSource (e.g., a shapefile)
and will output a GeoDjango model with the given model name. There’s a detailed example of using ogrinspect
in the tutorial.

6.2. contrib packages 519

Django Documentation, Release 1.2.7

-blank <blank_field(s)>
Use a comma separated list of OGR field names to add the blank=True keyword option to the field definition.
Set with true to apply to all applicable fields.

-decimal <decimal_field(s)>
Use a comma separated list of OGR float fields to generate DecimalField instead of the default
FloatField. Set to true to apply to all OGR float fields.

-geom-name <name>
Specifies the model attribute name to use for the geometry field. Defaults to ’geom’.

-layer <layer>
The key for specifying which layer in the OGR DataSource source to use. Defaults to 0 (the first layer). May
be an integer or a string identifier for the Layer.

-mapping
Automatically generate a mapping dictionary for use with LayerMapping.

-multi-geom
When generating the geometry field, treat it as a geometry collection. For example, if this setting is enabled
then a MultiPolygonField will be placed in the generated model rather than PolygonField.

-name-field <name_field>
Generates a __unicode__ routine on the model that will return the the given field name.

-no-imports
Suppresses the from django.contrib.gis.db import models import statement.

-null <null_field(s)>
Use a comma separated list of OGR field names to add the null=True keyword option to the field definition.
Set with true to apply to all applicable fields.

-srid
The SRID to use for the geometry field. If not set, ogrinspect attempts to automatically determine of the
SRID of the data source.

GeoDjango’s admin site

GeoModelAdmin

class GeoModelAdmin

default_lon

The default center longitude.

default_lat

The default center latitude.

default_zoom

The default zoom level to use. Defaults to 18.

extra_js

Sequence of URLs to any extra JavaScript to include.

map_template

520 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Override the template used to generate the JavaScript slippy map. Default is
’gis/admin/openlayers.html’.

map_width

Width of the map, in pixels. Defaults to 600.

map_height

Height of the map, in pixels. Defaults to 400.

openlayers_url

Link to the URL of the OpenLayers JavaScript. Defaults to ’http://openlayers.org/api/2.8/OpenLayers.js’.

modifiable

Defaults to False. When set to True, disables editing of existing geometry fields in the admin.

Note: This is different from adding the geometry field to readonly_fields, which will only display the
WKT of the geometry. Setting modifiable=False, actually displays the geometry in a map, but disables
the ability to edit its vertices.

OSMGeoAdmin

class OSMGeoAdmin
A subclass of GeoModelAdmin that uses a spherical mercator projection with OpenStreetMap street data tiles.
See the OSMGeoAdmin introduction in the tutorial for a usage example.

Geographic Feeds

GeoDjango has its own Feed subclass that may embed location information in RSS/Atom feeds formatted according
to either the Simple GeoRSS or W3C Geo standards. Because GeoDjango’s syndication API is a superset of Django’s,
please consult Django’s syndication documentation for details on general usage.

Example

API Reference

Feed Subclass
class Feed

In addition to methods provided by the django.contrib.syndication.feeds.Feed base class,
GeoDjango’s Feed class provides the following overrides. Note that these overrides may be done in multi-
ple ways:

from django.contrib.gis.feeds import Feed

class MyFeed(Feed):

First, as a class attribute.
geometry = ...
item_geometry = ...

Also a function with no arguments

6.2. contrib packages 521

http://openstreetmap.org/
http://georss.org/1.0#simple
http://www.w3.org/2003/01/geo/

Django Documentation, Release 1.2.7

def geometry(self):
...

def item_geometry(self):
...

And as a function with a single argument
def geometry(self, obj):

...

def item_geometry(self, item):
...

geometry(obj)

Takes the object returned by get_object() and returns the feed’s geometry. Typically this is a
GEOSGeometry instance, or can be a tuple to represent a point or a box. For example:

class ZipcodeFeed(Feed):

def geometry(self, obj):
Can also return: ‘obj.poly‘, and ‘obj.poly.centroid‘.
return obj.poly.extent # tuple like: (X0, Y0, X1, Y1).

item_geometry(item)

Set this to return the geometry for each item in the feed. This can be a GEOSGeometry instance, or a tuple that
represents a point coordinate or bounding box. For example:

class ZipcodeFeed(Feed):

def item_geometry(self, obj):
Returns the polygon.
return obj.poly

SyndicationFeed Subclasses The following django.utils.feedgenerator.SyndicationFeed
subclasses are available:

class GeoRSSFeed

class GeoAtom1Feed

class W3CGeoFeed

Note: W3C Geo formatted feeds only support PointField geometries.

Geographic Sitemaps

Google’s sitemap protocol has been recently extended to support geospatial content. 32 This includes the addition
of the <url> child element <geo:geo>, which tells Google that the content located at the URL is geographic in
nature. 33

32 Google, Inc., What is a Geo Sitemap?.
33 Google, Inc., Submit Your Geo Content to Google.

522 Chapter 6. API Reference

http://www.w3.org/2003/01/geo/
http://www.google.com/support/webmasters/bin/answer.py?answer=94554
http://code.google.com/apis/kml/documentation/kmlSearch.html

Django Documentation, Release 1.2.7

Example

Reference

KMLSitemap

KMZSitemap

GeoRSSSitemap

Testing GeoDjango Apps

Changed in version 1.2: Please, see the release notes In Django 1.2, the addition of Spatial Backends simplified the
process of testing GeoDjango applications. Specifically, testing GeoDjango applications is now the same as Testing
Django applications.

Included in this documentation are some additional notes and settings for PostGIS and SpatiaLite users.

Note: Django 1.1 users are still required to use a custom TEST_RUNNER. See the Testing GeoDjango Applications
in 1.1 section for more details.

PostGIS

Settings
Note: The settings below have sensible defaults, and shouldn’t require manual setting.

POSTGIS_TEMPLATE New in version 1.1: Please, see the release notesChanged in version 1.2: Please, see the
release notes This setting may be used to customize the name of the PostGIS template database to use. In Django
versions 1.2 and above, it automatically defaults to ’template_postgis’ (the same name used in the installation
documentation).

Note: Django 1.1 users will still have to define the POSTGIS_TEMPLATE with a value, for example:

POSTGIS_TEMPLATE=’template_postgis’

POSTGIS_VERSION New in version 1.1: Please, see the release notes When GeoDjango’s spatial backend ini-
tializes on PostGIS, it has to perform a SQL query to determine the version in order to figure out what features are
available. Advanced users wishing to prevent this additional query may set the version manually using a 3-tuple of in-
tegers specifying the major, minor, and subminor version numbers for PostGIS. For example, to configure for PostGIS
1.5.2 you would use:

POSTGIS_VERSION = (1, 5, 2)

Obtaining Sufficient Privileges Depending on your configuration, this section describes several methods to config-
ure a database user with sufficient privileges to run tests for GeoDjango applications on PostgreSQL. If your spatial
database template was created like in the instructions, then your testing database user only needs to have the ability to
create databases. In other configurations, you may be required to use a database superuser.

6.2. contrib packages 523

Django Documentation, Release 1.2.7

Create Database User To make database user with the ability to create databases, use the following command:

$ createuser --createdb -R -S <user_name>

The -R -S flags indicate that we do not want the user to have the ability to create additional users (roles) or to be a
superuser, respectively.

Alternatively, you may alter an existing user’s role from the SQL shell (assuming this is done from an existing supe-
ruser account):

postgres# ALTER ROLE <user_name> CREATEDB NOSUPERUSER NOCREATEROLE;

Create Database Superuser This may be done at the time the user is created, for example:

$ createuser --superuser <user_name>

Or you may alter the user’s role from the SQL shell (assuming this is done from an existing superuser account):

postgres# ALTER ROLE <user_name> SUPERUSER;

Create Local PostgreSQL Database

1. Initialize database: initdb -D /path/to/user/db

2. If there’s already a Postgres instance on the machine, it will need to use a different TCP port than 5432. Edit
postgresql.conf (in /path/to/user/db) to change the database port (e.g. port = 5433).

3. Start this database pg_ctl -D /path/to/user/db start

Windows On Windows platforms the pgAdmin III utility may also be used as a simple way to add superuser privi-
leges to your database user.

By default, the PostGIS installer on Windows includes a template spatial database entitled template_postgis.

SpatiaLite

New in version 1.1: Please, see the release notes You will need to download the initialization SQL script for SpatiaLite:

$ wget http://www.gaia-gis.it/spatialite/init_spatialite-2.3.zip
$ unzip init_spatialite-2.3.zip

If init_spatialite-2.3.sql is in the same path as your project’s manage.py, then all you have to do is:

$ python manage.py test

Settings

SPATIALITE_SQL New in version 1.1: Please, see the release notes By default, the GeoDjango test runner looks
for the SpatiaLite SQL in the same directory where it was invoked (by default the same directory where manage.py
is located). If you want to use a different location, then you may add the following to your settings:

SPATIALITE_SQL=’/path/to/init_spatialite-2.3.sql’

524 Chapter 6. API Reference

http://www.gaia-gis.it/spatialite/init_spatialite-2.3.zip

Django Documentation, Release 1.2.7

Testing GeoDjango Applications in 1.1

In Django 1.1, to accommodate the extra steps required to scaffalod a spatial database automatically, a test runner
customized for GeoDjango must be used. To use this runner, configure TEST_RUNNER as follows:

TEST_RUNNER=’django.contrib.gis.tests.run_tests’

Note: In order to create a spatial database, the USER setting (or TEST_USER, if optionally defined on Oracle)
requires elevated privileges. When using PostGIS or MySQL, the database user must have at least the ability to create
databases. When testing on Oracle, the user should be a superuser.

GeoDjango Tests

Changed in version 1.2.4: Please, see the release notes GeoDjango’s test suite may be run in one of two ways, either
by itself or with the rest of Django’s Unit tests.

Note: The TEST_RUNNER previously used to execute the GeoDjango test
suite,:func:django.contrib.gis.tests.run_gis_tests, was deprecated in favor of the
django.contrib.gis.tests.GeoDjangoTestSuiteRunner class.

Run only GeoDjango tests To run only the tests for GeoDjango, the TEST_RUNNER setting must be changed to
use the GeoDjangoTestSuiteRunner:

TEST_RUNNER = ’django.contrib.gis.tests.GeoDjangoTestSuiteRunner’

Example First, you’ll need a bare-bones settings file, like below, that is customized with your spatial database name
and user:

TEST_RUNNER = ’django.contrib.gis.tests.GeoDjangoTestSuiteRunner’

DATABASES = {
’default’: {

’ENGINE’: ’django.contrib.gis.db.backends.postgis’,
’NAME’: ’a_spatial_database’,
’USER’: ’db_user’

}
}

Assuming the above is in a file called postgis.py that is in the the same directory as manage.py of your Django
project, then you may run the tests with the following command:

$ python manage.py test --settings=postgis

Run with runtests.py To have the GeoDjango tests executed when running the Django test suite with
runtests.py all of the databases in the settings file must be using one of the spatial database backends.

Warning: Do not change the TEST_RUNNER setting when running the GeoDjango tests with runtests.py.

6.2. contrib packages 525

Django Documentation, Release 1.2.7

Example The following is an example bare-bones settings file with spatial backends that can be used to run the
entire Django test suite, including those in django.contrib.gis:

DATABASES = {
’default’: {

’ENGINE’: ’django.contrib.gis.db.backends.postgis’,
’NAME’: ’geodjango’,
’USER’: ’geodjango’,

},
’other’: {

’ENGINE’: ’django.contrib.gis.db.backends.postgis’,
’NAME’: ’other’,
’USER’: ’geodjango’,

}
}

Assuming the settings above were in a postgis.py file in the same directory as runtests.py, then all Django
and GeoDjango tests would be performed when executing the command:

$./runtests.py --settings=postgis

Deploying GeoDjango

Warning: GeoDjango uses the GDAL geospatial library which is not thread safe at this time. Thus, it is highly
recommended to not use threading when deploying – in other words, use a an appropriate configuration of Apache
or the prefork method when using FastCGI through another Web server.

Apache

In this section there are some example VirtualHost directives for when deploying using either mod_python or
mod_wsgi. At this time, we recommend mod_wsgi, as it is now officially recommended way to deploy Django
applications with Apache. Moreover, if mod_python is used, then a prefork version of Apache must also be used.
As long as mod_wsgi is configured correctly, it does not matter whether the version of Apache is prefork or worker.

Note: The Alias and Directory configurations in the examples below use an example path to a system-wide
installation folder of Django. Substitute in an appropriate location, if necessary, as it may be different than the path on
your system.

mod_wsgi Example:

<VirtualHost *:80>
WSGIDaemonProcess geodjango user=geo group=geo processes=5 threads=1
WSGIProcessGroup geodjango
WSGIScriptAlias / /home/geo/geodjango/world.wsgi

Alias /media/ "/usr/lib/python2.5/site-packages/django/contrib/admin/media/"
<Directory "/usr/lib/python2.5/site-packages/django/contrib/admin/media/">
Order allow,deny
Options Indexes
Allow from all
IndexOptions FancyIndexing

</Directory>

526 Chapter 6. API Reference

Django Documentation, Release 1.2.7

</VirtualHost>

Warning: If the WSGIDaemonProcess attribute threads is not set to 1, then Apache may crash when
running your GeoDjango application. Increase the number of processes instead.

For more information, please consult Django’s mod_wsgi documentation.

mod_python Example:

<VirtualHost *:80>

<Location "/">
SetHandler mod_python
PythonHandler django.core.handlers.modpython
SetEnv DJANGO_SETTINGS_MODULE world.settings
PythonDebug On
PythonPath "[’/var/www/apps’] + sys.path"

</Location>

Alias /media/ "/usr/lib/python2.5/site-packages/django/contrib/admin/media/"
<Location "/media">
SetHandler None

</Location>

</VirtualHost>

Warning: When using mod_python you must be using a prefork version of Apache, or else your GeoDjango
application may crash Apache.

For more information, please consult Django’s mod_python documentation.

Lighttpd

FastCGI

Nginx

FastCGI

6.2.10 django.contrib.humanize

A set of Django template filters useful for adding a “human touch” to data.

To activate these filters, add ’django.contrib.humanize’ to your INSTALLED_APPS setting. Once you’ve
done that, use {% load humanize %} in a template, and you’ll have access to the following filters.

apnumber

For numbers 1-9, returns the number spelled out. Otherwise, returns the number. This follows Associated Press style.

Examples:

6.2. contrib packages 527

Django Documentation, Release 1.2.7

• 1 becomes one.

• 2 becomes two.

• 10 becomes 10.

You can pass in either an integer or a string representation of an integer.

intcomma

Converts an integer to a string containing commas every three digits.

Examples:

• 4500 becomes 4,500.

• 45000 becomes 45,000.

• 450000 becomes 450,000.

• 4500000 becomes 4,500,000.

You can pass in either an integer or a string representation of an integer.

intword

Converts a large integer to a friendly text representation. Works best for numbers over 1 million.

Examples:

• 1000000 becomes 1.0 million.

• 1200000 becomes 1.2 million.

• 1200000000 becomes 1.2 billion.

Values up to 1000000000000000 (one quadrillion) are supported.

You can pass in either an integer or a string representation of an integer.

naturalday

For dates that are the current day or within one day, return “today”, “tomorrow” or “yesterday”, as appropriate.
Otherwise, format the date using the passed in format string.

Argument: Date formatting string as described in the date tag.

Examples (when ‘today’ is 17 Feb 2007):

• 16 Feb 2007 becomes yesterday.

• 17 Feb 2007 becomes today.

• 18 Feb 2007 becomes tomorrow.

• Any other day is formatted according to given argument or the DATE_FORMAT setting if no argument is given.

528 Chapter 6. API Reference

Django Documentation, Release 1.2.7

ordinal

Converts an integer to its ordinal as a string.

Examples:

• 1 becomes 1st.

• 2 becomes 2nd.

• 3 becomes 3rd.

You can pass in either an integer or a string representation of an integer.

6.2.11 The “local flavor” add-ons

Following its “batteries included” philosophy, Django comes with assorted pieces of code that are useful for particular
countries or cultures. These are called the “local flavor” add-ons and live in the django.contrib.localflavor
package.

Inside that package, country- or culture-specific code is organized into subpackages, named using ISO 3166 country
codes.

Most of the localflavor add-ons are localized form components deriving from the forms framework – for example,
a USStateField that knows how to validate U.S. state abbreviations, and a FISocialSecurityNumber that
knows how to validate Finnish social security numbers.

To use one of these localized components, just import the relevant subpackage. For example, here’s how you can
create a form with a field representing a French telephone number:

from django import forms
from django.contrib.localflavor.fr.forms import FRPhoneNumberField

class MyForm(forms.Form):
my_french_phone_no = FRPhoneNumberField()

Supported countries

Countries currently supported by localflavor are:

• Argentina

• Australia

• Austria

• Brazil

• Canada

• Chile

• Czech

• Finland

• France

• Germany

• Iceland

• India

6.2. contrib packages 529

http://www.iso.org/iso/country_codes/iso_3166_code_lists/english_country_names_and_code_elements.htm
http://www.iso.org/iso/country_codes/iso_3166_code_lists/english_country_names_and_code_elements.htm

Django Documentation, Release 1.2.7

• Indonesia

• Ireland

• Italy

• Japan

• Kuwait

• Mexico

• The Netherlands

• Norway

• Peru

• Poland

• Portugal

• Romania

• Slovakia

• South Africa

• Spain

• Sweden

• Switzerland

• United Kingdom

• United States of America

• Uruguay

The django.contrib.localflavor package also includes a generic subpackage, containing useful code
that is not specific to one particular country or culture. Currently, it defines date, datetime and split datetime input
fields based on those from forms, but with non-US default formats. Here’s an example of how to use them:

from django import forms
from django.contrib.localflavor import generic

class MyForm(forms.Form):
my_date_field = generic.forms.DateField()

Adding flavors

We’d love to add more of these to Django, so please create a ticket with any code you’d like to contribute. One thing
we ask is that you please use Unicode objects (u’mystring’) for strings, rather than setting the encoding in the file.
See any of the existing flavors for examples.

Argentina (ar)

class ar.forms.ARPostalCodeField
A form field that validates input as either a classic four-digit Argentinian postal code or a CPA.

class ar.forms.ARDNIField
A form field that validates input as a Documento Nacional de Identidad (DNI) number.

530 Chapter 6. API Reference

http://code.djangoproject.com/simpleticket
http://www.correoargentino.com.ar/consulta_cpa/home.php

Django Documentation, Release 1.2.7

class ar.forms.ARCUITField
A form field that validates input as a Codigo Unico de Identificacion Tributaria (CUIT) number.

class ar.forms.ARProvinceSelect
A Select widget that uses a list of Argentina’s provinces and autonomous cities as its choices.

Australia (au)

class au.forms.AUPostCodeField
A form field that validates input as an Australian postcode.

class au.forms.AUPhoneNumberField
A form field that validates input as an Australian phone number. Valid numbers have ten digits.

class au.forms.AUStateSelect
A Select widget that uses a list of Australian states/territories as its choices.

Austria (at)

class at.forms.ATZipCodeField
A form field that validates its input as an Austrian zip code.

class at.forms.ATStateSelect
A Select widget that uses a list of Austrian states as its choices.

class at.forms.ATSocialSecurityNumberField
A form field that validates its input as an Austrian social security number.

Brazil (br)

class br.forms.BRPhoneNumberField
A form field that validates input as a Brazilian phone number, with the format XX-XXXX-XXXX.

class br.forms.BRZipCodeField
A form field that validates input as a Brazilian zip code, with the format XXXXX-XXX.

class br.forms.BRStateSelect
A Select widget that uses a list of Brazilian states/territories as its choices.

class br.forms.BRCPFField
A form field that validates input as Brazilian CPF.

Input can either be of the format XXX.XXX.XXX-VD or be a group of 11 digits.

class br.forms.BRCNPJField
A form field that validates input as Brazilian CNPJ.

Input can either be of the format XX.XXX.XXX/XXXX-XX or be a group of 14 digits.

Canada (ca)

class ca.forms.CAPhoneNumberField
A form field that validates input as a Canadian phone number, with the format XXX-XXX-XXXX.

class ca.forms.CAPostalCodeField
A form field that validates input as a Canadian postal code, with the format XXX XXX.

6.2. contrib packages 531

http://en.wikipedia.org/wiki/Cadastro_de_Pessoas_F%C3%ADsicas
http://en.wikipedia.org/wiki/National_identification_number#Brazil

Django Documentation, Release 1.2.7

class ca.forms.CAProvinceField
A form field that validates input as a Canadian province name or abbreviation.

class ca.forms.CASocialInsuranceNumberField
A form field that validates input as a Canadian Social Insurance Number (SIN). A valid number must have the
format XXX-XXX-XXX and pass a Luhn mod-10 checksum.

class ca.forms.CAProvinceSelect
A Select widget that uses a list of Canadian provinces and territories as its choices.

Chile (cl)

class cl.forms.CLRutField
A form field that validates input as a Chilean national identification number (‘Rol Unico Tributario’ or RUT).
The valid format is XX.XXX.XXX-X.

class cl.forms.CLRegionSelect
A Select widget that uses a list of Chilean regions (Regiones) as its choices.

Czech (cz)

class cz.forms.CZPostalCodeField
A form field that validates input as a Czech postal code. Valid formats are XXXXX or XXX XX, where X is a
digit.

class cz.forms.CZBirthNumberField
A form field that validates input as a Czech Birth Number. A valid number must be in format XXXXXX/XXXX
(slash is optional).

class cz.forms.CZICNumberField
A form field that validates input as a Czech IC number field.

class cz.forms.CZRegionSelect
A Select widget that uses a list of Czech regions as its choices.

Finland (fi)

class fi.forms.FISocialSecurityNumber
A form field that validates input as a Finnish social security number.

class fi.forms.FIZipCodeField
A form field that validates input as a Finnish zip code. Valid codes consist of five digits.

class fi.forms.FIMunicipalitySelect
A Select widget that uses a list of Finnish municipalities as its choices.

France (fr)

class fr.forms.FRPhoneNumberField
A form field that validates input as a French local phone number. The correct format is 0X XX XX XX XX.
0X.XX.XX.XX.XX and 0XXXXXXXXX validate but are corrected to 0X XX XX XX XX.

class fr.forms.FRZipCodeField
A form field that validates input as a French zip code. Valid codes consist of five digits.

532 Chapter 6. API Reference

http://en.wikipedia.org/wiki/Luhn_algorithm

Django Documentation, Release 1.2.7

class fr.forms.FRDepartmentSelect
A Select widget that uses a list of French departments as its choices.

Germany (de)

class de.forms.DEIdentityCardNumberField
A form field that validates input as a German identity card number (Personalausweis). Valid numbers have the
format XXXXXXXXXXX-XXXXXXX-XXXXXXX-X, with no group consisting entirely of zeroes.

class de.forms.DEZipCodeField
A form field that validates input as a German zip code. Valid codes consist of five digits.

class de.forms.DEStateSelect
A Select widget that uses a list of German states as its choices.

The Netherlands (nl)

class nl.forms.NLPhoneNumberField
A form field that validates input as a Dutch telephone number.

class nl.forms.NLSofiNumberField
A form field that validates input as a Dutch social security number (SoFI/BSN).

class nl.forms.NLZipCodeField
A form field that validates input as a Dutch zip code.

class nl.forms.NLProvinceSelect
A Select widget that uses a list of Dutch provinces as its list of choices.

Iceland (is_)

class is_.forms.ISIdNumberField
A form field that validates input as an Icelandic identification number (kennitala). The format is XXXXXX-
XXXX.

class is_.forms.ISPhoneNumberField
A form field that validates input as an Icelandtic phone number (seven digits with an optional hyphen or space
after the first three digits).

class is_.forms.ISPostalCodeSelect
A Select widget that uses a list of Icelandic postal codes as its choices.

India (in_)

class in.forms.INStateField
A form field that validates input as an Indian state/territory name or abbreviation. Input is normalized to the
standard two-letter vehicle registration abbreviation for the given state or territory.

class in.forms.INZipCodeField
A form field that validates input as an Indian zip code, with the format XXXXXXX.

class in.forms.INStateSelect
A Select widget that uses a list of Indian states/territories as its choices.

6.2. contrib packages 533

http://de.wikipedia.org/wiki/Personalausweis

Django Documentation, Release 1.2.7

Ireland (ie)

class ie.forms.IECountySelect
A Select widget that uses a list of Irish Counties as its choices.

Indonesia (id)

class id.forms.IDPostCodeField
A form field that validates input as an Indonesian post code field.

class id.forms.IDProvinceSelect
A Select widget that uses a list of Indonesian provinces as its choices.

class id.forms.IDPhoneNumberField
A form field that validates input as an Indonesian telephone number.

class id.forms.IDLicensePlatePrefixSelect
A Select widget that uses a list of Indonesian license plate prefix code as its choices.

class id.forms.IDLicensePlateField
A form field that validates input as an Indonesian vehicle license plate.

class id.forms.IDNationalIdentityNumberField
A form field that validates input as an Indonesian national identity number (NIK/KTP). The output will be in the
format of ‘XX.XXXX.DDMMYY.XXXX’. Dots or spaces can be used in the input to break down the numbers.

Italy (it)

class it.forms.ITSocialSecurityNumberField
A form field that validates input as an Italian social security number (codice fiscale).

class it.forms.ITVatNumberField
A form field that validates Italian VAT numbers (partita IVA).

class it.forms.ITZipCodeField
A form field that validates input as an Italian zip code. Valid codes must have five digits.

class it.forms.ITProvinceSelect
A Select widget that uses a list of Italian provinces as its choices.

class it.forms.ITRegionSelect
A Select widget that uses a list of Italian regions as its choices.

Japan (jp)

class jp.forms.JPPostalCodeField
A form field that validates input as a Japanese postcode. It accepts seven digits, with or without a hyphen.

class jp.forms.JPPrefectureSelect
A Select widget that uses a list of Japanese prefectures as its choices.

Kuwait (kw)

class kw.forms.KWCivilIDNumberField
A form field that validates input as a Kuwaiti Civil ID number. A valid Civil ID number must obey the following
rules:

534 Chapter 6. API Reference

http://en.wikipedia.org/wiki/Indonesian_identity_card
http://www.agenziaentrate.it/ilwwcm/connect/Nsi/Servizi/Codice+fiscale+-+tessera+sanitaria/NSI+Informazioni+sulla+codificazione+delle+persone+fisiche

Django Documentation, Release 1.2.7

•The number consist of 12 digits.

•The birthdate of the person is a valid date.

•The calculated checksum equals to the last digit of the Civil ID.

Mexico (mx)

class mx.forms.MXStateSelect
A Select widget that uses a list of Mexican states as its choices.

Norway (no)

class no.forms.NOSocialSecurityNumber
A form field that validates input as a Norwegian social security number (personnummer).

class no.forms.NOZipCodeField
A form field that validates input as a Norwegian zip code. Valid codes have four digits.

class no.forms.NOMunicipalitySelect
A Select widget that uses a list of Norwegian municipalities (fylker) as its choices.

Peru (pe)

class pe.forms.PEDNIField
A form field that validates input as a DNI (Peruvian national identity) number.

class pe.forms.PERUCField
A form field that validates input as an RUC (Registro Unico de Contribuyentes) number. Valid RUC numbers
have 11 digits.

class pe.forms.PEDepartmentSelect
A Select widget that uses a list of Peruvian Departments as its choices.

Poland (pl)

class pl.forms.PLPESELField
A form field that validates input as a Polish national identification number (PESEL).

class pl.forms.PLREGONField
A form field that validates input as a Polish National Official Business Register Number (REGON),
having either seven or nine digits. The checksum algorithm used for REGONs is documented at
http://wipos.p.lodz.pl/zylla/ut/nip-rego.html.

class pl.forms.PLPostalCodeField
A form field that validates input as a Polish postal code. The valid format is XX-XXX, where X is a digit.

class pl.forms.PLNIPField
A form field that validates input as a Polish Tax Number (NIP). Valid formats are XXX-XXX-XX-XX or XX-
XX-XXX-XXX. The checksum algorithm used for NIPs is documented at http://wipos.p.lodz.pl/zylla/ut/nip-
rego.html.

class pl.forms.PLCountySelect
A Select widget that uses a list of Polish administrative units as its choices.

class pl.forms.PLProvinceSelect
A Select widget that uses a list of Polish voivodeships (administrative provinces) as its choices.

6.2. contrib packages 535

http://no.wikipedia.org/wiki/Personnummer
http://en.wikipedia.org/wiki/PESEL
http://www.stat.gov.pl/bip/regon_ENG_HTML.htm
http://wipos.p.lodz.pl/zylla/ut/nip-rego.html
http://wipos.p.lodz.pl/zylla/ut/nip-rego.html
http://wipos.p.lodz.pl/zylla/ut/nip-rego.html

Django Documentation, Release 1.2.7

Portugal (pt)

class pt.forms.PTZipCodeField
A form field that validates input as a Portuguese zip code.

class pt.forms.PTPhoneNumberField
A form field that validates input as a Portuguese phone number. Valid numbers have 9 digits (may include
spaces) or start by 00 or + (international).

Romania (ro)

class ro.forms.ROCIFField
A form field that validates Romanian fiscal identification codes (CIF). The return value strips the leading RO, if
given.

class ro.forms.ROCNPField
A form field that validates Romanian personal numeric codes (CNP).

class ro.forms.ROCountyField
A form field that validates its input as a Romanian county (judet) name or abbreviation. It normalizes the input
to the standard vehicle registration abbreviation for the given county. This field will only accept names written
with diacritics; consider using ROCountySelect as an alternative.

class ro.forms.ROCountySelect
A Select widget that uses a list of Romanian counties (judete) as its choices.

class ro.forms.ROIBANField
A form field that validates its input as a Romanian International Bank Account Number (IBAN). The valid
format is ROXX-XXXX-XXXX-XXXX-XXXX-XXXX, with or without hyphens.

class ro.forms.ROPhoneNumberField
A form field that validates Romanian phone numbers, short special numbers excluded.

class ro.forms.ROPostalCodeField
A form field that validates Romanian postal codes.

Slovakia (sk)

class sk.forms.SKPostalCodeField
A form field that validates input as a Slovak postal code. Valid formats are XXXXX or XXX XX, where X is a
digit.

class sk.forms.SKDistrictSelect
A Select widget that uses a list of Slovak districts as its choices.

class sk.forms.SKRegionSelect
A Select widget that uses a list of Slovak regions as its choices.

South Africa (za)

class za.forms.ZAIDField
A form field that validates input as a South African ID number. Validation uses the Luhn checksum and a
simplistic (i.e., not entirely accurate) check for birth date.

class za.forms.ZAPostCodeField
A form field that validates input as a South African postcode. Valid postcodes must have four digits.

536 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Spain (es)

class es.forms.ESIdentityCardNumberField
A form field that validates input as a Spanish NIF/NIE/CIF (Fiscal Identification Number) code.

class es.forms.ESCCCField
A form field that validates input as a Spanish bank account number (Codigo Cuenta Cliente or CCC). A valid
CCC number has the format EEEE-OOOO-CC-AAAAAAAAAA, where the E, O, C and A digits denote the
entity, office, checksum and account, respectively. The first checksum digit validates the entity and office. The
second checksum digit validates the account. It is also valid to use a space as a delimiter, or to use no delimiter.

class es.forms.ESPhoneNumberField
A form field that validates input as a Spanish phone number. Valid numbers have nine digits, the first of which
is 6, 8 or 9.

class es.forms.ESPostalCodeField
A form field that validates input as a Spanish postal code. Valid codes have five digits, the first two being in the
range 01 to 52, representing the province.

class es.forms.ESProvinceSelect
A Select widget that uses a list of Spanish provinces as its choices.

class es.forms.ESRegionSelect
A Select widget that uses a list of Spanish regions as its choices.

Sweden (se)

class se.forms.SECountySelect
A Select form widget that uses a list of the Swedish counties (län) as its choices.

The cleaned value is the official county code – see http://en.wikipedia.org/wiki/Counties_of_Sweden for a list.

class se.forms.SEOrganisationNumber
A form field that validates input as a Swedish organisation number (organisationsnummer).

It accepts the same input as SEPersonalIdentityField (for sole proprietorships (enskild firma). However, co-
ordination numbers are not accepted.

It also accepts ordinary Swedish organisation numbers with the format NNNNNNNNNN.

The return value will be YYYYMMDDXXXX for sole proprietors, and NNNNNNNNNN for other organisa-
tions.

class se.forms.SEPersonalIdentityNumber
A form field that validates input as a Swedish personal identity number (personnummer).

The correct formats are YYYYMMDD-XXXX, YYYYMMDDXXXX, YYMMDD-XXXX, YYMMDDXXXX
and YYMMDD+XXXX.

A + indicates that the person is older than 100 years, which will be taken into consideration when the date is
validated.

The checksum will be calculated and checked. The birth date is checked to be a valid date.

By default, co-ordination numbers (samordningsnummer) will be accepted. To only allow real personal identity
numbers, pass the keyword argument coordination_number=False to the constructor.

The cleaned value will always have the format YYYYMMDDXXXX.

class se.forms.SEPostalCodeField
A form field that validates input as a Swedish postal code (postnummer). Valid codes consist of five digits
(XXXXX). The number can optionally be formatted with a space after the third digit (XXX XX).

6.2. contrib packages 537

http://en.wikipedia.org/wiki/Counties_of_Sweden

Django Documentation, Release 1.2.7

The cleaned value will never contain the space.

Switzerland (ch)

class ch.forms.CHIdentityCardNumberField
A form field that validates input as a Swiss identity card number. A valid number must
confirm to the X1234567<0 or 1234567890 format and have the correct checksums – see
http://adi.kousz.ch/artikel/IDCHE.htm.

class ch.forms.CHPhoneNumberField
A form field that validates input as a Swiss phone number. The correct format is 0XX XXX XX XX.
0XX.XXX.XX.XX and 0XXXXXXXXX validate but are corrected to 0XX XXX XX XX.

class ch.forms.CHZipCodeField
A form field that validates input as a Swiss zip code. Valid codes consist of four digits.

class ch.forms.CHStateSelect
A Select widget that uses a list of Swiss states as its choices.

United Kingdom (uk)

class uk.forms.UKPostcodeField
A form field that validates input as a UK postcode. The regular expression used is sourced from the schema for
British Standard BS7666 address types at http://www.cabinetoffice.gov.uk/media/291293/bs7666-v2-0.xml.

class uk.forms.UKCountySelect
A Select widget that uses a list of UK counties/regions as its choices.

class uk.forms.UKNationSelect
A Select widget that uses a list of UK nations as its choices.

United States of America (us)

class us.forms.USPhoneNumberField
A form field that validates input as a U.S. phone number.

class us.forms.USSocialSecurityNumberField
A form field that validates input as a U.S. Social Security Number (SSN). A valid SSN must obey the following
rules:

•Format of XXX-XX-XXXX

•No group of digits consisting entirely of zeroes

•Leading group of digits cannot be 666

•Number not in promotional block 987-65-4320 through 987-65-4329

•Number not one known to be invalid due to widespread promotional use or distribution (e.g., the Wool-
worth’s number or the 1962 promotional number)

class us.forms.USStateField
A form field that validates input as a U.S. state name or abbreviation. It normalizes the input to the standard
two-letter postal service abbreviation for the given state.

class us.forms.USZipCodeField
A form field that validates input as a U.S. ZIP code. Valid formats are XXXXX or XXXXX-XXXX.

538 Chapter 6. API Reference

http://adi.kousz.ch/artikel/IDCHE.htm
http://www.cabinetoffice.gov.uk/media/291293/bs7666-v2-0.xml

Django Documentation, Release 1.2.7

class us.forms.USStateSelect
A form Select widget that uses a list of U.S. states/territories as its choices.

class us.models.PhoneNumberField
A CharField that checks that the value is a valid U.S.A.-style phone number (in the format
XXX-XXX-XXXX).

class us.models.USStateField
A model field that forms represent as a forms.USStateField field and stores the two-letter U.S. state
abbreviation in the database.

Uruguay (uy)

class uy.forms.UYCIField
A field that validates Uruguayan ‘Cedula de identidad’ (CI) numbers.

class uy.forms.UYDepartamentSelect
A Select widget that uses a list of Uruguayan departaments as its choices.

6.2.12 django.contrib.markup

Django provides template filters that implement the following markup languages:

• textile – implements Textile – requires PyTextile

• markdown – implements Markdown – requires Python-markdown

• restructuredtext – implements reST (reStructured Text) – requires doc-utils

In each case, the filter expects formatted markup as a string and returns a string representing the marked-up text. For
example, the textile filter converts text that is marked-up in Textile format to HTML.

To activate these filters, add ’django.contrib.markup’ to your INSTALLED_APPS setting. Once you’ve
done that, use {% load markup %} in a template, and you’ll have access to these filters. For more documentation,
read the source code in django/contrib/markup/templatetags/markup.py.

Warning: The output of markup filters is marked “safe” and will not be escaped when rendered in a template.
Always be careful to sanitize your inputs and make sure you are not leaving yourself vulnerable to cross-site
scripting or other types of attacks.

reStructured Text

When using the restructuredtext markup filter you can define a
RESTRUCTUREDTEXT_FILTER_SETTINGS in your django settings to override the default writer settings.
See the restructuredtext writer settings for details on what these settings are.

6.2.13 The messages framework

Django provides full support for cookie- and session-based messaging, for both anonymous and authenticated clients.
The messages framework allows you to temporarily store messages in one request and retrieve them for display in a
subsequent request (usually the next one). Every message is tagged with a specific level that determines its priority
(e.g., info, warning, or error). New in version 1.2: The messages framework was added.

6.2. contrib packages 539

http://en.wikipedia.org/wiki/Textile_%28markup_language%29
http://loopcore.com/python-textile/
http://en.wikipedia.org/wiki/Markdown
http://www.freewisdom.org/projects/python-markdown
http://en.wikipedia.org/wiki/ReStructuredText
http://docutils.sf.net/
http://docutils.sourceforge.net/docs/user/config.html#html4css1-writer

Django Documentation, Release 1.2.7

Enabling messages

Messages are implemented through a middleware class and corresponding context processor.

To enable message functionality, do the following:

• Edit the MIDDLEWARE_CLASSES setting and make sure it contains
’django.contrib.messages.middleware.MessageMiddleware’.

If you are using a storage backend that relies on sessions (the default),
’django.contrib.sessions.middleware.SessionMiddleware’ must be enabled and ap-
pear before MessageMiddleware in your MIDDLEWARE_CLASSES.

• Edit the TEMPLATE_CONTEXT_PROCESSORS setting and make sure it contains
’django.contrib.messages.context_processors.messages’.

• Add ’django.contrib.messages’ to your INSTALLED_APPS setting

The default settings.py created by django-admin.py startproject has
MessageMiddleware activated and the django.contrib.messages app in-
stalled. Also, the default value for TEMPLATE_CONTEXT_PROCESSORS contains
’django.contrib.messages.context_processors.messages’.

If you don’t want to use messages, you can remove the MessageMiddleware line from
MIDDLEWARE_CLASSES, the messages context processor from TEMPLATE_CONTEXT_PROCESSORS
and ’django.contrib.messages’ from your INSTALLED_APPS.

Configuring the message engine

Storage backends

The messages framework can use different backends to store temporary messages. To change which backend is being
used, add a MESSAGE_STORAGE to your settings, referencing the module and class of the storage class. For
example:

MESSAGE_STORAGE = ’django.contrib.messages.storage.cookie.CookieStorage’

The value should be the full path of the desired storage class.

Four storage classes are included:

’django.contrib.messages.storage.session.SessionStorage’ This class stores all messages
inside of the request’s session. It requires Django’s contrib.sessions application.

’django.contrib.messages.storage.cookie.CookieStorage’ This class stores the message data
in a cookie (signed with a secret hash to prevent manipulation) to persist notifications across requests. Old
messages are dropped if the cookie data size would exceed 4096 bytes.

’django.contrib.messages.storage.fallback.FallbackStorage’ This class first uses Cook-
ieStorage for all messages, falling back to using SessionStorage for the messages that could not fit in a single
cookie.

Since it is uses SessionStorage, it also requires Django’s contrib.session application.

’django.contrib.messages.storage.user_messages.LegacyFallbackStorage’ This is the
default temporary storage class.

This class extends FallbackStorage and adds compatibility methods to retrieve any messages stored in the user
Message model by code that has not yet been updated to use the new API. This storage is temporary (because
it makes use of code that is pending deprecation) and will be removed in Django 1.4. At that time, the default

540 Chapter 6. API Reference

Django Documentation, Release 1.2.7

storage will become django.contrib.messages.storage.fallback.FallbackStorage. For
more information, see LegacyFallbackStorage below.

To write your own storage class, subclass the BaseStorage class in
django.contrib.messages.storage.base and implement the _get and _store methods.

LegacyFallbackStorage The LegacyFallbackStorage is a temporary tool to facilitate the transition from the
deprecated user.message_setAPI and will be removed in Django 1.4 according to Django’s standard deprecation
policy. For more information, see the full release process documentation.

In addition to the functionality in the FallbackStorage, it adds a custom, read-only storage class that retrieves
messages from the user Message model. Any messages that were stored in the Message model (e.g., by code that
has not yet been updated to use the messages framework) will be retrieved first, followed by those stored in a cookie
and in the session, if any. Since messages stored in the Message model do not have a concept of levels, they will be
assigned the INFO level by default.

Message levels

The messages framework is based on a configurable level architecture similar to that of the Python logging module.
Message levels allow you to group messages by type so they can be filtered or displayed differently in views and
templates.

The built-in levels (which can be imported from django.contrib.messages directly) are:

Constant Purpose
DEBUG Development-related messages that will be ignored (or removed) in a production deployment
INFO Informational messages for the user
SUCCESS An action was successful, e.g. “Your profile was updated successfully”
WARNING A failure did not occur but may be imminent
ERROR An action was not successful or some other failure occurred

The MESSAGE_LEVEL setting can be used to change the minimum recorded level (or it can be changed per request).
Attempts to add messages of a level less than this will be ignored.

Message tags

Message tags are a string representation of the message level plus any extra tags that were added directly in the view
(see Adding extra message tags below for more details). Tags are stored in a string and are separated by spaces.
Typically, message tags are used as CSS classes to customize message style based on message type. By default, each
level has a single tag that’s a lowercase version of its own constant:

Level Constant Tag
DEBUG debug
INFO info
SUCCESS success
WARNING warning
ERROR error

To change the default tags for a message level (either built-in or custom), set the MESSAGE_TAGS setting to a
dictionary containing the levels you wish to change. As this extends the default tags, you only need to provide tags for
the levels you wish to override:

from django.contrib.messages import constants as messages
MESSAGE_TAGS = {

messages.INFO: ’’,

6.2. contrib packages 541

Django Documentation, Release 1.2.7

50: ’critical’,
}

Using messages in views and templates

Adding a message

To add a message, call:

from django.contrib import messages
messages.add_message(request, messages.INFO, ’Hello world.’)

Some shortcut methods provide a standard way to add messages with commonly used tags (which are usually repre-
sented as HTML classes for the message):

messages.debug(request, ’%s SQL statements were executed.’ % count)
messages.info(request, ’Three credits remain in your account.’)
messages.success(request, ’Profile details updated.’)
messages.warning(request, ’Your account expires in three days.’)
messages.error(request, ’Document deleted.’)

Displaying messages

In your template, use something like:

{% if messages %}
<ul class="messages">

{% for message in messages %}
<li{% if message.tags %} class="{{ message.tags }}"{% endif %}>{{ message }}
{% endfor %}

{% endif %}

If you’re using the context processor, your template should be rendered with a RequestContext. Otherwise, ensure
messages is available to the template context.

Creating custom message levels

Messages levels are nothing more than integers, so you can define your own level constants and use them to create
more customized user feedback, e.g.:

CRITICAL = 50

def my_view(request):
messages.add_message(request, CRITICAL, ’A serious error occurred.’)

When creating custom message levels you should be careful to avoid overloading existing levels. The values for the

built-in levels are:

Level Constant Value
DEBUG 10
INFO 20
SUCCESS 25
WARNING 30
ERROR 40

542 Chapter 6. API Reference

Django Documentation, Release 1.2.7

If you need to identify the custom levels in your HTML or CSS, you need to provide a mapping via the MES-
SAGE_TAGS setting.

Note: If you are creating a reusable application, it is recommended to use only the built-in message levels and not
rely on any custom levels.

Changing the minimum recorded level per-request

The minimum recorded level can be set per request via the set_level method:

from django.contrib import messages

Change the messages level to ensure the debug message is added.
messages.set_level(request, messages.DEBUG)
messages.debug(request, ’Test message...’)

In another request, record only messages with a level of WARNING and higher
messages.set_level(request, messages.WARNING)
messages.success(request, ’Your profile was updated.’) # ignored
messages.warning(request, ’Your account is about to expire.’) # recorded

Set the messages level back to default.
messages.set_level(request, None)

Similarly, the current effective level can be retrieved with get_level:

from django.contrib import messages
current_level = messages.get_level(request)

For more information on how the minimum recorded level functions, see Message levels above.

Adding extra message tags

For more direct control over message tags, you can optionally provide a string containing extra tags to any of the add
methods:

messages.add_message(request, messages.INFO, ’Over 9000!’,
extra_tags=’dragonball’)

messages.error(request, ’Email box full’, extra_tags=’email’)

Extra tags are added before the default tag for that level and are space separated.

Failing silently when the message framework is disabled

If you’re writing a reusable app (or other piece of code) and want to include messaging functionality, but don’t
want to require your users to enable it if they don’t want to, you may pass an additional keyword argument
fail_silently=True to any of the add_message family of methods. For example:

messages.add_message(request, messages.SUCCESS, ’Profile details updated.’,
fail_silently=True)

messages.info(request, ’Hello world.’, fail_silently=True)

Internally, Django uses this functionality in the create, update, and delete generic views so that they work even if the
message framework is disabled.

6.2. contrib packages 543

Django Documentation, Release 1.2.7

Note: Setting fail_silently=True only hides the MessageFailure that would otherwise occur when the
messages framework disabled and one attempts to use one of the add_message family of methods. It does not hide
failures that may occur for other reasons.

Expiration of messages

The messages are marked to be cleared when the storage instance is iterated (and cleared when the response is pro-
cessed).

To avoid the messages being cleared, you can set the messages storage to False after iterating:

storage = messages.get_messages(request)
for message in storage:

do_something_with(message)
storage.used = False

Behavior of parallel requests

Due to the way cookies (and hence sessions) work, the behavior of any backends that make use of cookies or
sessions is undefined when the same client makes multiple requests that set or get messages in parallel. For
example, if a client initiates a request that creates a message in one window (or tab) and then another that fetches
any uniterated messages in another window, before the first window redirects, the message may appear in the second
window instead of the first window where it may be expected.

In short, when multiple simultaneous requests from the same client are involved, messages are not guaranteed to be
delivered to the same window that created them nor, in some cases, at all. Note that this is typically not a problem
in most applications and will become a non-issue in HTML5, where each window/tab will have its own browsing
context.

Settings

A few Django settings give you control over message behavior:

MESSAGE_LEVEL

Default: messages.INFO

This sets the minimum message that will be saved in the message storage. See Message levels above for more details.

Important

If you override MESSAGE_LEVEL in your settings file and rely on any of the built-in constants, you must import the
constants module directly to avoid the potential for circular imports, e.g.:

from django.contrib.messages import constants as message_constants
MESSAGE_LEVEL = message_constants.DEBUG

If desired, you may specify the numeric values for the constants directly according to the values in the above constants
table.

544 Chapter 6. API Reference

Django Documentation, Release 1.2.7

MESSAGE_STORAGE

Default: ’django.contrib.messages.storage.user_messages.LegacyFallbackStorage’

Controls where Django stores message data. Valid values are:

• ’django.contrib.messages.storage.fallback.FallbackStorage’

• ’django.contrib.messages.storage.session.SessionStorage’

• ’django.contrib.messages.storage.cookie.CookieStorage’

• ’django.contrib.messages.storage.user_messages.LegacyFallbackStorage’

See Storage backends for more details.

MESSAGE_TAGS

Default:

{messages.DEBUG: ’debug’,
messages.INFO: ’info’,
messages.SUCCESS: ’success’,
messages.WARNING: ’warning’,
messages.ERROR: ’error’,}

This sets the mapping of message level to message tag, which is typically rendered as a CSS class in HTML. If you
specify a value, it will extend the default. This means you only have to specify those values which you need to override.
See Displaying messages above for more details.

Important

If you override MESSAGE_TAGS in your settings file and rely on any of the built-in constants, you must import the
constants module directly to avoid the potential for circular imports, e.g.:

from django.contrib.messages import constants as message_constants
MESSAGE_TAGS = {message_constants.INFO: ’’}

If desired, you may specify the numeric values for the constants directly according to the values in the above constants
table.

6.2.14 The redirects app

Django comes with an optional redirects application. It lets you store simple redirects in a database and handles the
redirecting for you.

Installation

To install the redirects app, follow these steps:

1. Add ’django.contrib.redirects’ to your INSTALLED_APPS setting.

2. Add ’django.contrib.redirects.middleware.RedirectFallbackMiddleware’ to your
MIDDLEWARE_CLASSES setting.

3. Run the command manage.py syncdb.

6.2. contrib packages 545

Django Documentation, Release 1.2.7

How it works

manage.py syncdb creates a django_redirect table in your database. This is a simple lookup table with
site_id, old_path and new_path fields.

The RedirectFallbackMiddleware does all of the work. Each time any Django application raises a 404 error,
this middleware checks the redirects database for the requested URL as a last resort. Specifically, it checks for a
redirect with the given old_path with a site ID that corresponds to the SITE_ID setting.

• If it finds a match, and new_path is not empty, it redirects to new_path.

• If it finds a match, and new_path is empty, it sends a 410 (“Gone”) HTTP header and empty (content-less)
response.

• If it doesn’t find a match, the request continues to be processed as usual.

The middleware only gets activated for 404s – not for 500s or responses of any other status code.

Note that the order of MIDDLEWARE_CLASSES matters. Generally, you can put
RedirectFallbackMiddleware at the end of the list, because it’s a last resort.

For more on middleware, read the middleware docs.

How to add, change and delete redirects

Via the admin interface

If you’ve activated the automatic Django admin interface, you should see a “Redirects” section on the admin index
page. Edit redirects as you edit any other object in the system.

Via the Python API

class models.Redirect
Redirects are represented by a standard Django model, which lives in django/contrib/redirects/models.py. You
can access redirect objects via the Django database API.

6.2.15 The sitemap framework

Django comes with a high-level sitemap-generating framework that makes creating sitemap XML files easy.

Overview

A sitemap is an XML file on your Web site that tells search-engine indexers how frequently your pages change and
how “important” certain pages are in relation to other pages on your site. This information helps search engines index
your site.

The Django sitemap framework automates the creation of this XML file by letting you express this information in
Python code.

It works much like Django’s syndication framework. To create a sitemap, just write a Sitemap class and point to it
in your URLconf .

546 Chapter 6. API Reference

http://code.djangoproject.com/browser/django/trunk/django/contrib/redirects/models.py
http://www.sitemaps.org/

Django Documentation, Release 1.2.7

Installation

To install the sitemap app, follow these steps:

1. Add ’django.contrib.sitemaps’ to your INSTALLED_APPS setting.

2. Make sure ’django.template.loaders.app_directories.Loader’ is in your
TEMPLATE_LOADERS setting. It’s in there by default, so you’ll only need to change this if you’ve
changed that setting.

3. Make sure you’ve installed the sites framework.

(Note: The sitemap application doesn’t install any database tables. The only reason it needs to go into
INSTALLED_APPS is so that the Loader() template loader can find the default templates.)

Initialization

To activate sitemap generation on your Django site, add this line to your URLconf :

(r’^sitemap\.xml$’, ’django.contrib.sitemaps.views.sitemap’, {’sitemaps’: sitemaps})

This tells Django to build a sitemap when a client accesses /sitemap.xml.

The name of the sitemap file is not important, but the location is. Search engines will only index links in your sitemap
for the current URL level and below. For instance, if sitemap.xml lives in your root directory, it may reference any
URL in your site. However, if your sitemap lives at /content/sitemap.xml, it may only reference URLs that
begin with /content/.

The sitemap view takes an extra, required argument: {’sitemaps’: sitemaps}. sitemaps should be a
dictionary that maps a short section label (e.g., blog or news) to its Sitemap class (e.g., BlogSitemap or
NewsSitemap). It may also map to an instance of a Sitemap class (e.g., BlogSitemap(some_var)).

Sitemap classes

A Sitemap class is a simple Python class that represents a “section” of entries in your sitemap. For example, one
Sitemap class could represent all the entries of your Weblog, while another could represent all of the events in your
events calendar.

In the simplest case, all these sections get lumped together into one sitemap.xml, but it’s also possible to use
the framework to generate a sitemap index that references individual sitemap files, one per section. (See Creating a
sitemap index below.)

Sitemap classes must subclass django.contrib.sitemaps.Sitemap. They can live anywhere in your code-
base.

A simple example

Let’s assume you have a blog system, with an Entry model, and you want your sitemap to include all the links to
your individual blog entries. Here’s how your sitemap class might look:

from django.contrib.sitemaps import Sitemap
from blog.models import Entry

class BlogSitemap(Sitemap):
changefreq = "never"
priority = 0.5

6.2. contrib packages 547

Django Documentation, Release 1.2.7

def items(self):
return Entry.objects.filter(is_draft=False)

def lastmod(self, obj):
return obj.pub_date

Note:

• changefreq and priority are class attributes corresponding to <changefreq> and <priority> ele-
ments, respectively. They can be made callable as functions, as lastmod was in the example.

• items() is simply a method that returns a list of objects. The objects returned will get passed to any callable
methods corresponding to a sitemap property (location, lastmod, changefreq, and priority).

• lastmod should return a Python datetime object.

• There is no location method in this example, but you can provide it in order to specify the URL for your
object. By default, location() calls get_absolute_url() on each object and returns the result.

Sitemap class reference

class Sitemap
A Sitemap class can define the following methods/attributes:

items
Required. A method that returns a list of objects. The framework doesn’t care what type of objects they
are; all that matters is that these objects get passed to the location(), lastmod(), changefreq()
and priority() methods.

location
Optional. Either a method or attribute.

If it’s a method, it should return the absolute path for a given object as returned by items().

If it’s an attribute, its value should be a string representing an absolute path to use for every object returned
by items().

In both cases, “absolute path” means a URL that doesn’t include the protocol or domain. Examples:

•Good: ’/foo/bar/’

•Bad: ’example.com/foo/bar/’

•Bad: ’http://example.com/foo/bar/’

If location isn’t provided, the framework will call the get_absolute_url() method on each
object as returned by items().

lastmod
Optional. Either a method or attribute.

If it’s a method, it should take one argument – an object as returned by items() – and return that object’s
last-modified date/time, as a Python datetime.datetime object.

If it’s an attribute, its value should be a Python datetime.datetime object representing the last-
modified date/time for every object returned by items().

changefreq
Optional. Either a method or attribute.

If it’s a method, it should take one argument – an object as returned by items() – and return that object’s
change frequency, as a Python string.

548 Chapter 6. API Reference

Django Documentation, Release 1.2.7

If it’s an attribute, its value should be a string representing the change frequency of every object returned
by items().

Possible values for changefreq, whether you use a method or attribute, are:

•’always’

•’hourly’

•’daily’

•’weekly’

•’monthly’

•’yearly’

•’never’

priority()
Optional. Either a method or attribute.

If it’s a method, it should take one argument – an object as returned by items() – and return that object’s
priority, as either a string or float.

If it’s an attribute, its value should be either a string or float representing the priority of every object
returned by items().

Example values for priority: 0.4, 1.0. The default priority of a page is 0.5. See the sitemaps.org
documentation for more.

Shortcuts

The sitemap framework provides a couple convenience classes for common cases:

class FlatPageSitemap
The django.contrib.sitemaps.FlatPageSitemap class looks at all publicly visible flatpages
defined for the current SITE_ID (see the sites documentation) and creates an entry in the sitemap.
These entries include only the location attribute – not lastmod, changefreq or priority.

class GenericSitemap
The django.contrib.sitemaps.GenericSitemap class works with any generic views you already
have. To use it, create an instance, passing in the same info_dict you pass to the generic views. The
only requirement is that the dictionary have a queryset entry. It may also have a date_field entry
that specifies a date field for objects retrieved from the queryset. This will be used for the lastmod at-
tribute in the generated sitemap. You may also pass priority and changefreq keyword arguments to the
GenericSitemap constructor to specify these attributes for all URLs.

Example

Here’s an example of a URLconf using both:

from django.conf.urls.defaults import *
from django.contrib.sitemaps import FlatPageSitemap, GenericSitemap
from blog.models import Entry

info_dict = {
’queryset’: Entry.objects.all(),
’date_field’: ’pub_date’,

}

6.2. contrib packages 549

http://www.sitemaps.org/protocol.html#prioritydef
http://www.sitemaps.org/protocol.html#prioritydef

Django Documentation, Release 1.2.7

sitemaps = {
’flatpages’: FlatPageSitemap,
’blog’: GenericSitemap(info_dict, priority=0.6),

}

urlpatterns = patterns(’’,
some generic view using info_dict
...

the sitemap
(r’^sitemap\.xml$’, ’django.contrib.sitemaps.views.sitemap’, {’sitemaps’: sitemaps})

)

Creating a sitemap index

The sitemap framework also has the ability to create a sitemap index that references individual sitemap files, one per
each section defined in your sitemaps dictionary. The only differences in usage are:

• You use two views in your URLconf: django.contrib.sitemaps.views.index() and
django.contrib.sitemaps.views.sitemap().

• The django.contrib.sitemaps.views.sitemap() view should take a section keyword argu-
ment.

Here’s what the relevant URLconf lines would look like for the example above:

(r’^sitemap\.xml$’, ’django.contrib.sitemaps.views.index’, {’sitemaps’: sitemaps}),
(r’^sitemap-(?P<section>.+)\.xml$’, ’django.contrib.sitemaps.views.sitemap’, {’sitemaps’: sitemaps}),

This will automatically generate a sitemap.xml file that references both sitemap-flatpages.xml and
sitemap-blog.xml. The Sitemap classes and the sitemaps dict don’t change at all.

You should create an index file if one of your sitemaps has more than 50,000 URLs. In this case, Django will auto-
matically paginate the sitemap, and the index will reflect that.

Pinging Google

You may want to “ping” Google when your sitemap changes, to let it know to reindex your site. The sitemaps
framework provides a function to do just that: django.contrib.sitemaps.ping_google().

ping_google()
ping_google() takes an optional argument, sitemap_url, which should be the absolute path to your
site’s sitemap (e.g., ’/sitemap.xml’). If this argument isn’t provided, ping_google() will attempt to
figure out your sitemap by performing a reverse looking in your URLconf.

ping_google() raises the exception django.contrib.sitemaps.SitemapNotFound if it cannot
determine your sitemap URL.

Register with Google first!

The ping_google() command only works if you have registered your site with Google Webmaster Tools.

One useful way to call ping_google() is from a model’s save() method:

550 Chapter 6. API Reference

http://www.google.com/webmasters/tools/

Django Documentation, Release 1.2.7

from django.contrib.sitemaps import ping_google

class Entry(models.Model):
...
def save(self, force_insert=False, force_update=False):

super(Entry, self).save(force_insert, force_update)
try:

ping_google()
except Exception:

Bare ’except’ because we could get a variety
of HTTP-related exceptions.
pass

A more efficient solution, however, would be to call ping_google() from a cron script, or some other scheduled
task. The function makes an HTTP request to Google’s servers, so you may not want to introduce that network
overhead each time you call save().

Pinging Google via manage.py

django-admin.py ping_google

Once the sitemaps application is added to your project, you may also ping Google using the ping_google manage-
ment command:

python manage.py ping_google [/sitemap.xml]

6.2.16 The “sites” framework

Django comes with an optional “sites” framework. It’s a hook for associating objects and functionality to particular
Web sites, and it’s a holding place for the domain names and “verbose” names of your Django-powered sites.

Use it if your single Django installation powers more than one site and you need to differentiate between those sites in
some way.

The whole sites framework is based on a simple model:

class django.contrib.sites.models.Site

This model has domain and name fields. The SITE_ID setting specifies the database ID of the Site object
associated with that particular settings file.

How you use this is up to you, but Django uses it in a couple of ways automatically via simple conventions.

Example usage

Why would you use sites? It’s best explained through examples.

Associating content with multiple sites

The Django-powered sites LJWorld.com and Lawrence.com are operated by the same news organization – the
Lawrence Journal-World newspaper in Lawrence, Kansas. LJWorld.com focuses on news, while Lawrence.com fo-
cuses on local entertainment. But sometimes editors want to publish an article on both sites.

6.2. contrib packages 551

http://www.ljworld.com/
http://www.lawrence.com/

Django Documentation, Release 1.2.7

The brain-dead way of solving the problem would be to require site producers to publish the same story twice: once
for LJWorld.com and again for Lawrence.com. But that’s inefficient for site producers, and it’s redundant to store
multiple copies of the same story in the database.

The better solution is simple: Both sites use the same article database, and an article is associated with one or more
sites. In Django model terminology, that’s represented by a ManyToManyField in the Article model:

from django.db import models
from django.contrib.sites.models import Site

class Article(models.Model):
headline = models.CharField(max_length=200)
...
sites = models.ManyToManyField(Site)

This accomplishes several things quite nicely:

• It lets the site producers edit all content – on both sites – in a single interface (the Django admin).

• It means the same story doesn’t have to be published twice in the database; it only has a single record in the
database.

• It lets the site developers use the same Django view code for both sites. The view code that displays a given
story just checks to make sure the requested story is on the current site. It looks something like this:

from django.conf import settings

def article_detail(request, article_id):
try:

a = Article.objects.get(id=article_id, sites__id__exact=settings.SITE_ID)
except Article.DoesNotExist:

raise Http404
...

Associating content with a single site

Similarly, you can associate a model to the Site model in a many-to-one relationship, using ForeignKey.

For example, if an article is only allowed on a single site, you’d use a model like this:

from django.db import models
from django.contrib.sites.models import Site

class Article(models.Model):
headline = models.CharField(max_length=200)
...
site = models.ForeignKey(Site)

This has the same benefits as described in the last section.

Hooking into the current site from views

You can use the sites framework in your Django views to do particular things based on the site in which the view is
being called. For example:

from django.conf import settings

def my_view(request):

552 Chapter 6. API Reference

Django Documentation, Release 1.2.7

if settings.SITE_ID == 3:
Do something.

else:
Do something else.

Of course, it’s ugly to hard-code the site IDs like that. This sort of hard-coding is best for hackish fixes that you need
done quickly. A slightly cleaner way of accomplishing the same thing is to check the current site’s domain:

from django.conf import settings
from django.contrib.sites.models import Site

def my_view(request):
current_site = Site.objects.get(id=settings.SITE_ID)
if current_site.domain == ’foo.com’:

Do something
else:

Do something else.

The idiom of retrieving the Site object for the value of settings.SITE_ID is quite common, so the Site
model’s manager has a get_current() method. This example is equivalent to the previous one:

from django.contrib.sites.models import Site

def my_view(request):
current_site = Site.objects.get_current()
if current_site.domain == ’foo.com’:

Do something
else:

Do something else.

Changed in version Development version. For code which relies on getting the current domain but cannot be certain
that the sites framework will be installed for any given project, there is a utility function get_current_site()
that takes a request object as an argument and returns either a Site instance (if the sites framework is installed) or a
RequestSite instance (if it is not). This allows loose coupling with the sites framework and provides a usable fallback
for cases where it is not installed.

Getting the current domain for display

LJWorld.com and Lawrence.com both have e-mail alert functionality, which lets readers sign up to get notifications
when news happens. It’s pretty basic: A reader signs up on a Web form, and he immediately gets an e-mail saying,
“Thanks for your subscription.”

It’d be inefficient and redundant to implement this signup-processing code twice, so the sites use the same code behind
the scenes. But the “thank you for signing up” notice needs to be different for each site. By using Site objects, we
can abstract the “thank you” notice to use the values of the current site’s name and domain.

Here’s an example of what the form-handling view looks like:

from django.contrib.sites.models import Site
from django.core.mail import send_mail

def register_for_newsletter(request):
Check form values, etc., and subscribe the user.
...

current_site = Site.objects.get_current()
send_mail(’Thanks for subscribing to %s alerts’ % current_site.name,

’Thanks for your subscription. We appreciate it.\n\n-The %s team.’ % current_site.name,

6.2. contrib packages 553

Django Documentation, Release 1.2.7

’editor@%s’ % current_site.domain,
[user.email])

...

On Lawrence.com, this e-mail has the subject line “Thanks for subscribing to lawrence.com alerts.” On LJWorld.com,
the e-mail has the subject “Thanks for subscribing to LJWorld.com alerts.” Same goes for the e-mail’s message body.

Note that an even more flexible (but more heavyweight) way of doing this would be to use Django’s template sys-
tem. Assuming Lawrence.com and LJWorld.com have different template directories (TEMPLATE_DIRS), you could
simply farm out to the template system like so:

from django.core.mail import send_mail
from django.template import loader, Context

def register_for_newsletter(request):
Check form values, etc., and subscribe the user.
...

subject = loader.get_template(’alerts/subject.txt’).render(Context({}))
message = loader.get_template(’alerts/message.txt’).render(Context({}))
send_mail(subject, message, ’editor@ljworld.com’, [user.email])

...

In this case, you’d have to create subject.txt and message.txt template files for both the LJWorld.com and
Lawrence.com template directories. That gives you more flexibility, but it’s also more complex.

It’s a good idea to exploit the Site objects as much as possible, to remove unneeded complexity and redundancy.

Getting the current domain for full URLs

Django’s get_absolute_url() convention is nice for getting your objects’ URL without the domain name, but
in some cases you might want to display the full URL – with http:// and the domain and everything – for an object.
To do this, you can use the sites framework. A simple example:

>>> from django.contrib.sites.models import Site
>>> obj = MyModel.objects.get(id=3)
>>> obj.get_absolute_url()
’/mymodel/objects/3/’
>>> Site.objects.get_current().domain
’example.com’
>>> ’http://%s%s’ % (Site.objects.get_current().domain, obj.get_absolute_url())
’http://example.com/mymodel/objects/3/’

Caching the current Site object

As the current site is stored in the database, each call to Site.objects.get_current() could result in a
database query. But Django is a little cleverer than that: on the first request, the current site is cached, and any
subsequent call returns the cached data instead of hitting the database.

If for any reason you want to force a database query, you can tell Django to clear the cache using
Site.objects.clear_cache():

First call; current site fetched from database.
current_site = Site.objects.get_current()
...

554 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Second call; current site fetched from cache.
current_site = Site.objects.get_current()
...

Force a database query for the third call.
Site.objects.clear_cache()
current_site = Site.objects.get_current()

The CurrentSiteManager

class django.contrib.sites.managers.CurrentSiteManager

If Site plays a key role in your application, consider using the helpful CurrentSiteManager in your model(s).
It’s a model manager that automatically filters its queries to include only objects associated with the current Site.

Use CurrentSiteManager by adding it to your model explicitly. For example:

from django.db import models
from django.contrib.sites.models import Site
from django.contrib.sites.managers import CurrentSiteManager

class Photo(models.Model):
photo = models.FileField(upload_to=’/home/photos’)
photographer_name = models.CharField(max_length=100)
pub_date = models.DateField()
site = models.ForeignKey(Site)
objects = models.Manager()
on_site = CurrentSiteManager()

With this model, Photo.objects.all() will return all Photo objects in the database, but
Photo.on_site.all() will return only the Photo objects associated with the current site, according to
the SITE_ID setting.

Put another way, these two statements are equivalent:

Photo.objects.filter(site=settings.SITE_ID)
Photo.on_site.all()

How did CurrentSiteManager know which field of Photo was the Site? By default,
CurrentSiteManager looks for a either a ForeignKey called site or a ManyToManyField called sites
to filter on. If you use a field named something other than site or sites to identify which Site objects your object
is related to, then you need to explicitly pass the custom field name as a parameter to CurrentSiteManager on
your model. The following model, which has a field called publish_on, demonstrates this:

from django.db import models
from django.contrib.sites.models import Site
from django.contrib.sites.managers import CurrentSiteManager

class Photo(models.Model):
photo = models.FileField(upload_to=’/home/photos’)
photographer_name = models.CharField(max_length=100)
pub_date = models.DateField()
publish_on = models.ForeignKey(Site)
objects = models.Manager()
on_site = CurrentSiteManager(’publish_on’)

If you attempt to use CurrentSiteManager and pass a field name that doesn’t exist, Django will raise a
ValueError.

6.2. contrib packages 555

Django Documentation, Release 1.2.7

Finally, note that you’ll probably want to keep a normal (non-site-specific) Manager on your model, even if you
use CurrentSiteManager. As explained in the manager documentation, if you define a manager manually, then
Django won’t create the automatic objects = models.Manager() manager for you. Also note that certain
parts of Django – namely, the Django admin site and generic views – use whichever manager is defined first in the
model, so if you want your admin site to have access to all objects (not just site-specific ones), put objects =
models.Manager() in your model, before you define CurrentSiteManager.

How Django uses the sites framework

Although it’s not required that you use the sites framework, it’s strongly encouraged, because Django takes advantage
of it in a few places. Even if your Django installation is powering only a single site, you should take the two seconds
to create the site object with your domain and name, and point to its ID in your SITE_ID setting.

Here’s how Django uses the sites framework:

• In the redirects framework, each redirect object is associated with a particular site. When Django
searches for a redirect, it takes into account the current SITE_ID.

• In the comments framework, each comment is associated with a particular site. When a comment is posted, its
Site is set to the current SITE_ID, and when comments are listed via the appropriate template tag, only the
comments for the current site are displayed.

• In the flatpages framework, each flatpage is associated with a particular site. When a flatpage is created,
you specify its Site, and the FlatpageFallbackMiddleware checks the current SITE_ID in retrieving
flatpages to display.

• In the syndication framework, the templates for title and description automatically have access
to a variable {{ site }}, which is the Site object representing the current site. Also, the hook for providing
item URLs will use the domain from the current Site object if you don’t specify a fully-qualified domain.

• In the authentication framework, the django.contrib.auth.views.login() view passes
the current Site name to the template as {{ site_name }}.

• The shortcut view (django.views.defaults.shortcut()) uses the domain of the current Site object
when calculating an object’s URL.

• In the admin framework, the “view on site” link uses the current Site to work out the domain for the site that
it will redirect to.

RequestSite objects

Some django.contrib applications take advantage of the sites framework but are architected in a way that doesn’t
require the sites framework to be installed in your database. (Some people don’t want to, or just aren’t able to install
the extra database table that the sites framework requires.) For those cases, the framework provides a RequestSite
class, which can be used as a fallback when the database-backed sites framework is not available.

A RequestSite object has a similar interface to a normal Site object, except its __init__() method takes an
HttpRequest object. It’s able to deduce the domain and name by looking at the request’s domain. It has save()
and delete() methods to match the interface of Site, but the methods raise NotImplementedError.

6.2.17 The syndication feed framework

Django comes with a high-level syndication-feed-generating framework that makes creating RSS and Atom feeds
easy.

To create any syndication feed, all you have to do is write a short Python class. You can create as many feeds as you
want.

556 Chapter 6. API Reference

http://www.whatisrss.com/
http://www.atomenabled.org/

Django Documentation, Release 1.2.7

Django also comes with a lower-level feed-generating API. Use this if you want to generate feeds outside of a Web
context, or in some other lower-level way.

The high-level framework

Changed in version 1.2: The high-level feeds framework was refactored in Django 1.2. The pre-1.2 interface still
exists, but it has been deprecated, and will be removed in Django 1.4. If you need to maintain an old-style Django
feed, please consult the Django 1.1 documentation. For details on updating to use the new high-level feed framework,
see the Django 1.2 release notes.

Overview

The high-level feed-generating framework is supplied by the Feed class. To create a feed, write a Feed class and
point to an instance of it in your URLconf .

Feed classes

A Feed class is a Python class that represents a syndication feed. A feed can be simple (e.g., a “site news” feed, or
a basic feed displaying the latest entries of a blog) or more complex (e.g., a feed displaying all the blog entries in a
particular category, where the category is variable).

Feed classes subclass django.contrib.syndication.views.Feed. They can live anywhere in your code-
base.

Instances of Feed classes are views which can be used in your URLconf .

A simple example

This simple example, taken from chicagocrime.org, describes a feed of the latest five news items:

from django.contrib.syndication.views import Feed
from chicagocrime.models import NewsItem

class LatestEntriesFeed(Feed):
title = "Chicagocrime.org site news"
link = "/sitenews/"
description = "Updates on changes and additions to chicagocrime.org."

def items(self):
return NewsItem.objects.order_by(’-pub_date’)[:5]

def item_title(self, item):
return item.title

def item_description(self, item):
return item.description

To connect a URL to this feed, put an instance of the Feed object in your URLconf . For example:

from django.conf.urls.defaults import *
from myproject.feeds import LatestEntriesFeed

urlpatterns = patterns(’’,
...

6.2. contrib packages 557

http://www.chicagocrime.org/

Django Documentation, Release 1.2.7

(r’^latest/feed/$’, LatestEntriesFeed()),
...

)

Note:

• The Feed class subclasses django.contrib.syndication.views.Feed.

• title, link and description correspond to the standard RSS <title>, <link> and
<description> elements, respectively.

• items() is, simply, a method that returns a list of objects that should be included in the feed as <item> ele-
ments. Although this example returns NewsItem objects using Django’s object-relational mapper, items()
doesn’t have to return model instances. Although you get a few bits of functionality “for free” by using Django
models, items() can return any type of object you want.

• If you’re creating an Atom feed, rather than an RSS feed, set the subtitle attribute instead of the
description attribute. See Publishing Atom and RSS feeds in tandem, later, for an example.

One thing is left to do. In an RSS feed, each <item> has a <title>, <link> and <description>. We need to
tell the framework what data to put into those elements.

• For the contents of <title> and <description>, Django tries calling the methods item_title() and
item_description() on the Feed class. They are passed a single parameter, item, which is the object
itself. These are optional; by default, the unicode representation of the object is used for both.

If you want to do any special formatting for either the title or description, Django templates can be used instead.
Their paths can be specified with the title_template and description_template attributes on the
Feed class. The templates are rendered for each item and are passed two template context variables:

– {{ obj }} – The current object (one of whichever objects you returned in items()).

– {{ site }} – A django.contrib.sites.models.Site object representing the current site.
This is useful for {{ site.domain }} or {{ site.name }}. If you do not have the Django sites
framework installed, this will be set to a django.contrib.sites.models.RequestSite object.
See the RequestSite section of the sites framework documentation for more.

See a complex example below that uses a description template.

• To specify the contents of <link>, you have two options. For each item in items(), Django first tries calling
the item_link() method on the Feed class. In a similar way to the title and description, it is passed it
a single parameter, item. If that method doesn’t exist, Django tries executing a get_absolute_url()
method on that object. Both get_absolute_url() and item_link() should return the item’s URL as
a normal Python string. As with get_absolute_url(), the result of item_link() will be included
directly in the URL, so you are responsible for doing all necessary URL quoting and conversion to ASCII inside
the method itself.

A complex example

The framework also supports more complex feeds, via arguments.

For example, chicagocrime.org offers an RSS feed of recent crimes for every police beat in Chicago. It’d be silly
to create a separate Feed class for each police beat; that would violate the DRY principle and would couple data to
programming logic. Instead, the syndication framework lets you access the arguments passed from your URLconf so
feeds can output items based on information in the feed’s URL.

On chicagocrime.org, the police-beat feeds are accessible via URLs like this:

• /beats/613/rss/ – Returns recent crimes for beat 613.

558 Chapter 6. API Reference

http://www.chicagocrime.org/

Django Documentation, Release 1.2.7

• /beats/1424/rss/ – Returns recent crimes for beat 1424.

These can be matched with a URLconf line such as:

(r’^beats/(?P<beat_id>\d+)/rss/$’, BeatFeed()),

Like a view, the arguments in the URL are passed to the get_object() method along with the request object.
Changed in version 1.2: Prior to version 1.2, get_object() only accepted a bits argument. Here’s the code for
these beat-specific feeds:

from django.contrib.syndication.views import FeedDoesNotExist
from django.shortcuts import get_object_or_404

class BeatFeed(Feed):
description_template = ’feeds/beat_description.html’

def get_object(self, request, beat_id):
return get_object_or_404(Beat, pk=beat_id)

def title(self, obj):
return "Chicagocrime.org: Crimes for beat %s" % obj.beat

def link(self, obj):
return obj.get_absolute_url()

def description(self, obj):
return "Crimes recently reported in police beat %s" % obj.beat

def items(self, obj):
return Crime.objects.filter(beat=obj).order_by(’-crime_date’)[:30]

To generate the feed’s <title>, <link> and <description>, Django uses the title(), link() and
description() methods. In the previous example, they were simple string class attributes, but this example
illustrates that they can be either strings or methods. For each of title, link and description, Django follows
this algorithm:

• First, it tries to call a method, passing the obj argument, where obj is the object returned by get_object().

• Failing that, it tries to call a method with no arguments.

• Failing that, it uses the class attribute.

Also note that items() also follows the same algorithm – first, it tries items(obj), then items(), then finally
an items class attribute (which should be a list).

We are using a template for the item descriptions. It can be very simple:

{{ obj.description }}

However, you are free to add formatting as desired.

The ExampleFeed class below gives full documentation on methods and attributes of Feed classes.

Specifying the type of feed

By default, feeds produced in this framework use RSS 2.0.

To change that, add a feed_type attribute to your Feed class, like so:

6.2. contrib packages 559

Django Documentation, Release 1.2.7

from django.utils.feedgenerator import Atom1Feed

class MyFeed(Feed):
feed_type = Atom1Feed

Note that you set feed_type to a class object, not an instance.

Currently available feed types are:

• django.utils.feedgenerator.Rss201rev2Feed (RSS 2.01. Default.)

• django.utils.feedgenerator.RssUserland091Feed (RSS 0.91.)

• django.utils.feedgenerator.Atom1Feed (Atom 1.0.)

Enclosures

To specify enclosures, such as those used in creating podcast feeds, use the item_enclosure_url,
item_enclosure_length and item_enclosure_mime_type hooks. See the ExampleFeed class below
for usage examples.

Language

Feeds created by the syndication framework automatically include the appropriate <language> tag (RSS 2.0) or
xml:lang attribute (Atom). This comes directly from your LANGUAGE_CODE setting.

URLs

The link method/attribute can return either an absolute path (e.g. "/blog/") or a URL with the fully-qualified
domain and protocol (e.g. "http://www.example.com/blog/"). If link doesn’t return the domain, the
syndication framework will insert the domain of the current site, according to your SITE_ID setting.

Atom feeds require a <link rel="self"> that defines the feed’s current location. The syndication framework
populates this automatically, using the domain of the current site according to the SITE_ID setting.

Publishing Atom and RSS feeds in tandem

Some developers like to make available both Atom and RSS versions of their feeds. That’s easy to do with Django:
Just create a subclass of your Feed class and set the feed_type to something different. Then update your URLconf
to add the extra versions.

Here’s a full example:

from django.contrib.syndication.views import Feed
from chicagocrime.models import NewsItem
from django.utils.feedgenerator import Atom1Feed

class RssSiteNewsFeed(Feed):
title = "Chicagocrime.org site news"
link = "/sitenews/"
description = "Updates on changes and additions to chicagocrime.org."

def items(self):
return NewsItem.objects.order_by(’-pub_date’)[:5]

560 Chapter 6. API Reference

Django Documentation, Release 1.2.7

class AtomSiteNewsFeed(RssSiteNewsFeed):
feed_type = Atom1Feed
subtitle = RssSiteNewsFeed.description

Note: In this example, the RSS feed uses a description while the Atom feed uses a subtitle. That’s because
Atom feeds don’t provide for a feed-level “description,” but they do provide for a “subtitle.”

If you provide a description in your Feed class, Django will not automatically put that into the subtitle
element, because a subtitle and description are not necessarily the same thing. Instead, you should define a subtitle
attribute.

In the above example, we simply set the Atom feed’s subtitle to the RSS feed’s description, because it’s
quite short already.

And the accompanying URLconf:

from django.conf.urls.defaults import *
from myproject.feeds import RssSiteNewsFeed, AtomSiteNewsFeed

urlpatterns = patterns(’’,
...
(r’^sitenews/rss/$’, RssSiteNewsFeed()),
(r’^sitenews/atom/$’, AtomSiteNewsFeed()),
...

)

Feed class reference

class django.contrib.syndication.views.Feed

This example illustrates all possible attributes and methods for a Feed class:

from django.contrib.syndication.views import Feed
from django.utils import feedgenerator

class ExampleFeed(Feed):

FEED TYPE -- Optional. This should be a class that subclasses
django.utils.feedgenerator.SyndicationFeed. This designates
which type of feed this should be: RSS 2.0, Atom 1.0, etc. If
you don’t specify feed_type, your feed will be RSS 2.0. This
should be a class, not an instance of the class.

feed_type = feedgenerator.Rss201rev2Feed

TEMPLATE NAMES -- Optional. These should be strings
representing names of Django templates that the system should
use in rendering the title and description of your feed items.
Both are optional. If a template is not specified, the
item_title() or item_description() methods are used instead.

title_template = None
description_template = None

TITLE -- One of the following three is required. The framework
looks for them in this order.

6.2. contrib packages 561

Django Documentation, Release 1.2.7

def title(self, obj):
"""
Takes the object returned by get_object() and returns the
feed’s title as a normal Python string.
"""

def title(self):
"""
Returns the feed’s title as a normal Python string.
"""

title = ’foo’ # Hard-coded title.

LINK -- One of the following three is required. The framework
looks for them in this order.

def link(self, obj):
"""
Takes the object returned by get_object() and returns the feed’s
link as a normal Python string.
"""

def link(self):
"""
Returns the feed’s link as a normal Python string.
"""

link = ’/foo/bar/’ # Hard-coded link.

GUID -- One of the following three is optional. The framework looks
for them in this order. This property is only used for Atom feeds
(where it is the feed-level ID element). If not provided, the feed
link is used as the ID.

def feed_guid(self, obj):
"""
Takes the object returned by get_object() and returns the globally
unique ID for the feed as a normal Python string.
"""

def feed_guid(self):
"""
Returns the feed’s globally unique ID as a normal Python string.
"""

feed_guid = ’/foo/bar/1234’ # Hard-coded guid.

DESCRIPTION -- One of the following three is required. The framework
looks for them in this order.

def description(self, obj):
"""
Takes the object returned by get_object() and returns the feed’s
description as a normal Python string.
"""

def description(self):
"""

562 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Returns the feed’s description as a normal Python string.
"""

description = ’Foo bar baz.’ # Hard-coded description.

AUTHOR NAME --One of the following three is optional. The framework
looks for them in this order.

def author_name(self, obj):
"""
Takes the object returned by get_object() and returns the feed’s
author’s name as a normal Python string.
"""

def author_name(self):
"""
Returns the feed’s author’s name as a normal Python string.
"""

author_name = ’Sally Smith’ # Hard-coded author name.

AUTHOR E-MAIL --One of the following three is optional. The framework
looks for them in this order.

def author_email(self, obj):
"""
Takes the object returned by get_object() and returns the feed’s
author’s e-mail as a normal Python string.
"""

def author_email(self):
"""
Returns the feed’s author’s e-mail as a normal Python string.
"""

author_email = ’test@example.com’ # Hard-coded author e-mail.

AUTHOR LINK --One of the following three is optional. The framework
looks for them in this order. In each case, the URL should include
the "http://" and domain name.

def author_link(self, obj):
"""
Takes the object returned by get_object() and returns the feed’s
author’s URL as a normal Python string.
"""

def author_link(self):
"""
Returns the feed’s author’s URL as a normal Python string.
"""

author_link = ’http://www.example.com/’ # Hard-coded author URL.

CATEGORIES -- One of the following three is optional. The framework
looks for them in this order. In each case, the method/attribute
should return an iterable object that returns strings.

6.2. contrib packages 563

Django Documentation, Release 1.2.7

def categories(self, obj):
"""
Takes the object returned by get_object() and returns the feed’s
categories as iterable over strings.
"""

def categories(self):
"""
Returns the feed’s categories as iterable over strings.
"""

categories = ("python", "django") # Hard-coded list of categories.

COPYRIGHT NOTICE -- One of the following three is optional. The
framework looks for them in this order.

def feed_copyright(self, obj):
"""
Takes the object returned by get_object() and returns the feed’s
copyright notice as a normal Python string.
"""

def feed_copyright(self):
"""
Returns the feed’s copyright notice as a normal Python string.
"""

feed_copyright = ’Copyright (c) 2007, Sally Smith’ # Hard-coded copyright notice.

TTL -- One of the following three is optional. The framework looks
for them in this order. Ignored for Atom feeds.

def ttl(self, obj):
"""
Takes the object returned by get_object() and returns the feed’s
TTL (Time To Live) as a normal Python string.
"""

def ttl(self):
"""
Returns the feed’s TTL as a normal Python string.
"""

ttl = 600 # Hard-coded Time To Live.

ITEMS -- One of the following three is required. The framework looks
for them in this order.

def items(self, obj):
"""
Takes the object returned by get_object() and returns a list of
items to publish in this feed.
"""

def items(self):
"""
Returns a list of items to publish in this feed.
"""

564 Chapter 6. API Reference

Django Documentation, Release 1.2.7

items = (’Item 1’, ’Item 2’) # Hard-coded items.

GET_OBJECT -- This is required for feeds that publish different data
for different URL parameters. (See "A complex example" above.)

def get_object(self, request, *args, **kwargs):
"""
Takes the current request and the arguments from the URL, and
returns an object represented by this feed. Raises
django.core.exceptions.ObjectDoesNotExist on error.
"""

ITEM TITLE AND DESCRIPTION -- If title_template or
description_template are not defined, these are used instead. Both are
optional, by default they will use the unicode representation of the
item.

def item_title(self, item):
"""
Takes an item, as returned by items(), and returns the item’s
title as a normal Python string.
"""

def item_title(self):
"""
Returns the title for every item in the feed.
"""

item_title = ’Breaking News: Nothing Happening’ # Hard-coded title.

def item_description(self, item):
"""
Takes an item, as returned by items(), and returns the item’s
description as a normal Python string.
"""

def item_description(self):
"""
Returns the description for every item in the feed.
"""

item_description = ’A description of the item.’ # Hard-coded description.

ITEM LINK -- One of these three is required. The framework looks for
them in this order.

First, the framework tries the two methods below, in
order. Failing that, it falls back to the get_absolute_url()
method on each item returned by items().

def item_link(self, item):
"""
Takes an item, as returned by items(), and returns the item’s URL.
"""

def item_link(self):
"""
Returns the URL for every item in the feed.

6.2. contrib packages 565

Django Documentation, Release 1.2.7

"""

ITEM_GUID -- The following method is optional. If not provided, the
item’s link is used by default.

def item_guid(self, obj):
"""
Takes an item, as return by items(), and returns the item’s ID.
"""

ITEM AUTHOR NAME -- One of the following three is optional. The
framework looks for them in this order.

def item_author_name(self, item):
"""
Takes an item, as returned by items(), and returns the item’s
author’s name as a normal Python string.
"""

def item_author_name(self):
"""
Returns the author name for every item in the feed.
"""

item_author_name = ’Sally Smith’ # Hard-coded author name.

ITEM AUTHOR E-MAIL --One of the following three is optional. The
framework looks for them in this order.
#
If you specify this, you must specify item_author_name.

def item_author_email(self, obj):
"""
Takes an item, as returned by items(), and returns the item’s
author’s e-mail as a normal Python string.
"""

def item_author_email(self):
"""
Returns the author e-mail for every item in the feed.
"""

item_author_email = ’test@example.com’ # Hard-coded author e-mail.

ITEM AUTHOR LINK -- One of the following three is optional. The
framework looks for them in this order. In each case, the URL should
include the "http://" and domain name.
#
If you specify this, you must specify item_author_name.

def item_author_link(self, obj):
"""
Takes an item, as returned by items(), and returns the item’s
author’s URL as a normal Python string.
"""

def item_author_link(self):
"""

566 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Returns the author URL for every item in the feed.
"""

item_author_link = ’http://www.example.com/’ # Hard-coded author URL.

ITEM ENCLOSURE URL -- One of these three is required if you’re
publishing enclosures. The framework looks for them in this order.

def item_enclosure_url(self, item):
"""
Takes an item, as returned by items(), and returns the item’s
enclosure URL.
"""

def item_enclosure_url(self):
"""
Returns the enclosure URL for every item in the feed.
"""

item_enclosure_url = "/foo/bar.mp3" # Hard-coded enclosure link.

ITEM ENCLOSURE LENGTH -- One of these three is required if you’re
publishing enclosures. The framework looks for them in this order.
In each case, the returned value should be either an integer, or a
string representation of the integer, in bytes.

def item_enclosure_length(self, item):
"""
Takes an item, as returned by items(), and returns the item’s
enclosure length.
"""

def item_enclosure_length(self):
"""
Returns the enclosure length for every item in the feed.
"""

item_enclosure_length = 32000 # Hard-coded enclosure length.

ITEM ENCLOSURE MIME TYPE -- One of these three is required if you’re
publishing enclosures. The framework looks for them in this order.

def item_enclosure_mime_type(self, item):
"""
Takes an item, as returned by items(), and returns the item’s
enclosure MIME type.
"""

def item_enclosure_mime_type(self):
"""
Returns the enclosure MIME type for every item in the feed.
"""

item_enclosure_mime_type = "audio/mpeg" # Hard-coded enclosure MIME type.

ITEM PUBDATE -- It’s optional to use one of these three. This is a
hook that specifies how to get the pubdate for a given item.
In each case, the method/attribute should return a Python

6.2. contrib packages 567

Django Documentation, Release 1.2.7

datetime.datetime object.

def item_pubdate(self, item):
"""
Takes an item, as returned by items(), and returns the item’s
pubdate.
"""

def item_pubdate(self):
"""
Returns the pubdate for every item in the feed.
"""

item_pubdate = datetime.datetime(2005, 5, 3) # Hard-coded pubdate.

ITEM CATEGORIES -- It’s optional to use one of these three. This is
a hook that specifies how to get the list of categories for a given
item. In each case, the method/attribute should return an iterable
object that returns strings.

def item_categories(self, item):
"""
Takes an item, as returned by items(), and returns the item’s
categories.
"""

def item_categories(self):
"""
Returns the categories for every item in the feed.
"""

item_categories = ("python", "django") # Hard-coded categories.

ITEM COPYRIGHT NOTICE (only applicable to Atom feeds) -- One of the
following three is optional. The framework looks for them in this
order.

def item_copyright(self, obj):
"""
Takes an item, as returned by items(), and returns the item’s
copyright notice as a normal Python string.
"""

def item_copyright(self):
"""
Returns the copyright notice for every item in the feed.
"""

item_copyright = ’Copyright (c) 2007, Sally Smith’ # Hard-coded copyright notice.

The low-level framework

Behind the scenes, the high-level RSS framework uses a lower-level framework for generating feeds’ XML. This
framework lives in a single module: django/utils/feedgenerator.py.

You use this framework on your own, for lower-level feed generation. You can also create custom feed generator
subclasses for use with the feed_type Feed option.

568 Chapter 6. API Reference

http://code.djangoproject.com/browser/django/trunk/django/utils/feedgenerator.py

Django Documentation, Release 1.2.7

SyndicationFeed classes

The feedgenerator module contains a base class:

• django.utils.feedgenerator.SyndicationFeed

and several subclasses:

• django.utils.feedgenerator.RssUserland091Feed

• django.utils.feedgenerator.Rss201rev2Feed

• django.utils.feedgenerator.Atom1Feed

Each of these three classes knows how to render a certain type of feed as XML. They share this interface:

SyndicationFeed.__init__() Initialize the feed with the given dictionary of metadata, which applies to the
entire feed. Required keyword arguments are:

• title

• link

• description

There’s also a bunch of other optional keywords:

• language

• author_email

• author_name

• author_link

• subtitle

• categories

• feed_url

• feed_copyright

• feed_guid

• ttl

Any extra keyword arguments you pass to __init__ will be stored in self.feed for use with custom feed
generators.

All parameters should be Unicode objects, except categories, which should be a sequence of Unicode
objects.

SyndicationFeed.add_item() Add an item to the feed with the given parameters.

Required keyword arguments are:

• title

• link

• description

Optional keyword arguments are:

• author_email

• author_name

• author_link

6.2. contrib packages 569

Django Documentation, Release 1.2.7

• pubdate

• comments

• unique_id

• enclosure

• categories

• item_copyright

• ttl

Extra keyword arguments will be stored for custom feed generators.

All parameters, if given, should be Unicode objects, except:

• pubdate should be a Python datetime object.

• enclosure should be an instance of feedgenerator.Enclosure.

• categories should be a sequence of Unicode objects.

SyndicationFeed.write() Outputs the feed in the given encoding to outfile, which is a file-like object.

SyndicationFeed.writeString() Returns the feed as a string in the given encoding.

For example, to create an Atom 1.0 feed and print it to standard output:

>>> from django.utils import feedgenerator
>>> from datetime import datetime
>>> f = feedgenerator.Atom1Feed(
... title=u"My Weblog",
... link=u"http://www.example.com/",
... description=u"In which I write about what I ate today.",
... language=u"en",
... author_name=u"Myself",
... feed_url=u"http://example.com/atom.xml")
>>> f.add_item(title=u"Hot dog today",
... link=u"http://www.example.com/entries/1/",
... pubdate=datetime.now(),
... description=u"<p>Today I had a Vienna Beef hot dog. It was pink, plump and perfect.</p>")
>>> print f.writeString(’UTF-8’)
<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom" xml:lang="en">
...
</feed>

Custom feed generators

If you need to produce a custom feed format, you’ve got a couple of options.

If the feed format is totally custom, you’ll want to subclass SyndicationFeed and completely replace the
write() and writeString() methods.

However, if the feed format is a spin-off of RSS or Atom (i.e. GeoRSS, Apple’s iTunes podcast format, etc.), you’ve
got a better choice. These types of feeds typically add extra elements and/or attributes to the underlying format, and
there are a set of methods that SyndicationFeed calls to get these extra attributes. Thus, you can subclass the
appropriate feed generator class (Atom1Feed or Rss201rev2Feed) and extend these callbacks. They are:

SyndicationFeed.root_attributes(self,) Return a dict of attributes to add to the root feed element
(feed/channel).

570 Chapter 6. API Reference

http://docs.python.org/library/datetime.html#datetime-objects
http://georss.org/
http://www.apple.com/itunes/podcasts/specs.html

Django Documentation, Release 1.2.7

SyndicationFeed.add_root_elements(self, handler) Callback to add elements inside the root feed
element (feed/channel). handler is an XMLGenerator from Python’s built-in SAX library; you’ll call
methods on it to add to the XML document in process.

SyndicationFeed.item_attributes(self, item) Return a dict of attributes to add to each
item (item/entry) element. The argument, item, is a dictionary of all the data passed to
SyndicationFeed.add_item().

SyndicationFeed.add_item_elements(self, handler, item) Callback to add elements to each
item (item/entry) element. handler and item are as above.

Warning: If you override any of these methods, be sure to call the superclass methods since they add the required
elements for each feed format.

For example, you might start implementing an iTunes RSS feed generator like so:

class iTunesFeed(Rss201rev2Feed):
def root_attributes(self):

attrs = super(iTunesFeed, self).root_attributes()
attrs[’xmlns:itunes’] = ’http://www.itunes.com/dtds/podcast-1.0.dtd’
return attrs

def add_root_elements(self, handler):
super(iTunesFeed, self).add_root_elements(handler)
handler.addQuickElement(’itunes:explicit’, ’clean’)

Obviously there’s a lot more work to be done for a complete custom feed class, but the above example should demon-
strate the basic idea.

6.2.18 django.contrib.webdesign

The django.contrib.webdesign package, part of the “django.contrib” add-ons, provides various Django
helpers that are particularly useful to Web designers (as opposed to developers).

At present, the package contains only a single template tag. If you have ideas for Web-designer-friendly functionality
in Django, please suggest them.

Template tags

To use these template tags, add ’django.contrib.webdesign’ to your INSTALLED_APPS setting. Once
you’ve done that, use {% load webdesign %} in a template to give your template access to the tags.

lorem

Displays random “lorem ipsum” Latin text. This is useful for providing sample data in templates.

Usage:

{% lorem [count] [method] [random] %}

The {% lorem %} tag can be used with zero, one, two or three arguments. The arguments are:

6.2. contrib packages 571

http://docs.python.org/dev/library/xml.sax.utils.html#xml.sax.saxutils.XMLGenerator

Django Documentation, Release 1.2.7

Argu-
ment

Description

count A number (or variable) containing the number of paragraphs or words to generate (default is 1).
method Either w for words, p for HTML paragraphs or b for plain-text paragraph blocks (default is b).
random The word random, which if given, does not use the common paragraph (“Lorem ipsum dolor sit

amet...”) when generating text.

Examples:

• {% lorem %} will output the common “lorem ipsum” paragraph.

• {% lorem 3 p %} will output the common “lorem ipsum” paragraph and two random paragraphs each
wrapped in HTML <p> tags.

• {% lorem 2 w random %} will output two random Latin words.

6.2.19 admin

The automatic Django administrative interface. For more information, see Tutorial 2 and the admin documentation.

Requires the auth and contenttypes contrib packages to be installed.

6.2.20 auth

Django’s authentication framework.

See User authentication in Django.

6.2.21 comments

A simple yet flexible comments system. See Django’s comments framework.

6.2.22 contenttypes

A light framework for hooking into “types” of content, where each installed Django model is a separate content type.

See the contenttypes documentation.

6.2.23 csrf

A middleware for preventing Cross Site Request Forgeries

See the csrf documentation.

6.2.24 flatpages

A framework for managing simple “flat” HTML content in a database.

See the flatpages documentation.

Requires the sites contrib package to be installed as well.

572 Chapter 6. API Reference

Django Documentation, Release 1.2.7

6.2.25 formtools

A set of high-level abstractions for Django forms (django.forms).

django.contrib.formtools.preview

An abstraction of the following workflow:

“Display an HTML form, force a preview, then do something with the submission.”

See the form preview documentation.

django.contrib.formtools.wizard

Splits forms across multiple Web pages.

See the form wizard documentation.

6.2.26 gis

A world-class geospatial framework built on top of Django, that enables storage, manipulation and display of spatial
data.

See the GeoDjango documentation for more.

6.2.27 humanize

A set of Django template filters useful for adding a “human touch” to data.

See the humanize documentation.

6.2.28 localflavor

A collection of various Django snippets that are useful only for a particular country or culture. For example,
django.contrib.localflavor.us.forms contains a USZipCodeField that you can use to validate U.S.
zip codes.

See the localflavor documentation.

6.2.29 markup

A collection of template filters that implement common markup languages

See the markup documentation.

6.2.30 messages

Changed in version 1.2: The messages framework was added. A framework for storing and retrieving temporary
cookie- or session-based messages

See the messages documentation.

6.2. contrib packages 573

Django Documentation, Release 1.2.7

6.2.31 redirects

A framework for managing redirects.

See the redirects documentation.

6.2.32 sessions

A framework for storing data in anonymous sessions.

See the sessions documentation.

6.2.33 sites

A light framework that lets you operate multiple Web sites off of the same database and Django installation. It gives
you hooks for associating objects to one or more sites.

See the sites documentation.

6.2.34 sitemaps

A framework for generating Google sitemap XML files.

See the sitemaps documentation.

6.2.35 syndication

A framework for generating syndication feeds, in RSS and Atom, quite easily.

See the syndication documentation.

6.2.36 webdesign

Helpers and utilities targeted primarily at Web designers rather than Web developers.

See the Web design helpers documentation.

6.2.37 Other add-ons

If you have an idea for functionality to include in contrib, let us know! Code it up, and post it to the django-users
mailing list.

6.3 Databases

Django attempts to support as many features as possible on all database backends. However, not all database backends
are alike, and we’ve had to make design decisions on which features to support and which assumptions we can make
safely.

This file describes some of the features that might be relevant to Django usage. Of course, it is not intended as a
replacement for server-specific documentation or reference manuals.

574 Chapter 6. API Reference

http://groups.google.com/group/django-users
http://groups.google.com/group/django-users

Django Documentation, Release 1.2.7

6.3.1 PostgreSQL notes

PostgreSQL 8.2 to 8.2.4

The implementation of the population statistics aggregates STDDEV_POP and VAR_POP that shipped with Post-
greSQL 8.2 to 8.2.4 are known to be faulty. Users of these releases of PostgreSQL are advised to upgrade to Release
8.2.5 or later. Django will raise a NotImplementedError if you attempt to use the StdDev(sample=False)
or Variance(sample=False) aggregate with a database backend that falls within the affected release range.

Transaction handling

By default, Django starts a transaction when a database connection is first used and commits the result at the end of
the request/response handling. The PostgreSQL backends normally operate the same as any other Django backend in
this respect.

Autocommit mode

New in version 1.1: Please, see the release notes If your application is particularly read-heavy and doesn’t make many
database writes, the overhead of a constantly open transaction can sometimes be noticeable. For those situations, if
you’re using the postgresql_psycopg2 backend, you can configure Django to use “autocommit” behavior for
the connection, meaning that each database operation will normally be in its own transaction, rather than having the
transaction extend over multiple operations. In this case, you can still manually start a transaction if you’re doing
something that requires consistency across multiple database operations. The autocommit behavior is enabled by
setting the autocommit key in the OPTIONS part of your database configuration in DATABASES:

’OPTIONS’: {
’autocommit’: True,

}

In this configuration, Django still ensures that delete() and update() queries run inside a single transaction, so that
either all the affected objects are changed or none of them are.

This is database-level autocommit

This functionality is not the same as the django.db.transaction.autocommit decorator. That decorator is a Django-level
implementation that commits automatically after data changing operations. The feature enabled using the OPTIONS
option provides autocommit behavior at the database adapter level. It commits after every operation.

If you are using this feature and performing an operation akin to delete or updating that requires multiple operations,
you are strongly recommended to wrap you operations in manual transaction handling to ensure data consistency. You
should also audit your existing code for any instances of this behavior before enabling this feature. It’s faster, but it
provides less automatic protection for multi-call operations.

Indexes for varchar and text columns

New in version 1.1.2: Please, see the release notes When specifying db_index=True on your model fields, Django
typically outputs a single CREATE INDEX statement. However, if the database type for the field is either varchar
or text (e.g., used by CharField, FileField, and TextField), then Django will create an additional index
that uses an appropriate PostgreSQL operator class for the column. The extra index is necessary to correctly perfrom
lookups that use the LIKE operator in their SQL, as is done with the contains and startswith lookup types.

6.3. Databases 575

http://archives.postgresql.org/pgsql-bugs/2007-07/msg00046.php
http://developer.postgresql.org/pgdocs/postgres/release-8-2-5.html
http://developer.postgresql.org/pgdocs/postgres/release-8-2-5.html
http://www.postgresql.org/docs/8.4/static/indexes-opclass.html

Django Documentation, Release 1.2.7

6.3.2 MySQL notes

Django expects the database to support transactions, referential integrity, and Unicode (UTF-8 encoding). Fortunately,
MySQL has all these features as available as far back as 3.23. While it may be possible to use 3.23 or 4.0, you’ll
probably have less trouble if you use 4.1 or 5.0.

MySQL 4.1

MySQL 4.1 has greatly improved support for character sets. It is possible to set different default character sets on the
database, table, and column. Previous versions have only a server-wide character set setting. It’s also the first version
where the character set can be changed on the fly. 4.1 also has support for views, but Django currently doesn’t use
views.

MySQL 5.0

MySQL 5.0 adds the information_schema database, which contains detailed data on all database schema.
Django’s inspectdb feature uses this information_schema if it’s available. 5.0 also has support for stored
procedures, but Django currently doesn’t use stored procedures.

Storage engines

MySQL has several storage engines (previously called table types). You can change the default storage engine in the
server configuration.

The default engine is MyISAM 34. The main drawback of MyISAM is that it doesn’t currently support transactions or
foreign keys. On the plus side, it’s currently the only engine that supports full-text indexing and searching.

The InnoDB engine is fully transactional and supports foreign key references and is probably the best choice at this
point in time.

MySQLdb

MySQLdb is the Python interface to MySQL. Version 1.2.1p2 or later is required for full MySQL support in Django.

Note: If you see ImportError: cannot import name ImmutableSet when trying to use Django, your
MySQLdb installation may contain an outdated sets.py file that conflicts with the built-in module of the same name
from Python 2.4 and later. To fix this, verify that you have installed MySQLdb version 1.2.1p2 or newer, then delete
the sets.py file in the MySQLdb directory that was left by an earlier version.

Creating your database

You can create your database using the command-line tools and this SQL:

CREATE DATABASE <dbname> CHARACTER SET utf8;

This ensures all tables and columns will use UTF-8 by default.

34 Unless this was changed by the packager of your MySQL package. We’ve had reports that the Windows Community Server installer sets up
InnoDB as the default storage engine, for example.

576 Chapter 6. API Reference

http://www.mysql.com/
http://dev.mysql.com/doc/refman/4.1/en/index.html
http://dev.mysql.com/doc/refman/5.0/en/index.html
http://dev.mysql.com/doc/refman/5.5/en/storage-engines.html
http://dev.mysql.com/doc/refman/5.5/en/myisam-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/innodb.html
http://sourceforge.net/projects/mysql-python
http://dev.mysql.com/doc/refman/5.0/en/create-database.html

Django Documentation, Release 1.2.7

Collation settings

The collation setting for a column controls the order in which data is sorted as well as what strings compare as equal. It
can be set on a database-wide level and also per-table and per-column. This is documented thoroughly in the MySQL
documentation. In all cases, you set the collation by directly manipulating the database tables; Django doesn’t provide
a way to set this on the model definition.

By default, with a UTF-8 database, MySQL will use the utf8_general_ci_swedish collation. This results in
all string equality comparisons being done in a case-insensitive manner. That is, "Fred" and "freD" are considered
equal at the database level. If you have a unique constraint on a field, it would be illegal to try to insert both "aa" and
"AA" into the same column, since they compare as equal (and, hence, non-unique) with the default collation.

In many cases, this default will not be a problem. However, if you really want case-sensitive comparisons on a
particular column or table, you would change the column or table to use the utf8_bin collation. The main
thing to be aware of in this case is that if you are using MySQLdb 1.2.2, the database backend in Django will
then return bytestrings (instead of unicode strings) for any character fields it receive from the database. This is
a strong variation from Django’s normal practice of always returning unicode strings. It is up to you, the de-
veloper, to handle the fact that you will receive bytestrings if you configure your table(s) to use utf8_bin col-
lation. Django itself should mostly work smoothly with such columns (except for the contrib.sessions
Session and contrib.admin LogEntry tables described below), but your code must be prepared to call
django.utils.encoding.smart_unicode() at times if it really wants to work with consistent data –
Django will not do this for you (the database backend layer and the model population layer are separated internally so
the database layer doesn’t know it needs to make this conversion in this one particular case).

If you’re using MySQLdb 1.2.1p2, Django’s standard CharField class will return unicode strings even with
utf8_bin collation. However, TextField fields will be returned as an array.array instance (from Python’s
standard array module). There isn’t a lot Django can do about that, since, again, the information needed to make the
necessary conversions isn’t available when the data is read in from the database. This problem was fixed in MySQLdb
1.2.2, so if you want to use TextField with utf8_bin collation, upgrading to version 1.2.2 and then dealing with
the bytestrings (which shouldn’t be too difficult) as described above is the recommended solution.

Should you decide to use utf8_bin collation for some of your tables with MySQLdb 1.2.1p2
or 1.2.2, you should still use utf8_collation_ci_swedish (the default) collation for the
django.contrib.sessions.models.Session table (usually called django_session) and the
django.contrib.admin.models.LogEntry table (usually called django_admin_log). Those are the
two standard tables that use TextField internally.

Connecting to the database

Refer to the settings documentation.

Connection settings are used in this order:

1. OPTIONS.

2. NAME, USER, PASSWORD, HOST, PORT

3. MySQL option files.

In other words, if you set the name of the database in OPTIONS, this will take precedence over NAME, which would
override anything in a MySQL option file.

Here’s a sample configuration which uses a MySQL option file:

settings.py
DATABASES = {

’default’: {
’ENGINE’: ’django.db.backends.mysql’,

6.3. Databases 577

http://dev.mysql.com/doc/refman/5.0/en/charset.html
http://sourceforge.net/tracker/index.php?func=detail&aid=1495765&group_id=22307&atid=374932
http://sourceforge.net/tracker/index.php?func=detail&aid=1495765&group_id=22307&atid=374932
http://dev.mysql.com/doc/refman/5.0/en/option-files.html

Django Documentation, Release 1.2.7

’OPTIONS’: {
’read_default_file’: ’/path/to/my.cnf’,

},
}

}

my.cnf
[client]
database = NAME
user = USER
password = PASSWORD
default-character-set = utf8

Several other MySQLdb connection options may be useful, such as ssl, use_unicode, init_command, and
sql_mode. Consult the MySQLdb documentation for more details.

Creating your tables

When Django generates the schema, it doesn’t specify a storage engine, so tables will be created with whatever default
storage engine your database server is configured for. The easiest solution is to set your database server’s default
storage engine to the desired engine.

If you’re using a hosting service and can’t change your server’s default storage engine, you have a couple of options.

• After the tables are created, execute an ALTER TABLE statement to convert a table to a new storage engine
(such as InnoDB):

ALTER TABLE <tablename> ENGINE=INNODB;

This can be tedious if you have a lot of tables.

• Another option is to use the init_command option for MySQLdb prior to creating your tables:

’OPTIONS’: {
’init_command’: ’SET storage_engine=INNODB’,

}

This sets the default storage engine upon connecting to the database. After your tables have been created, you
should remove this option.

• Another method for changing the storage engine is described in AlterModelOnSyncDB.

Notes on specific fields

Boolean fields

Changed in version 1.2: Please, see the release notes In previous versions of Django when running under MySQL
BooleanFields would return their data as ints, instead of true bools. See the release notes for a complete
description of the change.

Character fields

Any fields that are stored with VARCHAR column types have their max_length restricted to 255 char-
acters if you are using unique=True for the field. This affects CharField, SlugField and
CommaSeparatedIntegerField.

578 Chapter 6. API Reference

http://mysql-python.sourceforge.net/
http://code.djangoproject.com/wiki/AlterModelOnSyncDB

Django Documentation, Release 1.2.7

Furthermore, if you are using a version of MySQL prior to 5.0.3, all of those column types have a maximum length
restriction of 255 characters, regardless of whether unique=True is specified or not.

DateTime fields

MySQL does not have a timezone-aware column type. If an attempt is made to store a timezone-aware time or
datetime to a TimeField or DateTimeField respectively, a ValueError is raised rather than truncating
data.

6.3.3 SQLite notes

SQLite provides an excellent development alternative for applications that are predominantly read-only or require a
smaller installation footprint. As with all database servers, though, there are some differences that are specific to
SQLite that you should be aware of.

String matching for non-ASCII strings

SQLite doesn’t support case-insensitive matching for non-ASCII strings. Some possible workarounds for this are
documented at sqlite.org, but they are not utilised by the default SQLite backend in Django. Therefore, if you are
using the iexact lookup type in your queryset filters, be aware that it will not work as expected for non-ASCII
strings.

SQLite 3.3.6 or newer strongly recommended

Versions of SQLite 3.3.5 and older contains the following bugs:

• A bug when handling ORDER BY parameters. This can cause problems when you use the select parameter
for the extra() QuerySet method. The bug can be identified by the error message OperationalError:
ORDER BY terms must not be non-integer constants.

• A bug when handling aggregation together with DateFields and DecimalFields.

SQLite 3.3.6 was released in April 2006, so most current binary distributions for different platforms include newer
version of SQLite usable from Python through either the pysqlite2 or the sqlite3 modules.

However, some platform/Python version combinations include older versions of SQLite (e.g. the official binary distri-
bution of Python 2.5 for Windows, 2.5.4 as of this writing, includes SQLite 3.3.4). There are (as of Django 1.1) even
some tests in the Django test suite that will fail when run under this setup.

As described below, this can be solved by downloading and installing a newer version of pysqlite2
(pysqlite-2.x.x.win32-py2.5.exe in the described case) that includes and uses a newer version of SQLite.
Python 2.6 for Windows ships with a version of SQLite that is not affected by these issues.

Version 3.5.9

The Ubuntu “Intrepid Ibex” (8.10) SQLite 3.5.9-3 package contains a bug that causes problems with the evaluation
of query expressions. If you are using Ubuntu “Intrepid Ibex”, you will need to update the package to version 3.5.9-
3ubuntu1 or newer (recommended) or find an alternate source for SQLite packages, or install SQLite from source.

At one time, Debian Lenny shipped with the same malfunctioning SQLite 3.5.9-3 package. However the Debian
project has subsequently issued updated versions of the SQLite package that correct these bugs. If you find you are
getting unexpected results under Debian, ensure you have updated your SQLite package to 3.5.9-5 or later.

The problem does not appear to exist with other versions of SQLite packaged with other operating systems.

6.3. Databases 579

http://www.sqlite.org/
http://www.sqlite.org/faq.html#q18
http://www.sqlite.org/cvstrac/tktview?tn=1768
http://code.djangoproject.com/ticket/10031

Django Documentation, Release 1.2.7

Version 3.6.2

SQLite version 3.6.2 (released August 30, 2008) introduced a bug into SELECT DISTINCT handling that is triggered
by, amongst other things, Django’s DateQuerySet (returned by the dates() method on a queryset).

You should avoid using this version of SQLite with Django. Either upgrade to 3.6.3 (released September 22, 2008) or
later, or downgrade to an earlier version of SQLite.

Using newer versions of the SQLite DB-API 2.0 driver

New in version 1.1: Please, see the release notes For versions of Python 2.5 or newer that include sqlite3 in the
standard library Django will now use a pysqlite2 interface in preference to sqlite3 if it finds one is available.

This provides the ability to upgrade both the DB-API 2.0 interface or SQLite 3 itself to versions newer than the ones
included with your particular Python binary distribution, if needed.

“Database is locked” errors

SQLite is meant to be a lightweight database, and thus can’t support a high level of concurrency.
OperationalError: database is locked errors indicate that your application is experiencing more con-
currency than sqlite can handle in default configuration. This error means that one thread or process has an exclu-
sive lock on the database connection and another thread timed out waiting for the lock the be released.

Python’s SQLite wrapper has a default timeout value that determines how long the second thread is allowed to wait on
the lock before it times out and raises the OperationalError: database is locked error.

If you’re getting this error, you can solve it by:

• Switching to another database backend. At a certain point SQLite becomes too “lite” for real-world applications,
and these sorts of concurrency errors indicate you’ve reached that point.

• Rewriting your code to reduce concurrency and ensure that database transactions are short-lived.

• Increase the default timeout value by setting the timeout database option option:

’OPTIONS’: {
...
’timeout’: 20,
...

}

This will simply make SQLite wait a bit longer before throwing “database is locked” errors; it won’t really do
anything to solve them.

6.3.4 Oracle notes

Django supports Oracle Database Server versions 9i and higher. Oracle version 10g or later is required to use Django’s
regex and iregex query operators. You will also need at least version 4.3.1 of the cx_Oracle Python driver.

Note that due to a Unicode-corruption bug in cx_Oracle 5.0, that version of the driver should not be used with
Django; cx_Oracle 5.0.1 resolved this issue, so if you’d like to use a more recent cx_Oracle, use version 5.0.1.

cx_Oracle 5.0.1 or greater can optionally be compiled with the WITH_UNICODE environment variable. This is
recommended but not required.

In order for the python manage.py syncdb command to work, your Oracle database user must have privileges
to run the following commands:

580 Chapter 6. API Reference

http://www.oracle.com/
http://cx-oracle.sourceforge.net/

Django Documentation, Release 1.2.7

• CREATE TABLE

• CREATE SEQUENCE

• CREATE PROCEDURE

• CREATE TRIGGER

To run Django’s test suite, the user needs these additional privileges:

• CREATE USER

• DROP USER

• CREATE TABLESPACE

• DROP TABLESPACE

• CONNECT WITH ADMIN OPTION

• RESOURCE WITH ADMIN OPTION

Connecting to the database

Your Django settings.py file should look something like this for Oracle:

DATABASES = {
’default’: {

’ENGINE’: ’django.db.backends.oracle’,
’NAME’: ’xe’,
’USER’: ’a_user’,
’PASSWORD’: ’a_password’,
’HOST’: ’’,
’PORT’: ’’,

}
}

If you don’t use a tnsnames.ora file or a similar naming method that recognizes the SID (“xe” in this example),
then fill in both HOST and PORT like so:

DATABASES = {
’default’: {

’ENGINE’: ’django.db.backends.oracle’,
’NAME’: ’xe’,
’USER’: ’a_user’,
’PASSWORD’: ’a_password’,
’HOST’: ’dbprod01ned.mycompany.com’,
’PORT’: ’1540’,

}
}

You should supply both HOST and PORT, or leave both as empty strings.

Threaded option

If you plan to run Django in a multithreaded environment (e.g. Apache in Windows using the default MPM module),
then you must set the threaded option of your Oracle database configuration to True:

’OPTIONS’: {
’threaded’: True,

},

6.3. Databases 581

Django Documentation, Release 1.2.7

Failure to do this may result in crashes and other odd behavior.

Tablespace options

A common paradigm for optimizing performance in Oracle-based systems is the use of tablespaces to organize disk
layout. The Oracle backend supports this use case by adding db_tablespace options to the Meta and Field
classes. (When you use a backend that lacks support for tablespaces, Django ignores these options.)

A tablespace can be specified for the table(s) generated by a model by supplying the db_tablespace option inside
the model’s class Meta. Additionally, you can pass the db_tablespace option to a Field constructor to
specify an alternate tablespace for the Field‘s column index. If no index would be created for the column, the
db_tablespace option is ignored:

class TablespaceExample(models.Model):
name = models.CharField(max_length=30, db_index=True, db_tablespace="indexes")
data = models.CharField(max_length=255, db_index=True)
edges = models.ManyToManyField(to="self", db_tablespace="indexes")

class Meta:
db_tablespace = "tables"

In this example, the tables generated by the TablespaceExample model (i.e., the model table and the many-
to-many table) would be stored in the tables tablespace. The index for the name field and the indexes on the
many-to-many table would be stored in the indexes tablespace. The data field would also generate an index, but
no tablespace for it is specified, so it would be stored in the model tablespace tables by default.

Use the DEFAULT_TABLESPACE and DEFAULT_INDEX_TABLESPACE settings to specify default values for the
db_tablespace options. These are useful for setting a tablespace for the built-in Django apps and other applications
whose code you cannot control.

Django does not create the tablespaces for you. Please refer to Oracle’s documentation for details on creating and
managing tablespaces.

Naming issues

Oracle imposes a name length limit of 30 characters. To accommodate this, the backend truncates database identifiers
to fit, replacing the final four characters of the truncated name with a repeatable MD5 hash value.

When running syncdb, an ORA-06552 error may be encountered if certain Oracle keywords are used as the name of
a model field or the value of a db_column option. Django quotes all identifiers used in queries to prevent most such
problems, but this error can still occur when an Oracle datatype is used as a column name. In particular, take care to
avoid using the names date, timestamp, number or float as a field name.

NULL and empty strings

Django generally prefers to use the empty string (‘’) rather than NULL, but Oracle treats both identically. To get
around this, the Oracle backend coerces the null=True option on fields that have the empty string as a possible
value. When fetching from the database, it is assumed that a NULL value in one of these fields really means the empty
string, and the data is silently converted to reflect this assumption.

TextField limitations

The Oracle backend stores TextFields as NCLOB columns. Oracle imposes some limitations on the usage of such
LOB columns in general:

582 Chapter 6. API Reference

http://en.wikipedia.org/wiki/Tablespace
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/statements_7003.htm#SQLRF01403

Django Documentation, Release 1.2.7

• LOB columns may not be used as primary keys.

• LOB columns may not be used in indexes.

• LOB columns may not be used in a SELECT DISTINCT list. This means that attempting to use the
QuerySet.distinct method on a model that includes TextField columns will result in an error when
run against Oracle. As a workaround, use the QuerySet.defer method in conjunction with distinct()
to prevent TextField columns from being included in the SELECT DISTINCT list.

6.3.5 Using a 3rd-party database backend

In addition to the officially supported databases, there are backends provided by 3rd parties that allow you to use other
databases with Django:

• Sybase SQL Anywhere

• IBM DB2

• Microsoft SQL Server 2005

• Firebird

• ODBC

The Django versions and ORM features supported by these unofficial backends vary considerably. Queries regarding
the specific capabilities of these unofficial backends, along with any support queries, should be directed to the support
channels provided by each 3rd party project.

6.4 django-admin.py and manage.py

django-admin.py is Django’s command-line utility for administrative tasks. This document outlines all it can do.

In addition, manage.py is automatically created in each Django project. manage.py is a thin wrapper around
django-admin.py that takes care of two things for you before delegating to django-admin.py:

• It puts your project’s package on sys.path.

• It sets the DJANGO_SETTINGS_MODULE environment variable so that it points to your project’s
settings.py file.

The django-admin.py script should be on your system path if you installed Django via its setup.py utility. If
it’s not on your path, you can find it in site-packages/django/bin within your Python installation. Consider
symlinking it from some place on your path, such as /usr/local/bin.

For Windows users, who do not have symlinking functionality available, you can copy django-admin.py to a
location on your existing path or edit the PATH settings (under Settings - Control Panel - System -
Advanced - Environment...) to point to its installed location.

Generally, when working on a single Django project, it’s easier to use manage.py. Use django-admin.py with
DJANGO_SETTINGS_MODULE, or the --settings command line option, if you need to switch between multiple
Django settings files.

The command-line examples throughout this document use django-admin.py to be consistent, but any example
can use manage.py just as well.

6.4. django-admin.py and manage.py 583

http://code.google.com/p/sqlany-django/
http://code.google.com/p/ibm-db/
http://code.google.com/p/django-mssql/
http://code.google.com/p/django-firebird/
http://code.google.com/p/django-pyodbc/

Django Documentation, Release 1.2.7

6.4.1 Usage

django-admin.py <command> [options]
manage.py <command> [options]

command should be one of the commands listed in this document. options, which is optional, should be zero or
more of the options available for the given command.

Getting runtime help

-help

Run django-admin.py help to display a list of all available commands. Run django-admin.py help
<command> to display a description of the given command and a list of its available options.

App names

Many commands take a list of “app names.” An “app name” is the basename of the package containing your models.
For example, if your INSTALLED_APPS contains the string ’mysite.blog’, the app name is blog.

Determining the version

-version

Run django-admin.py --version to display the current Django version.

Examples of output:

0.95
0.96
0.97-pre-SVN-6069

Displaying debug output

Use --verbosity to specify the amount of notification and debug information that django-admin.py should
print to the console. For more details, see the documentation for the --verbosity option.

6.4.2 Available commands

cleanup

django-admin.py cleanup

Can be run as a cronjob or directly to clean out old data from the database (only expired sessions at the moment).

compilemessages

django-admin.py compilemessages

584 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Compiles .po files created with makemessages to .mo files for use with the builtin gettext support. See Internation-
alization and localization.

Use the --locale option to specify the locale to process. If not provided, all locales are processed.

Example usage:

django-admin.py compilemessages --locale=br_PT

createcachetable

django-admin.py createcachetable

Creates a cache table named tablename for use with the database cache backend. See Django’s cache framework
for more information. New in version 1.2: Please, see the release notes The --database option can be used to
specify the database onto which the cachetable will be installed.

dbshell

django-admin.py dbshell

Runs the command-line client for the database engine specified in your ENGINE setting, with the connection parame-
ters specified in your USER, PASSWORD, etc., settings.

• For PostgreSQL, this runs the psql command-line client.

• For MySQL, this runs the mysql command-line client.

• For SQLite, this runs the sqlite3 command-line client.

This command assumes the programs are on your PATH so that a simple call to the program name (psql, mysql,
sqlite3) will find the program in the right place. There’s no way to specify the location of the program manually.
New in version 1.2: Please, see the release notes The --database option can be used to specify the database onto
which to open a shell.

diffsettings

django-admin.py diffsettings

Displays differences between the current settings file and Django’s default settings.

Settings that don’t appear in the defaults are followed by "###". For example, the default settings don’t define
ROOT_URLCONF, so ROOT_URLCONF is followed by "###" in the output of diffsettings.

Note that Django’s default settings live in django/conf/global_settings.py, if you’re ever curious to see
the full list of defaults.

dumpdata <appname appname appname.Model ...>

django-admin.py dumpdata

Outputs to standard output all data in the database associated with the named application(s).

If no application name is provided, all installed applications will be dumped.

The output of dumpdata can be used as input for loaddata.

6.4. django-admin.py and manage.py 585

Django Documentation, Release 1.2.7

Note that dumpdata uses the default manager on the model for selecting the records to dump. If you’re using a
custom manager as the default manager and it filters some of the available records, not all of the objects will be
dumped.

-format <fmt>

By default, dumpdata will format its output in JSON, but you can use the --format option to specify another
format. Currently supported formats are listed in Serialization formats.

-indent <num>

By default, dumpdata will output all data on a single line. This isn’t easy for humans to read, so you can use the
--indent option to pretty-print the output with a number of indentation spaces.

The --exclude option may be provided to prevent specific applications from being dumped. New in version 1.1:
Please, see the release notes In addition to specifying application names, you can provide a list of individual models,
in the form of appname.Model. If you specify a model name to dumpdata, the dumped output will be restricted to
that model, rather than the entire application. You can also mix application names and model names. New in version
1.2: Please, see the release notes The --database option can be used to specify the database onto which the data
will be loaded.

-natural

New in version 1.2: Please, see the release notes Use natural keys to represent any foreign key and many-to-many
relationship with a model that provides a natural key definition. If you are dumping contrib.auth Permission
objects or contrib.contenttypes ContentType objects, you should probably be using this flag.

flush

django-admin.py flush

Returns the database to the state it was in immediately after syncdb was executed. This means that all data will be
removed from the database, any post-synchronization handlers will be re-executed, and the initial_data fixture
will be re-installed.

The --noinput option may be provided to suppress all user prompts. New in version 1.2: Please, see the release
notes The --database option may be used to specify the database to flush.

inspectdb

django-admin.py inspectdb

Introspects the database tables in the database pointed-to by the NAME setting and outputs a Django model module (a
models.py file) to standard output.

Use this if you have a legacy database with which you’d like to use Django. The script will inspect the database and
create a model for each table within it.

As you might expect, the created models will have an attribute for every field in the table. Note that inspectdb has
a few special cases in its field-name output:

• If inspectdb cannot map a column’s type to a model field type, it’ll use TextField and will insert the
Python comment ’This field type is a guess.’ next to the field in the generated model.

• If the database column name is a Python reserved word (such as ’pass’, ’class’ or ’for’), inspectdb
will append ’_field’ to the attribute name. For example, if a table has a column ’for’, the generated model
will have a field ’for_field’, with the db_column attribute set to ’for’. inspectdb will insert the
Python comment ’Field renamed because it was a Python reserved word.’ next to the
field.

586 Chapter 6. API Reference

Django Documentation, Release 1.2.7

This feature is meant as a shortcut, not as definitive model generation. After you run it, you’ll want to look over
the generated models yourself to make customizations. In particular, you’ll need to rearrange models’ order, so that
models that refer to other models are ordered properly.

Primary keys are automatically introspected for PostgreSQL, MySQL and SQLite, in which case Django puts in the
primary_key=True where needed.

inspectdb works with PostgreSQL, MySQL and SQLite. Foreign-key detection only works in PostgreSQL and
with certain types of MySQL tables. New in version 1.2: Please, see the release notes The --database option may
be used to specify the database to introspect.

loaddata <fixture fixture ...>

django-admin.py loaddata

Searches for and loads the contents of the named fixture into the database. New in version 1.2: Please, see the release
notes The --database option can be used to specify the database onto which the data will be loaded.

What’s a “fixture”?

A fixture is a collection of files that contain the serialized contents of the database. Each fixture has a unique name,
and the files that comprise the fixture can be distributed over multiple directories, in multiple applications.

Django will search in three locations for fixtures:

1. In the fixtures directory of every installed application

2. In any directory named in the FIXTURE_DIRS setting

3. In the literal path named by the fixture

Django will load any and all fixtures it finds in these locations that match the provided fixture names.

If the named fixture has a file extension, only fixtures of that type will be loaded. For example:

django-admin.py loaddata mydata.json

would only load JSON fixtures called mydata. The fixture extension must correspond to the registered name of a
serializer (e.g., json or xml).

If you omit the extensions, Django will search all available fixture types for a matching fixture. For example:

django-admin.py loaddata mydata

would look for any fixture of any fixture type called mydata. If a fixture directory contained mydata.json, that
fixture would be loaded as a JSON fixture.

The fixtures that are named can include directory components. These directories will be included in the search path.
For example:

django-admin.py loaddata foo/bar/mydata.json

would search <appname>/fixtures/foo/bar/mydata.json for each installed application,
<dirname>/foo/bar/mydata.json for each directory in FIXTURE_DIRS, and the literal path
foo/bar/mydata.json.

When fixture files are processed, the data is saved to the database as is. Model defined save methods and pre_save
signals are not called.

6.4. django-admin.py and manage.py 587

Django Documentation, Release 1.2.7

Note that the order in which fixture files are processed is undefined. However, all fixture data is installed as a single
transaction, so data in one fixture can reference data in another fixture. If the database backend supports row-level
constraints, these constraints will be checked at the end of the transaction.

The dumpdata command can be used to generate input for loaddata.

Compressed fixtures

Fixtures may be compressed in zip, gz, or bz2 format. For example:

django-admin.py loaddata mydata.json

would look for any of mydata.json, mydata.json.zip, mydata.json.gz, or mydata.json.bz2. The
first file contained within a zip-compressed archive is used.

Note that if two fixtures with the same name but different fixture type are discovered (for example, if mydata.json
and mydata.xml.gz were found in the same fixture directory), fixture installation will be aborted, and any data
installed in the call to loaddata will be removed from the database.

MySQL and Fixtures

Unfortunately, MySQL isn’t capable of completely supporting all the features of Django fixtures. If you use MyISAM
tables, MySQL doesn’t support transactions or constraints, so you won’t get a rollback if multiple transaction files
are found, or validation of fixture data. If you use InnoDB tables, you won’t be able to have any forward references
in your data files - MySQL doesn’t provide a mechanism to defer checking of row constraints until a transaction is
committed.

Database-specific fixtures

If you are in a multi-database setup, you may have fixture data that you want to load onto one database, but not onto
another. In this situation, you can add database identifier into . If your DATABASES setting has a ‘master’ database
defined, you can define the fixture mydata.master.json or mydata.master.json.gz. This fixture will
only be loaded if you have specified that you want to load data onto the master database.

makemessages

django-admin.py makemessages

Runs over the entire source tree of the current directory and pulls out all strings marked for translation. It creates (or
updates) a message file in the conf/locale (in the django tree) or locale (for project and application) directory. After
making changes to the messages files you need to compile them with compilemessages for use with the builtin
gettext support. See the i18n documentation for details.

-all

Use the --all or -a option to update the message files for all available languages.

Example usage:

django-admin.py makemessages --all

-extension

Use the --extension or -e option to specify a list of file extensions to examine (default: ”.html”).

Example usage:

588 Chapter 6. API Reference

Django Documentation, Release 1.2.7

django-admin.py makemessages --locale=de --extension xhtml

Separate multiple extensions with commas or use -e or –extension multiple times:

django-admin.py makemessages --locale=de --extension=html,txt --extension xml

Use the --locale option to specify the locale to process.

Example usage:

django-admin.py makemessages --locale=br_PT

-domain

Use the --domain or -d option to change the domain of the messages files. Currently supported:

• django for all *.py and *.html files (default)

• djangojs for *.js files

-symlinks

New in version 1.2: Please, see the release notes Use the --symlinks or -s option to follow symlinks to directories
when looking for new translation strings.

Example usage:

django-admin.py makemessages --locale=de --symlinks

-ignore

Use the --ignore or -i option to ignore files or directories matching the given glob-style pattern. Use multiple
times to ignore more.

These patterns are used by default: ’CVS’, ’.*’, ’*~’

Example usage:

django-admin.py makemessages --locale=en_US --ignore=apps/* --ignore=secret/*.html

-no-default-ignore

Use the --no-default-ignore option to disable the default values of --ignore.

reset <appname appname ...>

django-admin.py reset

Executes the equivalent of sqlreset for the given app name(s).

The --noinput option may be provided to suppress all user prompts. New in version 1.2: Please, see the release
notes The --database option can be used to specify the alias of the database to reset.

runfcgi [options]

django-admin.py runfcgi

Starts a set of FastCGI processes suitable for use with any Web server that supports the FastCGI protocol. See the
FastCGI deployment documentation for details. Requires the Python FastCGI module from flup.

The options accepted by this command are passed to the FastCGI library and don’t use the ’--’ prefix as is usual for
other Django management commands.

6.4. django-admin.py and manage.py 589

http://docs.python.org/library/glob.html
http://www.saddi.com/software/flup/

Django Documentation, Release 1.2.7

protocol

protocol=PROTOCOL

Protocol to use. PROTOCOL can be fcgi, scgi, ajp, etc. (default is fcgi)

host

host=HOSTNAME

Hostname to listen on.

port

port=PORTNUM

Port to listen on.

socket

socket=FILE

UNIX socket to listen on.

method

method=IMPL

Possible values: prefork or threaded (default prefork)

maxrequests

maxrequests=NUMBER

Number of requests a child handles before it is killed and a new child is forked (0 means no limit).

maxspare

maxspare=NUMBER

Max number of spare processes / threads.

minspare

minspare=NUMBER

Min number of spare processes / threads.

maxchildren

maxchildren=NUMBER

Hard limit number of processes / threads.

daemonize

daemonize=BOOL

Whether to detach from terminal.

pidfile

pidfile=FILE

Write the spawned process-id to file FILE.

workdir

workdir=DIRECTORY

Change to directory DIRECTORY when daemonizing.

590 Chapter 6. API Reference

Django Documentation, Release 1.2.7

debug

debug=BOOL

Set to true to enable flup tracebacks.

outlog

outlog=FILE

Write stdout to the FILE file.

errlog

errlog=FILE

Write stderr to the FILE file.

umask

umask=UMASK

Umask to use when daemonizing. The value is interpeted as an octal number (default value is 022).

Example usage:

django-admin.py runfcgi socket=/tmp/fcgi.sock method=prefork daemonize=true \
pidfile=/var/run/django-fcgi.pid

Run a FastCGI server as a daemon and write the spawned PID in a file.

runserver [port or ipaddr:port]

django-admin.py runserver

Starts a lightweight development Web server on the local machine. By default, the server runs on port 8000 on the IP
address 127.0.0.1. You can pass in an IP address and port number explicitly.

If you run this script as a user with normal privileges (recommended), you might not have access to start a port on a
low port number. Low port numbers are reserved for the superuser (root).

DO NOT USE THIS SERVER IN A PRODUCTION SETTING. It has not gone through security audits or performance
tests. (And that’s how it’s gonna stay. We’re in the business of making Web frameworks, not Web servers, so improving
this server to be able to handle a production environment is outside the scope of Django.)

The development server automatically reloads Python code for each request, as needed. You don’t need to restart the
server for code changes to take effect.

When you start the server, and each time you change Python code while the server is running, the server will validate
all of your installed models. (See the validate command below.) If the validator finds errors, it will print them to
standard output, but it won’t stop the server.

You can run as many servers as you want, as long as they’re on separate ports. Just execute django-admin.py
runserver more than once.

Note that the default IP address, 127.0.0.1, is not accessible from other machines on your network. To make your
development server viewable to other machines on the network, use its own IP address (e.g. 192.168.2.1) or
0.0.0.0.

-adminmedia

Use the --adminmedia option to tell Django where to find the various CSS and JavaScript files for the Django
admin interface. Normally, the development server serves these files out of the Django source tree magically, but
you’d want to use this if you made any changes to those files for your own site.

6.4. django-admin.py and manage.py 591

Django Documentation, Release 1.2.7

Example usage:

django-admin.py runserver --adminmedia=/tmp/new-admin-style/

-noreload

Use the --noreload option to disable the use of the auto-reloader. This means any Python code changes you make
while the server is running will not take effect if the particular Python modules have already been loaded into memory.

Example usage:

django-admin.py runserver --noreload

Examples of using different ports and addresses

Port 8000 on IP address 127.0.0.1:

django-admin.py runserver

Port 8000 on IP address 1.2.3.4:

django-admin.py runserver 1.2.3.4:8000

Port 7000 on IP address 127.0.0.1:

django-admin.py runserver 7000

Port 7000 on IP address 1.2.3.4:

django-admin.py runserver 1.2.3.4:7000

Serving static files with the development server

By default, the development server doesn’t serve any static files for your site (such as CSS files, images, things under
MEDIA_URL and so forth). If you want to configure Django to serve static media, read How to serve static files.

shell

django-admin.py shell

Starts the Python interactive interpreter.

Django will use IPython, if it’s installed. If you have IPython installed and want to force use of the “plain” Python
interpreter, use the --plain option, like so:

django-admin.py shell --plain

sql <appname appname ...>

django-admin.py sql

Prints the CREATE TABLE SQL statements for the given app name(s). New in version 1.2: Please, see the release
notes The --database option can be used to specify the database for which to print the SQL.

592 Chapter 6. API Reference

http://ipython.scipy.org/

Django Documentation, Release 1.2.7

sqlall <appname appname ...>

django-admin.py sqlall

Prints the CREATE TABLE and initial-data SQL statements for the given app name(s).

Refer to the description of sqlcustom for an explanation of how to specify initial data. New in version 1.2: Please,
see the release notes The --database option can be used to specify the database for which to print the SQL.

sqlclear <appname appname ...>

django-admin.py sqlclear

Prints the DROP TABLE SQL statements for the given app name(s). New in version 1.2: Please, see the release notes
The --database option can be used to specify the database for which to print the SQL.

sqlcustom <appname appname ...>

django-admin.py sqlcustom

Prints the custom SQL statements for the given app name(s).

For each model in each specified app, this command looks for the file <appname>/sql/<modelname>.sql,
where <appname> is the given app name and <modelname> is the model’s name in lowercase. For example, if you
have an app news that includes a Story model, sqlcustom will attempt to read a file news/sql/story.sql
and append it to the output of this command.

Each of the SQL files, if given, is expected to contain valid SQL. The SQL files are piped directly into the database after
all of the models’ table-creation statements have been executed. Use this SQL hook to make any table modifications,
or insert any SQL functions into the database.

Note that the order in which the SQL files are processed is undefined. New in version 1.2: Please, see the release
notes The --database option can be used to specify the database for which to print the SQL.

sqlflush

django-admin.py sqlflush

Prints the SQL statements that would be executed for the flush command. New in version 1.2: Please, see the
release notes The --database option can be used to specify the database for which to print the SQL.

sqlindexes <appname appname ...>

django-admin.py sqlindexes

Prints the CREATE INDEX SQL statements for the given app name(s). New in version 1.2: Please, see the release
notes The --database option can be used to specify the database for which to print the SQL.

sqlreset <appname appname ...>

django-admin.py sqlreset

Prints the DROP TABLE SQL, then the CREATE TABLE SQL, for the given app name(s). New in version 1.2: Please,
see the release notes The --database option can be used to specify the database for which to print the SQL.

6.4. django-admin.py and manage.py 593

Django Documentation, Release 1.2.7

sqlsequencereset <appname appname ...>

django-admin.py sqlsequencereset

Prints the SQL statements for resetting sequences for the given app name(s).

Sequences are indexes used by some database engines to track the next available number for automatically incremented
fields.

Use this command to generate SQL which will fix cases where a sequence is out of sync with its automatically
incremented field data. New in version 1.2: Please, see the release notes The --database option can be used to
specify the database for which to print the SQL.

startapp <appname>

django-admin.py startapp

Creates a Django app directory structure for the given app name in the current directory.

startproject <projectname>

django-admin.py startproject

Creates a Django project directory structure for the given project name in the current directory.

This command is disabled when the --settings option to django-admin.py is used, or when the environ-
ment variable DJANGO_SETTINGS_MODULE has been set. To re-enable it in these situations, either omit the
--settings option or unset DJANGO_SETTINGS_MODULE.

syncdb

django-admin.py syncdb

Creates the database tables for all apps in INSTALLED_APPS whose tables have not already been created.

Use this command when you’ve added new applications to your project and want to install them in the database. This
includes any apps shipped with Django that might be in INSTALLED_APPS by default. When you start a new project,
run this command to install the default apps.

Syncdb will not alter existing tables

syncdb will only create tables for models which have not yet been installed. It will never issue ALTER TABLE
statements to match changes made to a model class after installation. Changes to model classes and database schemas
often involve some form of ambiguity and, in those cases, Django would have to guess at the correct changes to make.
There is a risk that critical data would be lost in the process.

If you have made changes to a model and wish to alter the database tables to match, use the sql command to display
the new SQL structure and compare that to your existing table schema to work out the changes.

If you’re installing the django.contrib.auth application, syncdb will give you the option of creating a supe-
ruser immediately.

syncdbwill also search for and install any fixture named initial_datawith an appropriate extension (e.g. json
or xml). See the documentation for loaddata for details on the specification of fixture data files.

594 Chapter 6. API Reference

Django Documentation, Release 1.2.7

–noinput

The --noinput option may be provided to suppress all user prompts. New in version 1.2: Please, see the release
notes The --database option can be used to specify the database to synchronize.

test <app or test identifier>

django-admin.py test

Runs tests for all installed models. See Testing Django applications for more information. New in version 1.2: Please,
see the release notes

-failfast

Use the --failfast option to stop running tests and report the failure immediately after a test fails.

testserver <fixture fixture ...>

django-admin.py testserver

Runs a Django development server (as in runserver) using data from the given fixture(s).

For example, this command:

django-admin.py testserver mydata.json

...would perform the following steps:

1. Create a test database, as described in Testing Django applications.

2. Populate the test database with fixture data from the given fixtures. (For more on fixtures, see the documentation
for loaddata above.)

3. Runs the Django development server (as in runserver), pointed at this newly created test database instead of
your production database.

This is useful in a number of ways:

• When you’re writing unit tests of how your views act with certain fixture data, you can use testserver to
interact with the views in a Web browser, manually.

• Let’s say you’re developing your Django application and have a “pristine” copy of a database that you’d like to
interact with. You can dump your database to a fixture (using the dumpdata command, explained above), then
use testserver to run your Web application with that data. With this arrangement, you have the flexibility
of messing up your data in any way, knowing that whatever data changes you’re making are only being made to
a test database.

Note that this server does not automatically detect changes to your Python source code (as runserver does). It
does, however, detect changes to templates.

-addrport [port number or ipaddr:port]

Use --addrport to specify a different port, or IP address and port, from the default of 127.0.0.1:8000. This value
follows exactly the same format and serves exactly the same function as the argument to the runserver command.

Examples:

To run the test server on port 7000 with fixture1 and fixture2:

django-admin.py testserver --addrport 7000 fixture1 fixture2
django-admin.py testserver fixture1 fixture2 --addrport 7000

6.4. django-admin.py and manage.py 595

Django Documentation, Release 1.2.7

(The above statements are equivalent. We include both of them to demonstrate that it doesn’t matter whether the
options come before or after the fixture arguments.)

To run on 1.2.3.4:7000 with a test fixture:

django-admin.py testserver --addrport 1.2.3.4:7000 test

validate

django-admin.py validate

Validates all installed models (according to the INSTALLED_APPS setting) and prints validation errors to standard
output.

6.4.3 Commands provided by applications

Some commands are only available when the django.contrib application that implements them has been
enabled. This section describes them grouped by their application.

django.contrib.auth

changepassword

django-admin.py changepassword

New in version 1.2: Please, see the release notes This command is only available if Django’s authentication system
(django.contrib.auth) is installed.

Allows changing a user’s password. It prompts you to enter twice the password of the user given as parameter. If they
both match, the new password will be changed immediately. If you do not supply a user, the command will attempt to
change the password whose username matches the current user.

Example usage:

django-admin.py changepassword ringo

createsuperuser

django-admin.py createsuperuser

This command is only available if Django’s authentication system (django.contrib.auth) is installed.

Creates a superuser account (a user who has all permissions). This is useful if you need to create an initial superuser
account but did not do so during syncdb, or if you need to programmatically generate superuser accounts for your
site(s).

When run interactively, this command will prompt for a password for the new superuser account. When run non-
interactively, no password will be set, and the superuser account will not be able to log in until a password has been
manually set for it.

-username

-email

596 Chapter 6. API Reference

Django Documentation, Release 1.2.7

The username and e-mail address for the new account can be supplied by using the --username and --email
arguments on the command line. If either of those is not supplied, createsuperuser will prompt for it when
running interactively.

django.contrib.gis

ogrinspect

This command is only available if GeoDjango (django.contrib.gis) is installed.

Please refer to its description in the GeoDjango documentation.

django.contrib.sitemaps

ping_google

This command is only available if the Sitemaps framework (django.contrib.sitemaps) is installed.

Please refer to its description in the Sitemaps documentation.

6.4.4 Default options

Although some commands may allow their own custom options, every command allows for the following options:

-pythonpath

Example usage:

django-admin.py syncdb --pythonpath=’/home/djangoprojects/myproject’

Adds the given filesystem path to the Python import search path. If this isn’t provided, django-admin.py will use
the PYTHONPATH environment variable.

Note that this option is unnecessary in manage.py, because it takes care of setting the Python path for you.

-settings

Example usage:

django-admin.py syncdb --settings=mysite.settings

Explicitly specifies the settings module to use. The settings module should be in Python package syntax, e.g.
mysite.settings. If this isn’t provided, django-admin.py will use the DJANGO_SETTINGS_MODULE
environment variable.

Note that this option is unnecessary in manage.py, because it uses settings.py from the current project by
default.

-traceback

Example usage:

django-admin.py syncdb --traceback

By default, django-admin.py will show a simple error message whenever an error occurs. If you specify
--traceback, django-admin.py will output a full stack trace whenever an exception is raised.

-verbosity

6.4. django-admin.py and manage.py 597

http://diveintopython.org/getting_to_know_python/everything_is_an_object.html

Django Documentation, Release 1.2.7

Example usage:

django-admin.py syncdb --verbosity 2

Use --verbosity to specify the amount of notification and debug information that django-admin.py should
print to the console.

• 0 means no output.

• 1 means normal output (default).

• 2 means verbose output.

6.4.5 Common options

The following options are not available on every commands, but they are common to a number of commands.

-database

New in version 1.2: Please, see the release notes Used to specify the database on which a command will operate. If
not specified, this option will default to an alias of default.

For example, to dump data from the database with the alias master:

django-admin.py dumpdata --database=master

-exclude

Exclude a specific application from the applications whose contents is output. For example, to specifically exclude the
auth application from the output of dumpdata, you would call:

django-admin.py dumpdata --exclude=auth

If you want to exclude multiple applications, use multiple --exclude directives:

django-admin.py dumpdata --exclude=auth --exclude=contenttypes

-locale

Use the --locale or -l option to specify the locale to process. If not provided all locales are processed.

-noinput

Use the --noinput option to suppress all user prompting, such as “Are you sure?” confirmation messages. This is
useful if django-admin.py is being executed as an unattended, automated script.

6.4.6 Extra niceties

Syntax coloring

The django-admin.py / manage.py commands will use pretty color-coded output if your terminal supports
ANSI-colored output. It won’t use the color codes if you’re piping the command’s output to another program.

The colors used for syntax highlighting can be customized. Django ships with three color palettes:

• dark, suited to terminals that show white text on a black background. This is the default palette.

• light, suited to terminals that show black text on a white background.

• nocolor, which disables syntax highlighting.

598 Chapter 6. API Reference

Django Documentation, Release 1.2.7

You select a palette by setting a DJANGO_COLORS environment variable to specify the palette you want to use. For
example, to specify the light palette under a Unix or OS/X BASH shell, you would run the following at a command
prompt:

export DJANGO_COLORS="light"

You can also customize the colors that are used. Django specifies a number of roles in which color is used:

• error - A major error.

• notice - A minor error.

• sql_field - The name of a model field in SQL.

• sql_coltype - The type of a model field in SQL.

• sql_keyword - A SQL keyword.

• sql_table - The name of a model in SQL.

• http_info - A 1XX HTTP Informational server response.

• http_success - A 2XX HTTP Success server response.

• http_not_modified - A 304 HTTP Not Modified server response.

• http_redirect - A 3XX HTTP Redirect server response other than 304.

• http_not_found - A 404 HTTP Not Found server response.

• http_bad_request - A 4XX HTTP Bad Request server response other than 404.

• http_server_error - A 5XX HTTP Server Error response.

Each of these roles can be assigned a specific foreground and background color, from the following list:

• black

• red

• green

• yellow

• blue

• magenta

• cyan

• white

Each of these colors can then be modified by using the following display options:

• bold

• underscore

• blink

• reverse

• conceal

A color specification follows one of the following patterns:

• role=fg

• role=fg/bg

6.4. django-admin.py and manage.py 599

Django Documentation, Release 1.2.7

• role=fg,option,option

• role=fg/bg,option,option

where role is the name of a valid color role, fg is the foreground color, bg is the background color and each option
is one of the color modifying options. Multiple color specifications are then separated by semicolon. For example:

export DJANGO_COLORS="error=yellow/blue,blink;notice=magenta"

would specify that errors be displayed using blinking yellow on blue, and notices displayed using magenta. All other
color roles would be left uncolored.

Colors can also be specified by extending a base palette. If you put a palette name in a color specification, all the
colors implied by that palette will be loaded. So:

export DJANGO_COLORS="light;error=yellow/blue,blink;notice=magenta"

would specify the use of all the colors in the light color palette, except for the colors for errors and notices which
would be overridden as specified.

Bash completion

If you use the Bash shell, consider installing the Django bash completion script, which lives in
extras/django_bash_completion in the Django distribution. It enables tab-completion of
django-admin.py and manage.py commands, so you can, for instance...

• Type django-admin.py.

• Press [TAB] to see all available options.

• Type sql, then [TAB], to see all available options whose names start with sql.

See Writing custom django-admin commands for how to add customized actions.

6.5 Running management commands from your code

django.core.management.call_command(name, *args, **options)

To call a management command from code use call_command.

name the name of the command to call.

*args a list of arguments accepted by the command.

**options named options accepted on the command-line.

Examples:

from django.core import management
management.call_command(’flush’, verbosity=0, interactive=False)
management.call_command(’loaddata’, ’test_data’, verbosity=0)

6.6 Django Exceptions

Django raises some Django specific exceptions as well as many standard Python exceptions.

600 Chapter 6. API Reference

Django Documentation, Release 1.2.7

6.6.1 Django-specific Exceptions

ObjectDoesNotExist and DoesNotExist

exception DoesNotExist

exception ObjectDoesNotExist
The DoesNotExist exception is raised when an object is not found for the given parameters of a query.

ObjectDoesNotExist is defined in django.core.exceptions. DoesNotExist is a subclass of
the base ObjectDoesNotExist exception that is provided on every model class as a way of identifying the
specific type of object that could not be found.

See get() for further information on ObjectDoesNotExist and DoesNotExist.

MultipleObjectsReturned

exception MultipleObjectsReturned
The MultipleObjectsReturned exception is raised by a query if only one object is expected, but multiple
objects are returned. A base version of this exception is provided in django.core.exceptions; each
model class contains a subclassed version that can be used to identify the specific object type that has returned
multiple objects.

See get() for further information.

SuspiciousOperation

exception SuspiciousOperation
The SuspiciousOperation exception is raised when a user has performed an operation that should be
considered suspicious from a security perspective, such as tampering with a session cookie.

PermissionDenied

exception PermissionDenied
The PermissionDenied exception is raised when a user does not have permission to perform the action
requested.

ViewDoesNotExist

exception ViewDoesNotExist
The ViewDoesNotExist exception is raised by django.core.urlresolvers when a requested view
does not exist.

MiddlewareNotUsed

exception MiddlewareNotUsed
The MiddlewareNotUsed exception is raised when a middleware is not used in the server configuration.

6.6. Django Exceptions 601

Django Documentation, Release 1.2.7

ImproperlyConfigured

exception ImproperlyConfigured
The ImproperlyConfigured exception is raised when Django is somehow improperly configured – for
example, if a value in settings.py is incorrect or unparseable.

FieldError

exception FieldError
The FieldError exception is raised when there is a problem with a model field. This can happen for several
reasons:

•A field in a model clashes with a field of the same name from an abstract base class

•An infinite loop is caused by ordering

•A keyword cannot be parsed from the filter parameters

•A field cannot be determined from a keyword in the query parameters

•A join is not permitted on the specified field

•A field name is invalid

•A query contains invalid order_by arguments

ValidationError

exception ValidationError
The ValidationError exception is raised when data fails form or model field validation. For more infor-
mation about validation, see Form and Field Validation, Model Field Validation and the Validator Reference.

NoReverseMatch

exception NoReverseMatch
The NoReverseMatch exception is raised by django.core.urlresolvers when a matching URL in
your URLconf cannot be identified based on the parameters supplied.

6.6.2 Database Exceptions

Django wraps the standard database exceptions DatabaseError and IntegrityError so that your Django code
has a guaranteed common implementation of these classes. These database exceptions are provided in django.db.

exception DatabaseError

exception IntegrityError

The Django wrappers for database exceptions behave exactly the same as the underlying database exceptions. See
PEP 249 - Python Database API Specification v2.0 for further information.

6.6.3 Python Exceptions

Django raises built-in Python exceptions when appropriate as well. See the Python documentation for further infor-
mation on the built-in exceptions.

602 Chapter 6. API Reference

http://www.python.org/dev/peps/pep-0249/
http://docs.python.org/lib/module-exceptions.html

Django Documentation, Release 1.2.7

6.7 File handling

6.7.1 The File object

The django.core.files module and its submodules contain built-in classes for basic file handling in Django.

The File Class

class File(file_object)
The File is a thin wrapper around Python’s built-in file object with some Django-specific additions. Internally,
Django uses this class any time it needs to represent a file.

File objects have the following attributes and methods:

name
The name of file including the relative path from MEDIA_ROOT.

size
The size of the file in bytes.

file
The underlying Python file object passed to File.

mode
The read/write mode for the file.

open([mode=None])
Open or reopen the file (which by definition also does File.seek(0)). The mode argument allows the
same values as Python’s standard open().

When reopening a file, mode will override whatever mode the file was originally opened with; None
means to reopen with the original mode.

read([num_bytes=None])
Read content from the file. The optional size is the number of bytes to read; if not specified, the file will
be read to the end.

__iter__()
Iterate over the file yielding one line at a time.

chunks([chunk_size=None])
Iterate over the file yielding “chunks” of a given size. chunk_size defaults to 64 KB.

This is especially useful with very large files since it allows them to be streamed off disk and avoids storing
the whole file in memory.

multiple_chunks([chunk_size=None])
Returns True if the file is large enough to require multiple chunks to access all of its content give some
chunk_size.

write([content])
Writes the specified content string to the file. Depending on the storage system behind the scenes, this
content might not be fully committed until close() is called on the file.

close()
Close the file.

In addition to the listed methods, File exposes the following attributes and methods of the underlying file
object: encoding, fileno, flush, isatty, newlines, read, readinto, readlines, seek,
softspace, tell, truncate, writelines, xreadlines.

6.7. File handling 603

Django Documentation, Release 1.2.7

The ContentFile Class

class ContentFile(File)
The ContentFile class inherits from File, but unlike File it operates on string content, rather than an
actual file. For example:

from django.core.files.base import ContentFile

f1 = ContentFile("my string content")
f2 = ContentFile(u"my unicode content encoded as UTF-8".encode(’UTF-8’))

The ImageFile Class

class ImageFile(file_object)
Django provides a built-in class specifically for images. django.core.files.images.ImageFile in-
herits all the attributes and methods of File, and additionally provides the following:

width
Width of the image in pixels.

height
Height of the image in pixels.

Additional methods on files attached to objects

Any File that’s associated with an object (as with Car.photo, below) will also have a couple of extra methods:

File.save(name, content[, save=True])
Saves a new file with the file name and contents provided. This will not replace the existing file, but will create
a new file and update the object to point to it. If save is True, the model’s save() method will be called
once the file is saved. That is, these two lines:

>>> car.photo.save(’myphoto.jpg’, contents, save=False)
>>> car.save()

are the same as this one line:

>>> car.photo.save(’myphoto.jpg’, contents, save=True)

Note that the content argument must be an instance of either File or of a subclass of File, such as
ContentFile.

File.delete([save=True])
Removes the file from the model instance and deletes the underlying file. If save is True, the model’s save()
method will be called once the file is deleted.

6.7.2 File storage API

Getting the current storage class

Django provides two convenient ways to access the current storage class:

class DefaultStorage
DefaultStorage provides lazy access to the current default storage system as defined by
DEFAULT_FILE_STORAGE. DefaultStorage uses get_storage_class() internally.

604 Chapter 6. API Reference

Django Documentation, Release 1.2.7

get_storage_class([import_path=None])
Returns a class or module which implements the storage API.

When called without the import_path parameter get_storage_class will return the current
default storage system as defined by DEFAULT_FILE_STORAGE. If import_path is provided,
get_storage_class will attempt to import the class or module from the given path and will return it if
successful. An exception will be raised if the import is unsuccessful.

The FileSystemStorage Class

class FileSystemStorage
The FileSystemStorage class implements basic file storage on a local filesystem. It inherits from
Storage and provides implementations for all the public methods thereof.

Note: The FileSystemStorage.delete method will not raise raise an exception if the given file name
does not exist.

The Storage Class

class Storage
The Storage class provides a standardized API for storing files, along with a set of default behaviors that all
other storage systems can inherit or override as necessary.

delete(name)
Deletes the file referenced by name. If deletion is not supported on the targest storage system this will
raise NotImplementedError instead

exists(name)
Returns True if a file referened by the given name already exists in the storage system, or False if the
name is available for a new file.

get_available_name(name)
Returns a filename based on the name parameter that’s free and available for new content to be written to
on the target storage system.

get_valid_name(name)
Returns a filename based on the name parameter that’s suitable for use on the target storage system.

listdir(path)
Lists the contents of the specified path, returning a 2-tuple of lists; the first item being directories, the
second item being files. For storage systems that aren’t able to provide such a listing, this will raise a
NotImplementedError instead.

open(name, mode=’rb’)
Opens the file given by name. Note that although the returned file is guaranteed to be a File object, it
might actually be some subclass. In the case of remote file storage this means that reading/writing could
be quite slow, so be warned.

path(name)
The local filesystem path where the file can be opened using Python’s standard open(). For storage
systems that aren’t accessible from the local filesystem, this will raise NotImplementedError instead.

save(name, content)
Saves a new file using the storage system, preferably with the name specified. If there already exists a file
with this name name, the storage system may modify the filename as necessary to get a unique name. The
actual name of the stored file will be returned.

6.7. File handling 605

Django Documentation, Release 1.2.7

The content argument must be an instance of django.core.files.File or of a subclass of File.

size(name)
Returns the total size, in bytes, of the file referenced by name. For storage systems that aren’t able to
return the file size this will raise NotImplementedError instead.

url(name)
Returns the URL where the contents of the file referenced by name can be accessed. For storage systems
that don’t support access by URL this will raise NotImplementedError instead.

6.8 Forms

Detailed form API reference. For introductory material, see Working with forms.

6.8.1 The Forms API

About this document

This document covers the gritty details of Django’s forms API. You should read the introduction to working with forms
first.

Bound and unbound forms

A Form instance is either bound to a set of data, or unbound.

• If it’s bound to a set of data, it’s capable of validating that data and rendering the form as HTML with the data
displayed in the HTML.

• If it’s unbound, it cannot do validation (because there’s no data to validate!), but it can still render the blank
form as HTML.

class Form

To create an unbound Form instance, simply instantiate the class:

>>> f = ContactForm()

To bind data to a form, pass the data as a dictionary as the first parameter to your Form class constructor:

>>> data = {’subject’: ’hello’,
... ’message’: ’Hi there’,
... ’sender’: ’foo@example.com’,
... ’cc_myself’: True}
>>> f = ContactForm(data)

In this dictionary, the keys are the field names, which correspond to the attributes in your Form class. The values are
the data you’re trying to validate. These will usually be strings, but there’s no requirement that they be strings; the
type of data you pass depends on the Field, as we’ll see in a moment.

Form.is_bound

If you need to distinguish between bound and unbound form instances at runtime, check the value of the form’s
is_bound attribute:

606 Chapter 6. API Reference

Django Documentation, Release 1.2.7

>>> f = ContactForm()
>>> f.is_bound
False
>>> f = ContactForm({’subject’: ’hello’})
>>> f.is_bound
True

Note that passing an empty dictionary creates a bound form with empty data:

>>> f = ContactForm({})
>>> f.is_bound
True

If you have a bound Form instance and want to change the data somehow, or if you want to bind an unbound Form
instance to some data, create another Form instance. There is no way to change data in a Form instance. Once a
Form instance has been created, you should consider its data immutable, whether it has data or not.

Using forms to validate data

Form.is_valid()

The primary task of a Form object is to validate data. With a bound Form instance, call the is_valid() method
to run validation and return a boolean designating whether the data was valid:

>>> data = {’subject’: ’hello’,
... ’message’: ’Hi there’,
... ’sender’: ’foo@example.com’,
... ’cc_myself’: True}
>>> f = ContactForm(data)
>>> f.is_valid()
True

Let’s try with some invalid data. In this case, subject is blank (an error, because all fields are required by default)
and sender is not a valid e-mail address:

>>> data = {’subject’: ’’,
... ’message’: ’Hi there’,
... ’sender’: ’invalid e-mail address’,
... ’cc_myself’: True}
>>> f = ContactForm(data)
>>> f.is_valid()
False

Form.errors

Access the errors attribute to get a dictionary of error messages:

>>> f.errors
{’sender’: [u’Enter a valid e-mail address.’], ’subject’: [u’This field is required.’]}

In this dictionary, the keys are the field names, and the values are lists of Unicode strings representing the error
messages. The error messages are stored in lists because a field can have multiple error messages.

You can access errors without having to call is_valid() first. The form’s data will be validated the first time
either you call is_valid() or access errors.

The validation routines will only get called once, regardless of how many times you access errors or call
is_valid(). This means that if validation has side effects, those side effects will only be triggered once.

6.8. Forms 607

Django Documentation, Release 1.2.7

Behavior of unbound forms

It’s meaningless to validate a form with no data, but, for the record, here’s what happens with unbound forms:

>>> f = ContactForm()
>>> f.is_valid()
False
>>> f.errors
{}

Dynamic initial values

Form.initial

Use initial to declare the initial value of form fields at runtime. For example, you might want to fill in a username
field with the username of the current session.

To accomplish this, use the initial argument to a Form. This argument, if given, should be a dictionary mapping
field names to initial values. Only include the fields for which you’re specifying an initial value; it’s not necessary to
include every field in your form. For example:

>>> f = ContactForm(initial={’subject’: ’Hi there!’})

These values are only displayed for unbound forms, and they’re not used as fallback values if a particular value isn’t
provided.

Note that if a Field defines initial and you include initial when instantiating the Form, then the latter
initial will have precedence. In this example, initial is provided both at the field level and at the form instance
level, and the latter gets precedence:

>>> class CommentForm(forms.Form):
... name = forms.CharField(initial=’class’)
... url = forms.URLField()
... comment = forms.CharField()
>>> f = CommentForm(initial={’name’: ’instance’}, auto_id=False)
>>> print f
<tr><th>Name:</th><td><input type="text" name="name" value="instance" /></td></tr>
<tr><th>Url:</th><td><input type="text" name="url" /></td></tr>
<tr><th>Comment:</th><td><input type="text" name="comment" /></td></tr>

Accessing “clean” data

Form.cleaned_data

Each field in a Form class is responsible not only for validating data, but also for “cleaning” it – normalizing it to a
consistent format. This is a nice feature, because it allows data for a particular field to be input in a variety of ways,
always resulting in consistent output.

For example, DateField normalizes input into a Python datetime.date object. Regardless of whether you pass
it a string in the format ’1994-07-15’, a datetime.date object, or a number of other formats, DateField
will always normalize it to a datetime.date object as long as it’s valid.

Once you’ve created a Form instance with a set of data and validated it, you can access the clean data via its
cleaned_data attribute:

608 Chapter 6. API Reference

Django Documentation, Release 1.2.7

>>> data = {’subject’: ’hello’,
... ’message’: ’Hi there’,
... ’sender’: ’foo@example.com’,
... ’cc_myself’: True}
>>> f = ContactForm(data)
>>> f.is_valid()
True
>>> f.cleaned_data
{’cc_myself’: True, ’message’: u’Hi there’, ’sender’: u’foo@example.com’, ’subject’: u’hello’}

Note that any text-based field – such as CharField or EmailField – always cleans the input into a Unicode
string. We’ll cover the encoding implications later in this document.

If your data does not validate, your Form instance will not have a cleaned_data attribute:

>>> data = {’subject’: ’’,
... ’message’: ’Hi there’,
... ’sender’: ’invalid e-mail address’,
... ’cc_myself’: True}
>>> f = ContactForm(data)
>>> f.is_valid()
False
>>> f.cleaned_data
Traceback (most recent call last):
...
AttributeError: ’ContactForm’ object has no attribute ’cleaned_data’

cleaned_data will always only contain a key for fields defined in the Form, even if you pass extra data when
you define the Form. In this example, we pass a bunch of extra fields to the ContactForm constructor, but
cleaned_data contains only the form’s fields:

>>> data = {’subject’: ’hello’,
... ’message’: ’Hi there’,
... ’sender’: ’foo@example.com’,
... ’cc_myself’: True,
... ’extra_field_1’: ’foo’,
... ’extra_field_2’: ’bar’,
... ’extra_field_3’: ’baz’}
>>> f = ContactForm(data)
>>> f.is_valid()
True
>>> f.cleaned_data # Doesn’t contain extra_field_1, etc.
{’cc_myself’: True, ’message’: u’Hi there’, ’sender’: u’foo@example.com’, ’subject’: u’hello’}

cleaned_data will include a key and value for all fields defined in the Form, even if the data didn’t include a value
for fields that are not required. In this example, the data dictionary doesn’t include a value for the nick_name field,
but cleaned_data includes it, with an empty value:

>>> class OptionalPersonForm(Form):
... first_name = CharField()
... last_name = CharField()
... nick_name = CharField(required=False)
>>> data = {’first_name’: u’John’, ’last_name’: u’Lennon’}
>>> f = OptionalPersonForm(data)
>>> f.is_valid()
True
>>> f.cleaned_data
{’nick_name’: u’’, ’first_name’: u’John’, ’last_name’: u’Lennon’}

6.8. Forms 609

Django Documentation, Release 1.2.7

In this above example, the cleaned_data value for nick_name is set to an empty string, because nick_name is
CharField, and CharFields treat empty values as an empty string. Each field type knows what its “blank” value
is – e.g., for DateField, it’s None instead of the empty string. For full details on each field’s behavior in this case,
see the “Empty value” note for each field in the “Built-in Field classes” section below.

You can write code to perform validation for particular form fields (based on their name) or for the form as a whole
(considering combinations of various fields). More information about this is in Form and field validation.

Outputting forms as HTML

The second task of a Form object is to render itself as HTML. To do so, simply print it:

>>> f = ContactForm()
>>> print f
<tr><th><label for="id_subject">Subject:</label></th><td><input id="id_subject" type="text" name="subject" maxlength="100" /></td></tr>
<tr><th><label for="id_message">Message:</label></th><td><input type="text" name="message" id="id_message" /></td></tr>
<tr><th><label for="id_sender">Sender:</label></th><td><input type="text" name="sender" id="id_sender" /></td></tr>
<tr><th><label for="id_cc_myself">Cc myself:</label></th><td><input type="checkbox" name="cc_myself" id="id_cc_myself" /></td></tr>

If the form is bound to data, the HTML output will include that data appropriately. For example, if a field is represented
by an <input type="text">, the data will be in the value attribute. If a field is represented by an <input
type="checkbox">, then that HTML will include checked="checked" if appropriate:

>>> data = {’subject’: ’hello’,
... ’message’: ’Hi there’,
... ’sender’: ’foo@example.com’,
... ’cc_myself’: True}
>>> f = ContactForm(data)
>>> print f
<tr><th><label for="id_subject">Subject:</label></th><td><input id="id_subject" type="text" name="subject" maxlength="100" value="hello" /></td></tr>
<tr><th><label for="id_message">Message:</label></th><td><input type="text" name="message" id="id_message" value="Hi there" /></td></tr>
<tr><th><label for="id_sender">Sender:</label></th><td><input type="text" name="sender" id="id_sender" value="foo@example.com" /></td></tr>
<tr><th><label for="id_cc_myself">Cc myself:</label></th><td><input type="checkbox" name="cc_myself" id="id_cc_myself" checked="checked" /></td></tr>

This default output is a two-column HTML table, with a <tr> for each field. Notice the following:

• For flexibility, the output does not include the <table> and </table> tags, nor does it include the <form>
and </form> tags or an <input type="submit"> tag. It’s your job to do that.

• Each field type has a default HTML representation. CharField and EmailField are represented by an
<input type="text">. BooleanField is represented by an <input type="checkbox">. Note
these are merely sensible defaults; you can specify which HTML to use for a given field by using widgets, which
we’ll explain shortly.

• The HTML name for each tag is taken directly from its attribute name in the ContactForm class.

• The text label for each field – e.g. ’Subject:’, ’Message:’ and ’Cc myself:’ is generated from the
field name by converting all underscores to spaces and upper-casing the first letter. Again, note these are merely
sensible defaults; you can also specify labels manually.

• Each text label is surrounded in an HTML <label> tag, which points to the appropriate form field via its id.
Its id, in turn, is generated by prepending ’id_’ to the field name. The id attributes and <label> tags are
included in the output by default, to follow best practices, but you can change that behavior.

Although <table> output is the default output style when you print a form, other output styles are available. Each
style is available as a method on a form object, and each rendering method returns a Unicode object.

610 Chapter 6. API Reference

Django Documentation, Release 1.2.7

as_p()

Form.as_p()
as_p() renders the form as a series of <p> tags, with each <p> containing one field:

>>> f = ContactForm()
>>> f.as_p()
u’<p><label for="id_subject">Subject:</label> <input id="id_subject" type="text" name="subject" maxlength="100" /></p>\n<p><label for="id_message">Message:</label> <input type="text" name="message" id="id_message" /></p>\n<p><label for="id_sender">Sender:</label> <input type="text" name="sender" id="id_sender" /></p>\n<p><label for="id_cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself" id="id_cc_myself" /></p>’
>>> print f.as_p()
<p><label for="id_subject">Subject:</label> <input id="id_subject" type="text" name="subject" maxlength="100" /></p>
<p><label for="id_message">Message:</label> <input type="text" name="message" id="id_message" /></p>
<p><label for="id_sender">Sender:</label> <input type="text" name="sender" id="id_sender" /></p>
<p><label for="id_cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself" id="id_cc_myself" /></p>

as_ul()

Form.as_ul()
as_ul() renders the form as a series of tags, with each containing one field. It does not include
the or , so that you can specify any HTML attributes on the for flexibility:

>>> f = ContactForm()
>>> f.as_ul()
u’<label for="id_subject">Subject:</label> <input id="id_subject" type="text" name="subject" maxlength="100" />\n<label for="id_message">Message:</label> <input type="text" name="message" id="id_message" />\n<label for="id_sender">Sender:</label> <input type="text" name="sender" id="id_sender" />\n<label for="id_cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself" id="id_cc_myself" />’
>>> print f.as_ul()
<label for="id_subject">Subject:</label> <input id="id_subject" type="text" name="subject" maxlength="100" />
<label for="id_message">Message:</label> <input type="text" name="message" id="id_message" />
<label for="id_sender">Sender:</label> <input type="text" name="sender" id="id_sender" />
<label for="id_cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself" id="id_cc_myself" />

as_table()

Form.as_table()
Finally, as_table() outputs the form as an HTML <table>. This is exactly the same as print. In fact,
when you print a form object, it calls its as_table() method behind the scenes:

>>> f = ContactForm()
>>> f.as_table()
u’<tr><th><label for="id_subject">Subject:</label></th><td><input id="id_subject" type="text" name="subject" maxlength="100" /></td></tr>\n<tr><th><label for="id_message">Message:</label></th><td><input type="text" name="message" id="id_message" /></td></tr>\n<tr><th><label for="id_sender">Sender:</label></th><td><input type="text" name="sender" id="id_sender" /></td></tr>\n<tr><th><label for="id_cc_myself">Cc myself:</label></th><td><input type="checkbox" name="cc_myself" id="id_cc_myself" /></td></tr>’
>>> print f.as_table()
<tr><th><label for="id_subject">Subject:</label></th><td><input id="id_subject" type="text" name="subject" maxlength="100" /></td></tr>
<tr><th><label for="id_message">Message:</label></th><td><input type="text" name="message" id="id_message" /></td></tr>
<tr><th><label for="id_sender">Sender:</label></th><td><input type="text" name="sender" id="id_sender" /></td></tr>
<tr><th><label for="id_cc_myself">Cc myself:</label></th><td><input type="checkbox" name="cc_myself" id="id_cc_myself" /></td></tr>

Styling required or erroneous form rows

New in version 1.2: Please, see the release notes It’s pretty common to style form rows and fields that are required or
have errors. For example, you might want to present required form rows in bold and highlight errors in red.

The Form class has a couple of hooks you can use to add class attributes to required rows or to rows with errors:
simply set the Form.error_css_class and/or Form.required_css_class attributes:

6.8. Forms 611

Django Documentation, Release 1.2.7

class ContactForm(Form):
error_css_class = ’error’
required_css_class = ’required’

... and the rest of your fields here

Once you’ve done that, rows will be given "error" and/or "required" classes, as needed. The HTML will look
something like:

>>> f = ContactForm(data)
>>> print f.as_table()
<tr class="required"><th><label for="id_subject">Subject:</label> ...
<tr class="required"><th><label for="id_message">Message:</label> ...
<tr class="required error"><th><label for="id_sender">Sender:</label> ...
<tr><th><label for="id_cc_myself">Cc myself:<label> ...

Configuring HTML <label> tags

An HTML <label> tag designates which label text is associated with which form element. This small enhancement
makes forms more usable and more accessible to assistive devices. It’s always a good idea to use <label> tags.

By default, the form rendering methods include HTML id attributes on the form elements and corresponding
<label> tags around the labels. The id attribute values are generated by prepending id_ to the form field names.
This behavior is configurable, though, if you want to change the id convention or remove HTML id attributes and
<label> tags entirely.

Use the auto_id argument to the Form constructor to control the label and id behavior. This argument must be
True, False or a string.

If auto_id is False, then the form output will not include <label> tags nor id attributes:

>>> f = ContactForm(auto_id=False)
>>> print f.as_table()
<tr><th>Subject:</th><td><input type="text" name="subject" maxlength="100" /></td></tr>
<tr><th>Message:</th><td><input type="text" name="message" /></td></tr>
<tr><th>Sender:</th><td><input type="text" name="sender" /></td></tr>
<tr><th>Cc myself:</th><td><input type="checkbox" name="cc_myself" /></td></tr>
>>> print f.as_ul()
Subject: <input type="text" name="subject" maxlength="100" />
Message: <input type="text" name="message" />
Sender: <input type="text" name="sender" />
Cc myself: <input type="checkbox" name="cc_myself" />
>>> print f.as_p()
<p>Subject: <input type="text" name="subject" maxlength="100" /></p>
<p>Message: <input type="text" name="message" /></p>
<p>Sender: <input type="text" name="sender" /></p>
<p>Cc myself: <input type="checkbox" name="cc_myself" /></p>

If auto_id is set to True, then the form output will include <label> tags and will simply use the field name as its
id for each form field:

>>> f = ContactForm(auto_id=True)
>>> print f.as_table()
<tr><th><label for="subject">Subject:</label></th><td><input id="subject" type="text" name="subject" maxlength="100" /></td></tr>
<tr><th><label for="message">Message:</label></th><td><input type="text" name="message" id="message" /></td></tr>
<tr><th><label for="sender">Sender:</label></th><td><input type="text" name="sender" id="sender" /></td></tr>
<tr><th><label for="cc_myself">Cc myself:</label></th><td><input type="checkbox" name="cc_myself" id="cc_myself" /></td></tr>
>>> print f.as_ul()

612 Chapter 6. API Reference

Django Documentation, Release 1.2.7

<label for="subject">Subject:</label> <input id="subject" type="text" name="subject" maxlength="100" />
<label for="message">Message:</label> <input type="text" name="message" id="message" />
<label for="sender">Sender:</label> <input type="text" name="sender" id="sender" />
<label for="cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself" id="cc_myself" />
>>> print f.as_p()
<p><label for="subject">Subject:</label> <input id="subject" type="text" name="subject" maxlength="100" /></p>
<p><label for="message">Message:</label> <input type="text" name="message" id="message" /></p>
<p><label for="sender">Sender:</label> <input type="text" name="sender" id="sender" /></p>
<p><label for="cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself" id="cc_myself" /></p>

If auto_id is set to a string containing the format character ’%s’, then the form output will include <label> tags,
and will generate id attributes based on the format string. For example, for a format string ’field_%s’, a field
named subject will get the id value ’field_subject’. Continuing our example:

>>> f = ContactForm(auto_id=’id_for_%s’)
>>> print f.as_table()
<tr><th><label for="id_for_subject">Subject:</label></th><td><input id="id_for_subject" type="text" name="subject" maxlength="100" /></td></tr>
<tr><th><label for="id_for_message">Message:</label></th><td><input type="text" name="message" id="id_for_message" /></td></tr>
<tr><th><label for="id_for_sender">Sender:</label></th><td><input type="text" name="sender" id="id_for_sender" /></td></tr>
<tr><th><label for="id_for_cc_myself">Cc myself:</label></th><td><input type="checkbox" name="cc_myself" id="id_for_cc_myself" /></td></tr>
>>> print f.as_ul()
<label for="id_for_subject">Subject:</label> <input id="id_for_subject" type="text" name="subject" maxlength="100" />
<label for="id_for_message">Message:</label> <input type="text" name="message" id="id_for_message" />
<label for="id_for_sender">Sender:</label> <input type="text" name="sender" id="id_for_sender" />
<label for="id_for_cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself" id="id_for_cc_myself" />
>>> print f.as_p()
<p><label for="id_for_subject">Subject:</label> <input id="id_for_subject" type="text" name="subject" maxlength="100" /></p>
<p><label for="id_for_message">Message:</label> <input type="text" name="message" id="id_for_message" /></p>
<p><label for="id_for_sender">Sender:</label> <input type="text" name="sender" id="id_for_sender" /></p>
<p><label for="id_for_cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself" id="id_for_cc_myself" /></p>

If auto_id is set to any other true value – such as a string that doesn’t include %s – then the library will act as if
auto_id is True.

By default, auto_id is set to the string ’id_%s’.

Normally, a colon (:) will be appended after any label name when a form is rendered. It’s possible to change the colon
to another character, or omit it entirely, using the label_suffix parameter:

>>> f = ContactForm(auto_id=’id_for_%s’, label_suffix=’’)
>>> print f.as_ul()
<label for="id_for_subject">Subject</label> <input id="id_for_subject" type="text" name="subject" maxlength="100" />
<label for="id_for_message">Message</label> <input type="text" name="message" id="id_for_message" />
<label for="id_for_sender">Sender</label> <input type="text" name="sender" id="id_for_sender" />
<label for="id_for_cc_myself">Cc myself</label> <input type="checkbox" name="cc_myself" id="id_for_cc_myself" />
>>> f = ContactForm(auto_id=’id_for_%s’, label_suffix=’ ->’)
>>> print f.as_ul()
<label for="id_for_subject">Subject -></label> <input id="id_for_subject" type="text" name="subject" maxlength="100" />
<label for="id_for_message">Message -></label> <input type="text" name="message" id="id_for_message" />
<label for="id_for_sender">Sender -></label> <input type="text" name="sender" id="id_for_sender" />
<label for="id_for_cc_myself">Cc myself -></label> <input type="checkbox" name="cc_myself" id="id_for_cc_myself" />

Note that the label suffix is added only if the last character of the label isn’t a punctuation character (., !, ? or :)

Notes on field ordering

In the as_p(), as_ul() and as_table() shortcuts, the fields are displayed in the order in which you define
them in your form class. For example, in the ContactForm example, the fields are defined in the order subject,

6.8. Forms 613

Django Documentation, Release 1.2.7

message, sender, cc_myself. To reorder the HTML output, just change the order in which those fields are listed
in the class.

How errors are displayed

If you render a bound Form object, the act of rendering will automatically run the form’s validation if it hasn’t already
happened, and the HTML output will include the validation errors as a <ul class="errorlist"> near the field.
The particular positioning of the error messages depends on the output method you’re using:

>>> data = {’subject’: ’’,
... ’message’: ’Hi there’,
... ’sender’: ’invalid e-mail address’,
... ’cc_myself’: True}
>>> f = ContactForm(data, auto_id=False)
>>> print f.as_table()
<tr><th>Subject:</th><td><ul class="errorlist">This field is required.<input type="text" name="subject" maxlength="100" /></td></tr>
<tr><th>Message:</th><td><input type="text" name="message" value="Hi there" /></td></tr>
<tr><th>Sender:</th><td><ul class="errorlist">Enter a valid e-mail address.<input type="text" name="sender" value="invalid e-mail address" /></td></tr>
<tr><th>Cc myself:</th><td><input checked="checked" type="checkbox" name="cc_myself" /></td></tr>
>>> print f.as_ul()
<ul class="errorlist">This field is required.Subject: <input type="text" name="subject" maxlength="100" />
Message: <input type="text" name="message" value="Hi there" />
<ul class="errorlist">Enter a valid e-mail address.Sender: <input type="text" name="sender" value="invalid e-mail address" />
Cc myself: <input checked="checked" type="checkbox" name="cc_myself" />
>>> print f.as_p()
<p><ul class="errorlist">This field is required.</p>
<p>Subject: <input type="text" name="subject" maxlength="100" /></p>
<p>Message: <input type="text" name="message" value="Hi there" /></p>
<p><ul class="errorlist">Enter a valid e-mail address.</p>
<p>Sender: <input type="text" name="sender" value="invalid e-mail address" /></p>
<p>Cc myself: <input checked="checked" type="checkbox" name="cc_myself" /></p>

Customizing the error list format

By default, forms use django.forms.util.ErrorList to format validation errors. If you’d like to use an
alternate class for displaying errors, you can pass that in at construction time:

>>> from django.forms.util import ErrorList
>>> class DivErrorList(ErrorList):
... def __unicode__(self):
... return self.as_divs()
... def as_divs(self):
... if not self: return u’’
... return u’<div class="errorlist">%s</div>’ % ’’.join([u’<div class="error">%s</div>’ % e for e in self])
>>> f = ContactForm(data, auto_id=False, error_class=DivErrorList)
>>> f.as_p()
<div class="errorlist"><div class="error">This field is required.</div></div>
<p>Subject: <input type="text" name="subject" maxlength="100" /></p>
<p>Message: <input type="text" name="message" value="Hi there" /></p>
<div class="errorlist"><div class="error">Enter a valid e-mail address.</div></div>
<p>Sender: <input type="text" name="sender" value="invalid e-mail address" /></p>
<p>Cc myself: <input checked="checked" type="checkbox" name="cc_myself" /></p>

614 Chapter 6. API Reference

Django Documentation, Release 1.2.7

More granular output

The as_p(), as_ul() and as_table() methods are simply shortcuts for lazy developers – they’re not the only
way a form object can be displayed.

To display the HTML for a single field in your form, use dictionary lookup syntax using the field’s name as the key,
and print the resulting object:

>>> f = ContactForm()
>>> print f[’subject’]
<input id="id_subject" type="text" name="subject" maxlength="100" />
>>> print f[’message’]
<input type="text" name="message" id="id_message" />
>>> print f[’sender’]
<input type="text" name="sender" id="id_sender" />
>>> print f[’cc_myself’]
<input type="checkbox" name="cc_myself" id="id_cc_myself" />

Call str() or unicode() on the field to get its rendered HTML as a string or Unicode object, respectively:

>>> str(f[’subject’])
’<input id="id_subject" type="text" name="subject" maxlength="100" />’
>>> unicode(f[’subject’])
u’<input id="id_subject" type="text" name="subject" maxlength="100" />’

Form objects define a custom __iter__() method, which allows you to loop through their fields:

>>> f = ContactForm()
>>> for field in f: print field
<input id="id_subject" type="text" name="subject" maxlength="100" />
<input type="text" name="message" id="id_message" />
<input type="text" name="sender" id="id_sender" />
<input type="checkbox" name="cc_myself" id="id_cc_myself" />

The field-specific output honors the form object’s auto_id setting:

>>> f = ContactForm(auto_id=False)
>>> print f[’message’]
<input type="text" name="message" />
>>> f = ContactForm(auto_id=’id_%s’)
>>> print f[’message’]
<input type="text" name="message" id="id_message" />

For a field’s list of errors, access the field’s errors attribute. This is a list-like object that is displayed as an HTML
<ul class="errorlist"> when printed:

>>> data = {’subject’: ’hi’, ’message’: ’’, ’sender’: ’’, ’cc_myself’: ’’}
>>> f = ContactForm(data, auto_id=False)
>>> print f[’message’]
<input type="text" name="message" />
>>> f[’message’].errors
[u’This field is required.’]
>>> print f[’message’].errors
<ul class="errorlist">This field is required.
>>> f[’subject’].errors
[]
>>> print f[’subject’].errors

>>> str(f[’subject’].errors)
’’

6.8. Forms 615

Django Documentation, Release 1.2.7

New in version 1.2: Please, see the release notes When you use Django’s rendering shortcuts, CSS classes are used
to indicate required form fields or fields that contain errors. If you’re manually rendering a form, you can access these
CSS classes using the css_classes method:

>>> f = ContactForm(data)
>>> f[’message’].css_classes()
’required’

If you want to provide some additional classes in addition to the error and required classes that may be required, you
can provide those classes as an argument:

>>> f = ContactForm(data)
>>> f[’message’].css_classes(’foo bar’)
’foo bar required’

Binding uploaded files to a form

Dealing with forms that have FileField and ImageField fields is a little more complicated than a normal form.

Firstly, in order to upload files, you’ll need to make sure that your <form> element correctly defines the enctype
as "multipart/form-data":

<form enctype="multipart/form-data" method="post" action="/foo/">

Secondly, when you use the form, you need to bind the file data. File data is handled separately to normal form data,
so when your form contains a FileField and ImageField, you will need to specify a second argument when you
bind your form. So if we extend our ContactForm to include an ImageField called mugshot, we need to bind the
file data containing the mugshot image:

Bound form with an image field
>>> from django.core.files.uploadedfile import SimpleUploadedFile
>>> data = {’subject’: ’hello’,
... ’message’: ’Hi there’,
... ’sender’: ’foo@example.com’,
... ’cc_myself’: True}
>>> file_data = {’mugshot’: SimpleUploadedFile(’face.jpg’, <file data>)}
>>> f = ContactFormWithMugshot(data, file_data)

In practice, you will usually specify request.FILES as the source of file data (just like you use request.POST
as the source of form data):

Bound form with an image field, data from the request
>>> f = ContactFormWithMugshot(request.POST, request.FILES)

Constructing an unbound form is the same as always – just omit both form data and file data:

Unbound form with a image field
>>> f = ContactFormWithMugshot()

Testing for multipart forms

If you’re writing reusable views or templates, you may not know ahead of time whether your form is a multipart form
or not. The is_multipart() method tells you whether the form requires multipart encoding for submission:

>>> f = ContactFormWithMugshot()
>>> f.is_multipart()
True

616 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Here’s an example of how you might use this in a template:

{% if form.is_multipart %}
<form enctype="multipart/form-data" method="post" action="/foo/">

{% else %}
<form method="post" action="/foo/">

{% endif %}
{{ form }}
</form>

Subclassing forms

If you have multiple Form classes that share fields, you can use subclassing to remove redundancy.

When you subclass a custom Form class, the resulting subclass will include all fields of the parent class(es), followed
by the fields you define in the subclass.

In this example, ContactFormWithPriority contains all the fields from ContactForm, plus an additional
field, priority. The ContactForm fields are ordered first:

>>> class ContactFormWithPriority(ContactForm):
... priority = forms.CharField()
>>> f = ContactFormWithPriority(auto_id=False)
>>> print f.as_ul()
Subject: <input type="text" name="subject" maxlength="100" />
Message: <input type="text" name="message" />
Sender: <input type="text" name="sender" />
Cc myself: <input type="checkbox" name="cc_myself" />
Priority: <input type="text" name="priority" />

It’s possible to subclass multiple forms, treating forms as “mix-ins.” In this example, BeatleForm subclasses both
PersonForm and InstrumentForm (in that order), and its field list includes the fields from the parent classes:

>>> class PersonForm(Form):
... first_name = CharField()
... last_name = CharField()
>>> class InstrumentForm(Form):
... instrument = CharField()
>>> class BeatleForm(PersonForm, InstrumentForm):
... haircut_type = CharField()
>>> b = BeatleForm(auto_id=False)
>>> print b.as_ul()
First name: <input type="text" name="first_name" />
Last name: <input type="text" name="last_name" />
Instrument: <input type="text" name="instrument" />
Haircut type: <input type="text" name="haircut_type" />

Prefixes for forms

Form.prefix

You can put several Django forms inside one <form> tag. To give each Form its own namespace, use the prefix
keyword argument:

>>> mother = PersonForm(prefix="mother")
>>> father = PersonForm(prefix="father")
>>> print mother.as_ul()
<label for="id_mother-first_name">First name:</label> <input type="text" name="mother-first_name" id="id_mother-first_name" />

6.8. Forms 617

Django Documentation, Release 1.2.7

<label for="id_mother-last_name">Last name:</label> <input type="text" name="mother-last_name" id="id_mother-last_name" />
>>> print father.as_ul()
<label for="id_father-first_name">First name:</label> <input type="text" name="father-first_name" id="id_father-first_name" />
<label for="id_father-last_name">Last name:</label> <input type="text" name="father-last_name" id="id_father-last_name" />

6.8.2 Form fields

class Field(**kwargs)

When you create a Form class, the most important part is defining the fields of the form. Each field has custom
validation logic, along with a few other hooks.

Field.clean(value)

Although the primary way you’ll use Field classes is in Form classes, you can also instantiate them and use them
directly to get a better idea of how they work. Each Field instance has a clean() method, which takes a single
argument and either raises a django.forms.ValidationError exception or returns the clean value:

>>> from django import forms
>>> f = forms.EmailField()
>>> f.clean(’foo@example.com’)
u’foo@example.com’
>>> f.clean(u’foo@example.com’)
u’foo@example.com’
>>> f.clean(’invalid e-mail address’)
Traceback (most recent call last):
...
ValidationError: [u’Enter a valid e-mail address.’]

Core field arguments

Each Field class constructor takes at least these arguments. Some Field classes take additional, field-specific
arguments, but the following should always be accepted:

required

Field.required

By default, each Field class assumes the value is required, so if you pass an empty value – either None or the empty
string ("") – then clean() will raise a ValidationError exception:

>>> f = forms.CharField()
>>> f.clean(’foo’)
u’foo’
>>> f.clean(’’)
Traceback (most recent call last):
...
ValidationError: [u’This field is required.’]
>>> f.clean(None)
Traceback (most recent call last):
...
ValidationError: [u’This field is required.’]
>>> f.clean(’ ’)
u’ ’
>>> f.clean(0)

618 Chapter 6. API Reference

Django Documentation, Release 1.2.7

u’0’
>>> f.clean(True)
u’True’
>>> f.clean(False)
u’False’

To specify that a field is not required, pass required=False to the Field constructor:

>>> f = forms.CharField(required=False)
>>> f.clean(’foo’)
u’foo’
>>> f.clean(’’)
u’’
>>> f.clean(None)
u’’
>>> f.clean(0)
u’0’
>>> f.clean(True)
u’True’
>>> f.clean(False)
u’False’

If a Field has required=False and you pass clean() an empty value, then clean() will return a normalized
empty value rather than raising ValidationError. For CharField, this will be a Unicode empty string. For
other Field classes, it might be None. (This varies from field to field.)

label

Field.label

The label argument lets you specify the “human-friendly” label for this field. This is used when the Field is
displayed in a Form.

As explained in “Outputting forms as HTML” above, the default label for a Field is generated from the field name by
converting all underscores to spaces and upper-casing the first letter. Specify label if that default behavior doesn’t
result in an adequate label.

Here’s a full example Form that implements label for two of its fields. We’ve specified auto_id=False to
simplify the output:

>>> class CommentForm(forms.Form):
... name = forms.CharField(label=’Your name’)
... url = forms.URLField(label=’Your Web site’, required=False)
... comment = forms.CharField()
>>> f = CommentForm(auto_id=False)
>>> print f
<tr><th>Your name:</th><td><input type="text" name="name" /></td></tr>
<tr><th>Your Web site:</th><td><input type="text" name="url" /></td></tr>
<tr><th>Comment:</th><td><input type="text" name="comment" /></td></tr>

initial

Field.initial

The initial argument lets you specify the initial value to use when rendering this Field in an unbound Form.

To specify dynamic initial data, see the Form.initial parameter.

6.8. Forms 619

Django Documentation, Release 1.2.7

The use-case for this is when you want to display an “empty” form in which a field is initialized to a particular value.
For example:

>>> class CommentForm(forms.Form):
... name = forms.CharField(initial=’Your name’)
... url = forms.URLField(initial=’http://’)
... comment = forms.CharField()
>>> f = CommentForm(auto_id=False)
>>> print f
<tr><th>Name:</th><td><input type="text" name="name" value="Your name" /></td></tr>
<tr><th>Url:</th><td><input type="text" name="url" value="http://" /></td></tr>
<tr><th>Comment:</th><td><input type="text" name="comment" /></td></tr>

You may be thinking, why not just pass a dictionary of the initial values as data when displaying the form? Well, if
you do that, you’ll trigger validation, and the HTML output will include any validation errors:

>>> class CommentForm(forms.Form):
... name = forms.CharField()
... url = forms.URLField()
... comment = forms.CharField()
>>> default_data = {’name’: ’Your name’, ’url’: ’http://’}
>>> f = CommentForm(default_data, auto_id=False)
>>> print f
<tr><th>Name:</th><td><input type="text" name="name" value="Your name" /></td></tr>
<tr><th>Url:</th><td><ul class="errorlist">Enter a valid URL.<input type="text" name="url" value="http://" /></td></tr>
<tr><th>Comment:</th><td><ul class="errorlist">This field is required.<input type="text" name="comment" /></td></tr>

This is why initial values are only displayed for unbound forms. For bound forms, the HTML output will use the
bound data.

Also note that initial values are not used as “fallback” data in validation if a particular field’s value is not given.
initial values are only intended for initial form display:

>>> class CommentForm(forms.Form):
... name = forms.CharField(initial=’Your name’)
... url = forms.URLField(initial=’http://’)
... comment = forms.CharField()
>>> data = {’name’: ’’, ’url’: ’’, ’comment’: ’Foo’}
>>> f = CommentForm(data)
>>> f.is_valid()
False
The form does *not* fall back to using the initial values.
>>> f.errors
{’url’: [u’This field is required.’], ’name’: [u’This field is required.’]}

Instead of a constant, you can also pass any callable:

>>> import datetime
>>> class DateForm(forms.Form):
... day = forms.DateField(initial=datetime.date.today)
>>> print DateForm()
<tr><th>Day:</th><td><input type="text" name="day" value="12/23/2008" /><td></tr>

The callable will be evaluated only when the unbound form is displayed, not when it is defined.

widget

Field.widget

620 Chapter 6. API Reference

Django Documentation, Release 1.2.7

The widget argument lets you specify a Widget class to use when rendering this Field. See Widgets for more
information.

help_text

Field.help_text

The help_text argument lets you specify descriptive text for this Field. If you provide help_text, it will be
displayed next to the Field when the Field is rendered by one of the convenience Form methods (e.g., as_ul()).

Here’s a full example Form that implements help_text for two of its fields. We’ve specified auto_id=False
to simplify the output:

>>> class HelpTextContactForm(forms.Form):
... subject = forms.CharField(max_length=100, help_text=’100 characters max.’)
... message = forms.CharField()
... sender = forms.EmailField(help_text=’A valid e-mail address, please.’)
... cc_myself = forms.BooleanField(required=False)
>>> f = HelpTextContactForm(auto_id=False)
>>> print f.as_table()
<tr><th>Subject:</th><td><input type="text" name="subject" maxlength="100" />
100 characters max.</td></tr>
<tr><th>Message:</th><td><input type="text" name="message" /></td></tr>
<tr><th>Sender:</th><td><input type="text" name="sender" />
A valid e-mail address, please.</td></tr>
<tr><th>Cc myself:</th><td><input type="checkbox" name="cc_myself" /></td></tr>
>>> print f.as_ul()
Subject: <input type="text" name="subject" maxlength="100" /> 100 characters max.
Message: <input type="text" name="message" />
Sender: <input type="text" name="sender" /> A valid e-mail address, please.
Cc myself: <input type="checkbox" name="cc_myself" />
>>> print f.as_p()
<p>Subject: <input type="text" name="subject" maxlength="100" /> 100 characters max.</p>
<p>Message: <input type="text" name="message" /></p>
<p>Sender: <input type="text" name="sender" /> A valid e-mail address, please.</p>
<p>Cc myself: <input type="checkbox" name="cc_myself" /></p>

error_messages

Field.error_messages

The error_messages argument lets you override the default messages that the field will raise. Pass in a dictionary
with keys matching the error messages you want to override. For example, here is the default error message:

>>> generic = forms.CharField()
>>> generic.clean(’’)
Traceback (most recent call last):

...
ValidationError: [u’This field is required.’]

And here is a custom error message:

>>> name = forms.CharField(error_messages={’required’: ’Please enter your name’})
>>> name.clean(’’)
Traceback (most recent call last):

...
ValidationError: [u’Please enter your name’]

In the built-in Field classes section below, each Field defines the error message keys it uses.

6.8. Forms 621

Django Documentation, Release 1.2.7

validators

New in version 1.2: Please, see the release notes

Field.validators

The validators argument lets you provide a list of validation functions for this field.

See the validators documentation for more information.

localize

New in version 1.2: Please, see the release notes

Field.localize

The localize argument enables the localization of form data, input as well as the rendered output.

See the format localization documentation for more information.

Built-in Field classes

Naturally, the forms library comes with a set of Field classes that represent common validation needs. This section
documents each built-in field.

For each field, we describe the default widget used if you don’t specify widget. We also specify the value returned
when you provide an empty value (see the section on required above to understand what that means).

BooleanField

class BooleanField(**kwargs)

•Default widget: CheckboxInput

•Empty value: False

•Normalizes to: A Python True or False value.

•Validates that the value is True (e.g. the check box is checked) if the field has required=True.

•Error message keys: required

Note: Since all Field subclasses have required=True by default, the validation condition here is important.
If you want to include a boolean in your form that can be either True or False (e.g. a checked or unchecked
checkbox), you must remember to pass in required=False when creating the BooleanField.

CharField

class CharField(**kwargs)

•Default widget: TextInput

•Empty value: ” (an empty string)

•Normalizes to: A Unicode object.

•Validates max_length or min_length, if they are provided. Otherwise, all inputs are valid.

622 Chapter 6. API Reference

Django Documentation, Release 1.2.7

•Error message keys: required, max_length, min_length

Has two optional arguments for validation:

CharField.max_length

CharField.min_length
If provided, these arguments ensure that the string is at most or at least the given length.

ChoiceField

class ChoiceField(**kwargs)

•Default widget: Select

•Empty value: ” (an empty string)

•Normalizes to: A Unicode object.

•Validates that the given value exists in the list of choices.

•Error message keys: required, invalid_choice

The invalid_choice error message may contain %(value)s, which will be replaced with the selected choice.

Takes one extra required argument:

ChoiceField.choices
An iterable (e.g., a list or tuple) of 2-tuples to use as choices for this field. This argument accepts the same
formats as the choices argument to a model field. See the model field reference documentation on choices for
more details.

TypedChoiceField

class TypedChoiceField(**kwargs)

Just like a ChoiceField, except TypedChoiceField takes an extra coerce argument.

• Default widget: Select

• Empty value: Whatever you’ve given as empty_value

• Normalizes to: the value returned by the coerce argument.

• Validates that the given value exists in the list of choices.

• Error message keys: required, invalid_choice

Takes extra arguments:

TypedChoiceField.coerce
A function that takes one argument and returns a coerced value. Examples include the built-in int, float,
bool and other types. Defaults to an identity function.

TypedChoiceField.empty_value
The value to use to represent “empty.” Defaults to the empty string; None is another common choice here.

6.8. Forms 623

Django Documentation, Release 1.2.7

DateField

class DateField(**kwargs)

•Default widget: DateInput

•Empty value: None

•Normalizes to: A Python datetime.date object.

•Validates that the given value is either a datetime.date, datetime.datetime or string formatted
in a particular date format.

•Error message keys: required, invalid

Takes one optional argument:

DateField.input_formats
A list of formats used to attempt to convert a string to a valid datetime.date object.

If no input_formats argument is provided, the default input formats are:

’%Y-%m-%d’, ’%m/%d/%Y’, ’%m/%d/%y’, # ’2006-10-25’, ’10/25/2006’, ’10/25/06’
’%b %d %Y’, ’%b %d, %Y’, # ’Oct 25 2006’, ’Oct 25, 2006’
’%d %b %Y’, ’%d %b, %Y’, # ’25 Oct 2006’, ’25 Oct, 2006’
’%B %d %Y’, ’%B %d, %Y’, # ’October 25 2006’, ’October 25, 2006’
’%d %B %Y’, ’%d %B, %Y’, # ’25 October 2006’, ’25 October, 2006’

Changed in version 1.1: The DateField previously used a TextInput widget by default. It now uses a
DateInput widget.

DateTimeField

class DateTimeField(**kwargs)

•Default widget: DateTimeInput

•Empty value: None

•Normalizes to: A Python datetime.datetime object.

•Validates that the given value is either a datetime.datetime, datetime.date or string formatted
in a particular datetime format.

•Error message keys: required, invalid

Takes one optional argument:

DateTimeField.input_formats
A list of formats used to attempt to convert a string to a valid datetime.datetime object.

If no input_formats argument is provided, the default input formats are:

’%Y-%m-%d %H:%M:%S’, # ’2006-10-25 14:30:59’
’%Y-%m-%d %H:%M’, # ’2006-10-25 14:30’
’%Y-%m-%d’, # ’2006-10-25’
’%m/%d/%Y %H:%M:%S’, # ’10/25/2006 14:30:59’
’%m/%d/%Y %H:%M’, # ’10/25/2006 14:30’
’%m/%d/%Y’, # ’10/25/2006’
’%m/%d/%y %H:%M:%S’, # ’10/25/06 14:30:59’
’%m/%d/%y %H:%M’, # ’10/25/06 14:30’
’%m/%d/%y’, # ’10/25/06’

624 Chapter 6. API Reference

Django Documentation, Release 1.2.7

DecimalField

class DecimalField(**kwargs)

•Default widget: TextInput

•Empty value: None

•Normalizes to: A Python decimal.

•Validates that the given value is a decimal. Leading and trailing whitespace is ignored.

•Error message keys: required, invalid, max_value, min_value, max_digits,
max_decimal_places, max_whole_digits

The max_value and min_value error messages may contain %(limit_value)s, which will be substituted by
the appropriate limit.

Takes four optional arguments:

DecimalField.max_value

DecimalField.min_value
These control the range of values permitted in the field, and should be given as decimal.Decimal values.

DecimalField.max_digits
The maximum number of digits (those before the decimal point plus those after the decimal point, with leading
zeros stripped) permitted in the value.

DecimalField.decimal_places
The maximum number of decimal places permitted.

EmailField

class EmailField(**kwargs)

•Default widget: TextInput

•Empty value: ” (an empty string)

•Normalizes to: A Unicode object.

•Validates that the given value is a valid e-mail address, using a moderately complex regular expression.

•Error message keys: required, invalid

Has two optional arguments for validation, max_length and min_length. If provided, these arguments ensure
that the string is at most or at least the given length. Changed in version 1.2: The EmailField previously did not
recognize e-mail addresses as valid that contained an IDN (Internationalized Domain Name; a domain containing
unicode characters) domain part. This has now been corrected.

FileField

class FileField(**kwargs)

•Default widget: FileInput

•Empty value: None

•Normalizes to: An UploadedFile object that wraps the file content and file name into a single object.

•Validates that non-empty file data has been bound to the form.

6.8. Forms 625

Django Documentation, Release 1.2.7

•Error message keys: required, invalid, missing, empty, max_length

To learn more about the UploadedFile object, see the file uploads documentation.

When you use a FileField in a form, you must also remember to bind the file data to the form.

The max_length error refers to the length of the filename. In the error message for that key, %(max)d will be
replaced with the maximum filename length and %(length)d will be replaced with the current filename length.

FilePathField

class FilePathField(**kwargs)

•Default widget: Select

•Empty value: None

•Normalizes to: A unicode object

•Validates that the selected choice exists in the list of choices.

•Error message keys: required, invalid_choice

The field allows choosing from files inside a certain directory. It takes three extra arguments; only path is required:

FilePathField.path
The absolute path to the directory whose contents you want listed. This directory must exist.

FilePathField.recursive
If False (the default) only the direct contents of path will be offered as choices. If True, the directory will
be descended into recursively and all descendants will be listed as choices.

FilePathField.match
A regular expression pattern; only files with names matching this expression will be allowed as choices.

FloatField

• Default widget: TextInput

• Empty value: None

• Normalizes to: A Python float.

• Validates that the given value is an float. Leading and trailing whitespace is allowed, as in Python’s float()
function.

• Error message keys: required, invalid, max_value, min_value

Takes two optional arguments for validation, max_value and min_value. These control the range of values
permitted in the field.

ImageField

class ImageField(**kwargs)

•Default widget: FileInput

•Empty value: None

•Normalizes to: An UploadedFile object that wraps the file content and file name into a single object.

626 Chapter 6. API Reference

Django Documentation, Release 1.2.7

•Validates that file data has been bound to the form, and that the file is of an image format understood by
PIL.

•Error message keys: required, invalid, missing, empty, invalid_image

Using an ImageField requires that the Python Imaging Library is installed.

When you use an ImageField on a form, you must also remember to bind the file data to the form.

IntegerField

class IntegerField(**kwargs)

•Default widget: TextInput

•Empty value: None

•Normalizes to: A Python integer or long integer.

•Validates that the given value is an integer. Leading and trailing whitespace is allowed, as in Python’s
int() function.

•Error message keys: required, invalid, max_value, min_value

The max_value and min_value error messages may contain %(limit_value)s, which will be substituted by
the appropriate limit.

Takes two optional arguments for validation:

IntegerField.max_value

IntegerField.min_value
These control the range of values permitted in the field.

IPAddressField

class IPAddressField(**kwargs)

•Default widget: TextInput

•Empty value: ” (an empty string)

•Normalizes to: A Unicode object.

•Validates that the given value is a valid IPv4 address, using a regular expression.

•Error message keys: required, invalid

MultipleChoiceField

class MultipleChoiceField(**kwargs)

•Default widget: SelectMultiple

•Empty value: [] (an empty list)

•Normalizes to: A list of Unicode objects.

•Validates that every value in the given list of values exists in the list of choices.

•Error message keys: required, invalid_choice, invalid_list

6.8. Forms 627

http://www.pythonware.com/products/pil/

Django Documentation, Release 1.2.7

The invalid_choice error message may contain %(value)s, which will be replaced with the selected choice.

Takes one extra required argument, choices, as for ChoiceField.

NullBooleanField

class NullBooleanField(**kwargs)

•Default widget: NullBooleanSelect

•Empty value: None

•Normalizes to: A Python True, False or None value.

•Validates nothing (i.e., it never raises a ValidationError).

RegexField

class RegexField(**kwargs)

•Default widget: TextInput

•Empty value: ” (an empty string)

•Normalizes to: A Unicode object.

•Validates that the given value matches against a certain regular expression.

•Error message keys: required, invalid

Takes one required argument:

RegexField.regex
A regular expression specified either as a string or a compiled regular expression object.

Also takes max_length and min_length, which work just as they do for CharField.

The optional argument error_message is also accepted for backwards compatibility. The preferred way to provide
an error message is to use the error_messages argument, passing a dictionary with ’invalid’ as a key and the
error message as the value.

SlugField

class SlugField(**kwargs)

•Default widget: TextInput

•Empty value: ” (an empty string)

•Normalizes to: A Unicode object.

•Validates that the given value contains only letters, numbers, underscores, and hyphens.

•Error messages: required, invalid

This field is intended for use in representing a model SlugField in forms.

628 Chapter 6. API Reference

Django Documentation, Release 1.2.7

TimeField

class TimeField(**kwargs)

•Default widget: TextInput

•Empty value: None

•Normalizes to: A Python datetime.time object.

•Validates that the given value is either a datetime.time or string formatted in a particular time format.

•Error message keys: required, invalid

Takes one optional argument:

TimeField.input_formats
A list of formats used to attempt to convert a string to a valid datetime.time object.

If no input_formats argument is provided, the default input formats are:

’%H:%M:%S’, # ’14:30:59’
’%H:%M’, # ’14:30’

URLField

class URLField(**kwargs)

•Default widget: TextInput

•Empty value: ” (an empty string)

•Normalizes to: A Unicode object.

•Validates that the given value is a valid URL.

•Error message keys: required, invalid, invalid_link

Takes the following optional arguments:

URLField.max_length

URLField.min_length
Same as CharField.max_length and CharField.min_length.

URLField.verify_exists
If True, the validator will attempt to load the given URL, raising ValidationError if the page gives a 404.
Defaults to False.

URLField.validator_user_agent
String used as the user-agent used when checking for a URL’s existence. Defaults to the value of the
URL_VALIDATOR_USER_AGENT setting.

Changed in version 1.2: The URLField previously did not recognize URLs as valid that contained an IDN (Interna-
tionalized Domain Name; a domain name containing unicode characters) domain name. This has now been corrected.

Slightly complex built-in Field classes

ComboField

class ComboField(**kwargs)

6.8. Forms 629

Django Documentation, Release 1.2.7

•Default widget: TextInput

•Empty value: ” (an empty string)

•Normalizes to: A Unicode object.

•Validates that the given value against each of the fields specified as an argument to the ComboField.

•Error message keys: required, invalid

Takes one extra required argument:

ComboField.fields
The list of fields that should be used to validate the field’s value (in the order in which they are provided).

>>> f = ComboField(fields=[CharField(max_length=20), EmailField()])
>>> f.clean(’test@example.com’)
u’test@example.com’
>>> f.clean(’longemailaddress@example.com’)
Traceback (most recent call last):
...
ValidationError: [u’Ensure this value has at most 20 characters (it has 28).’]

MultiValueField

class MultiValueField(**kwargs)

•Default widget: TextInput

•Empty value: ” (an empty string)

•Normalizes to: the type returned by the compress method of the subclass.

•Validates that the given value against each of the fields specified as an argument to the
MultiValueField.

•Error message keys: required, invalid

This abstract field (must be subclassed) aggregates the logic of multiple fields. Subclasses should not have to
implement clean(). Instead, they must implement compress(), which takes a list of valid values and returns a
“compressed” version of those values – a single value. For example, SplitDateTimeField is a subclass
which combines a time field and a date field into a datetime object.

Takes one extra required argument:

MultiValueField.fields
A list of fields which are cleaned into a single field. Each value in clean is cleaned by the corresponding field
in fields – the first value is cleaned by the first field, the second value is cleaned by the second field, etc.
Once all fields are cleaned, the list of clean values is “compressed” into a single value.

SplitDateTimeField

class SplitDateTimeField(**kwargs)

•Default widget: SplitDateTimeWidget

•Empty value: None

•Normalizes to: A Python datetime.datetime object.

•Validates that the given value is a datetime.datetime or string formatted in a particular datetime
format.

630 Chapter 6. API Reference

Django Documentation, Release 1.2.7

•Error message keys: required, invalid, invalid_date, invalid_time

Takes two optional arguments:

SplitDateTimeField.input_date_formats
A list of formats used to attempt to convert a string to a valid datetime.date object.

If no input_date_formats argument is provided, the default input formats for DateField are used.

SplitDateTimeField.input_time_formats
A list of formats used to attempt to convert a string to a valid datetime.time object.

If no input_time_formats argument is provided, the default input formats for TimeField are used.
Changed in version 1.1: The SplitDateTimeField previously used two TextInput widgets by default. The
input_date_formats and input_time_formats arguments are also new.

Fields which handle relationships

Two fields are available for representing relationships between models: ModelChoiceField and
ModelMultipleChoiceField. Both of these fields require a single queryset parameter that is used to cre-
ate the choices for the field. Upon form validation, these fields will place either one model object (in the case
of ModelChoiceField) or multiple model objects (in the case of ModelMultipleChoiceField) into the
cleaned_data dictionary of the form.

ModelChoiceField

class ModelChoiceField(**kwargs)

•Default widget: Select

•Empty value: None

•Normalizes to: A model instance.

•Validates that the given id exists in the queryset.

•Error message keys: required, invalid_choice

Allows the selection of a single model object, suitable for representing a foreign key. A single argument is required:

ModelChoiceField.queryset
A QuerySet of model objects from which the choices for the field will be derived, and which will be used to
validate the user’s selection.

ModelChoiceField also takes one optional argument:

ModelChoiceField.empty_label
By default the <select> widget used by ModelChoiceField will have a an empty choice at the top of
the list. You can change the text of this label (which is "---------" by default) with the empty_label
attribute, or you can disable the empty label entirely by setting empty_label to None:

A custom empty label
field1 = forms.ModelChoiceField(queryset=..., empty_label="(Nothing)")

No empty label
field2 = forms.ModelChoiceField(queryset=..., empty_label=None)

Note that if a ModelChoiceField is required and has a default initial value, no empty choice is created
(regardless of the value of empty_label).

6.8. Forms 631

Django Documentation, Release 1.2.7

The __unicode__ method of the model will be called to generate string representations of the objects for
use in the field’s choices; to provide customized representations, subclass ModelChoiceField and override
label_from_instance. This method will receive a model object, and should return a string suitable for rep-
resenting it. For example:

class MyModelChoiceField(ModelChoiceField):
def label_from_instance(self, obj):

return "My Object #%i" % obj.id

ModelMultipleChoiceField

class ModelMultipleChoiceField(**kwargs)

•Default widget: SelectMultiple

•Empty value: [] (an empty list)

•Normalizes to: A list of model instances.

•Validates that every id in the given list of values exists in the queryset.

•Error message keys: required, list, invalid_choice, invalid_pk_value

Allows the selection of one or more model objects, suitable for representing a many-to-many relation. As with
ModelChoiceField, you can use label_from_instance to customize the object representations, and
queryset is a required parameter:

ModelMultipleChoiceField.queryset
A QuerySet of model objects from which the choices for the field will be derived, and which will be used to
validate the user’s selection.

Creating custom fields

If the built-in Field classes don’t meet your needs, you can easily create custom Field classes. To do this, just
create a subclass of django.forms.Field. Its only requirements are that it implement a clean() method
and that its __init__() method accept the core arguments mentioned above (required, label, initial,
widget, help_text).

6.8.3 Widgets

A widget is Django’s representation of a HTML input element. The widget handles the rendering of the HTML, and
the extraction of data from a GET/POST dictionary that corresponds to the widget.

Django provides a representation of all the basic HTML widgets, plus some commonly used groups of widgets:

class TextInput
Text input: <input type=’text’ ...>

class PasswordInput
Password input: <input type=’password’ ...>

Takes one optional argument:

render_value
Determines whether the widget will have a value filled in when the form is re-displayed after a validation
error (default is True).

632 Chapter 6. API Reference

Django Documentation, Release 1.2.7

class HiddenInput
Hidden input: <input type=’hidden’ ...>

class MultipleHiddenInput
Multiple <input type=’hidden’ ...> widgets.

class FileInput
File upload input: <input type=’file’ ...>

class DateInput
New in version 1.1: Please, see the release notes Date input as a simple text box: <input type=’text’
...>

Takes one optional argument:

format
The format in which this field’s initial value will be displayed.

If no format argument is provided, the default format is ’%Y-%m-%d’.

class DateTimeInput
Date/time input as a simple text box: <input type=’text’ ...>

Takes one optional argument:

format
The format in which this field’s initial value will be displayed.

If no format argument is provided, the default format is ’%Y-%m-%d %H:%M:%S’.

class TimeInput
Time input as a simple text box: <input type=’text’ ...>

Takes one optional argument:

format
The format in which this field’s initial value will be displayed.

If no format argument is provided, the default format is ’%H:%M:%S’. Changed in version 1.1: The format
argument was not supported in Django 1.0.

class Textarea
Text area: <textarea>...</textarea>

class CheckboxInput
Checkbox: <input type=’checkbox’ ...>

Takes one optional argument:

check_test
A callable that takes the value of the CheckBoxInput and returns True if the checkbox should be checked
for that value.

class Select
Select widget: <select><option ...>...</select>

Requires that your field provides choices.

class NullBooleanSelect
Select widget with options ‘Unknown’, ‘Yes’ and ‘No’

class SelectMultiple
Select widget allowing multiple selection: <select multiple=’multiple’>...</select>

Requires that your field provides choices.

6.8. Forms 633

Django Documentation, Release 1.2.7

class RadioSelect
A list of radio buttons:

<input type=’radio’ ...>
...

Requires that your field provides choices.

class CheckboxSelectMultiple
A list of checkboxes:

<input type=’checkbox’ ...>
...

class MultiWidget
Wrapper around multiple other widgets

class SplitDateTimeWidget
Wrapper around two widgets: DateInput for the date, and TimeInput for the time.

Takes two optional arguments, date_format and time_format, which work just like the format argu-
ment for DateInput and TimeInput. Changed in version 1.1: The date_format and time_format
arguments were not supported in Django 1.0.

class SelectDateWidget
Wrapper around three select widgets: one each for month, day, and year. Note that this widget lives in a separate
file from the standard widgets.

from django.forms.extras.widgets import SelectDateWidget

date = forms.DateField(widget=SelectDateWidget())

Specifying widgets

Form.widget

Whenever you specify a field on a form, Django will use a default widget that is appropriate to the type of data that is
to be displayed. To find which widget is used on which field, see the documentation for the built-in Field classes.

However, if you want to use a different widget for a field, you can - just use the ‘widget’ argument on the field
definition. For example:

from django import forms

class CommentForm(forms.Form):
name = forms.CharField()
url = forms.URLField()
comment = forms.CharField(widget=forms.Textarea)

This would specify a form with a comment that uses a larger Textarea widget, rather than the default TextInput widget.

Customizing widget instances

When Django renders a widget as HTML, it only renders the bare minimum HTML - Django doesn’t add a class
definition, or any other widget-specific attributes. This means that all ‘TextInput’ widgets will appear the same on

634 Chapter 6. API Reference

Django Documentation, Release 1.2.7

your Web page.

If you want to make one widget look different to another, you need to specify additional attributes for each widget.
When you specify a widget, you can provide a list of attributes that will be added to the rendered HTML for the widget.

For example, take the following simple form:

class CommentForm(forms.Form):
name = forms.CharField()
url = forms.URLField()
comment = forms.CharField()

This form will include three default TextInput widgets, with default rendering - no CSS class, no extra attributes. This
means that the input boxes provided for each widget will be rendered exactly the same:

>>> f = CommentForm(auto_id=False)
>>> f.as_table()
<tr><th>Name:</th><td><input type="text" name="name" /></td></tr>
<tr><th>Url:</th><td><input type="text" name="url"/></td></tr>
<tr><th>Comment:</th><td><input type="text" name="comment" /></td></tr>

On a real Web page, you probably don’t want every widget to look the same. You might want a larger input element
for the comment, and you might want the ‘name’ widget to have some special CSS class. To do this, you use the
attrs argument when creating the widget:

Widget.attrs

For example:

class CommentForm(forms.Form):
name = forms.CharField(

widget=forms.TextInput(attrs={’class’:’special’}))
url = forms.URLField()
comment = forms.CharField(

widget=forms.TextInput(attrs={’size’:’40’}))

Django will then include the extra attributes in the rendered output:

>>> f = CommentForm(auto_id=False)
>>> f.as_table()
<tr><th>Name:</th><td><input type="text" name="name" class="special"/></td></tr>
<tr><th>Url:</th><td><input type="text" name="url"/></td></tr>
<tr><th>Comment:</th><td><input type="text" name="comment" size="40"/></td></tr>

6.8.4 Form and field validation

Changed in version 1.2: Please, see the release notes Form validation happens when the data is cleaned. If you want
to customize this process, there are various places you can change, each one serving a different purpose. Three types
of cleaning methods are run during form processing. These are normally executed when you call the is_valid()
method on a form. There are other things that can trigger cleaning and validation (accessing the errors attribute or
calling full_clean() directly), but normally they won’t be needed.

In general, any cleaning method can raise ValidationError if there is a problem with the data it is processing,
passing the relevant error message to the ValidationError constructor. If no ValidationError is raised, the
method should return the cleaned (normalized) data as a Python object.

If you detect multiple errors during a cleaning method and wish to signal all of them to the form submitter, it is possible
to pass a list of errors to the ValidationError constructor.

6.8. Forms 635

Django Documentation, Release 1.2.7

Most validation can be done using validators - simple helpers that can be reused easily. Validators are simple functions
(or callables) that take a single argument and raise ValidationError on invalid input. Validators are run after the
field’s to_python and validate methods have been called.

Validation of a Form is split into several steps, which can be customized or overridden:

• The to_python() method on a Field is the first step in every validation. It coerces the value to correct
datatype and raises ValidationError if that is not possible. This method accepts the raw value from the
widget and returns the converted value. For example, a FloatField will turn the data into a Python float or
raise a ValidationError.

• The validate() method on a Field handles field-specific validation that is not suitable for a validator, It takes
a value that has been coerced to correct datatype and raises ValidationError on any error. This method
does not return anything and shouldn’t alter the value. You should override it to handle validation logic that you
can’t or don’t want to put in a validator.

• The run_validators() method on a Field runs all of the field’s validators and aggregates all the errors into
a single ValidationError. You shouldn’t need to override this method.

• The clean() method on a Field subclass. This is responsible for running to_python, validate and
run_validators in the correct order and propagating their errors. If, at any time, any of the methods raise
ValidationError, the validation stops and that error is raised. This method returns the clean data, which is
then inserted into the cleaned_data dictionary of the form.

• The clean_<fieldname>() method in a form subclass – where <fieldname> is replaced with the name
of the form field attribute. This method does any cleaning that is specific to that particular attribute, unrelated
to the type of field that it is. This method is not passed any parameters. You will need to look up the value of
the field in self.cleaned_data and remember that it will be a Python object at this point, not the original
string submitted in the form (it will be in cleaned_data because the general field clean() method, above,
has already cleaned the data once).

For example, if you wanted to validate that the contents of a CharField called serialnumber was unique,
clean_serialnumber() would be the right place to do this. You don’t need a specific field (it’s just a
CharField), but you want a formfield-specific piece of validation and, possibly, cleaning/normalizing the
data.

Just like the general field clean() method, above, this method should return the cleaned data, regardless of
whether it changed anything or not.

• The Form subclass’s clean()method. This method can perform any validation that requires access to multiple
fields from the form at once. This is where you might put in things to check that if field A is supplied, field B
must contain a valid e-mail address and the like. The data that this method returns is the final cleaned_data
attribute for the form, so don’t forget to return the full list of cleaned data if you override this method (by default,
Form.clean() just returns self.cleaned_data).

Note that any errors raised by your Form.clean() override will not be associated with any field in particular.
They go into a special “field” (called __all__), which you can access via the non_field_errors()
method if you need to. If you want to attach errors to a specific field in the form, you will need to access the
_errors attribute on the form, which is described later.

Also note that there are special considerations when overriding the clean() method of a ModelForm sub-
class. (see the ModelForm documentation for more information)

These methods are run in the order given above, one field at a time. That is, for each field in the form (in
the order they are declared in the form definition), the Field.clean() method (or its override) is run, then
clean_<fieldname>(). Finally, once those two methods are run for every field, the Form.clean() method,
or its override, is executed.

Examples of each of these methods are provided below.

636 Chapter 6. API Reference

Django Documentation, Release 1.2.7

As mentioned, any of these methods can raise a ValidationError. For any field, if the Field.clean()method
raises a ValidationError, any field-specific cleaning method is not called. However, the cleaning methods for
all remaining fields are still executed.

The clean() method for the Form class or subclass is always run. If that method raises a ValidationError,
cleaned_data will be an empty dictionary.

The previous paragraph means that if you are overriding Form.clean(), you should iterate through
self.cleaned_data.items(), possibly considering the _errors dictionary attribute on the form as well.
In this way, you will already know which fields have passed their individual validation requirements.

Form subclasses and modifying field errors

Sometimes, in a form’s clean() method, you will want to add an error message to a particular field in the form. This
won’t always be appropriate and the more typical situation is to raise a ValidationError from Form.clean(),
which is turned into a form-wide error that is available through the Form.non_field_errors() method.

When you really do need to attach the error to a particular field, you should store (or amend) a key in the
Form._errors attribute. This attribute is an instance of a django.forms.util.ErrorDict class. Essen-
tially, though, it’s just a dictionary. There is a key in the dictionary for each field in the form that has an error. Each
value in the dictionary is a django.forms.util.ErrorList instance, which is a list that knows how to display
itself in different ways. So you can treat _errors as a dictionary mapping field names to lists.

If you want to add a new error to a particular field, you should check whether the key already exists in
self._errors or not. If not, create a new entry for the given key, holding an empty ErrorList instance.
In either case, you can then append your error message to the list for the field name in question and it will be displayed
when the form is displayed.

There is an example of modifying self._errors in the following section.

What’s in a name?

You may be wondering why is this attribute called _errors and not errors. Normal Python practice is to prefix
a name with an underscore if it’s not for external usage. In this case, you are subclassing the Form class, so you are
essentially writing new internals. In effect, you are given permission to access some of the internals of Form.

Of course, any code outside your form should never access _errors directly. The data is available to external code
through the errors property, which populates _errors before returning it).

Another reason is purely historical: the attribute has been called _errors since the early days of the forms module
and changing it now (particularly since errors is used for the read-only property name) would be inconvenient for a
number of reasons. You can use whichever explanation makes you feel more comfortable. The result is the same.

Using validation in practice

The previous sections explained how validation works in general for forms. Since it can sometimes be easier to put
things into place by seeing each feature in use, here are a series of small examples that use each of the previous
features.

Using validators

New in version 1.2: Please, see the release notes Django’s form (and model) fields support use of simple utility
functions and classes known as validators. These can be passed to a field’s constructor, via the field’s validators
argument, or defined on the Field class itself with the default_validators attribute.

6.8. Forms 637

Django Documentation, Release 1.2.7

Simple validators can be used to validate values inside the field, let’s have a look at Django’s EmailField:

class EmailField(CharField):
default_error_messages = {

’invalid’: _(u’Enter a valid e-mail address.’),
}
default_validators = [validators.validate_email]

As you can see, EmailField is just a CharField with customized error message and a validator that validates
e-mail addresses. This can also be done on field definition so:

email = forms.EmailField()

is equivalent to:

email = forms.CharField(validators=[validators.validate_email],
error_messages={’invalid’: _(u’Enter a valid e-mail address.’)})

Form field default cleaning

Let’s firstly create a custom form field that validates its input is a string containing comma-separated e-mail addresses.
The full class looks like this:

from django import forms
from django.core.validators import validate_email

class MultiEmailField(forms.Field):
def to_python(self, value):

"Normalize data to a list of strings."

Return an empty list if no input was given.
if not value:

return []
return value.split(’,’)

def validate(self, value):
"Check if value consists only of valid emails."

Use the parent’s handling of required fields, etc.
super(MultiEmailField, self).validate(value)

for email in value:
validate_email(email)

Every form that uses this field will have these methods run before anything else can be done with the field’s data. This
is cleaning that is specific to this type of field, regardless of how it is subsequently used.

Let’s create a simple ContactForm to demonstrate how you’d use this field:

class ContactForm(forms.Form):
subject = forms.CharField(max_length=100)
message = forms.CharField()
sender = forms.EmailField()
recipients = MultiEmailField()
cc_myself = forms.BooleanField(required=False)

Simply use MultiEmailField like any other form field. When the is_valid() method is called on the form,
the MultiEmailField.clean() method will be run as part of the cleaning process and it will, in turn, call the
custom to_python() and validate() methods.

638 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Cleaning a specific field attribute

Continuing on from the previous example, suppose that in our ContactForm, we want to make sure that the
recipients field always contains the address "fred@example.com". This is validation that is specific to
our form, so we don’t want to put it into the general MultiEmailField class. Instead, we write a cleaning method
that operates on the recipients field, like so:

class ContactForm(forms.Form):
Everything as before.
...

def clean_recipients(self):
data = self.cleaned_data[’recipients’]
if "fred@example.com" not in data:

raise forms.ValidationError("You have forgotten about Fred!")

Always return the cleaned data, whether you have changed it or
not.
return data

Cleaning and validating fields that depend on each other

Suppose we add another requirement to our contact form: if the cc_myself field is True, the subject must
contain the word "help". We are performing validation on more than one field at a time, so the form’s clean()
method is a good spot to do this. Notice that we are talking about the clean() method on the form here, whereas
earlier we were writing a clean() method on a field. It’s important to keep the field and form difference clear when
working out where to validate things. Fields are single data points, forms are a collection of fields.

By the time the form’s clean() method is called, all the individual field clean methods will have been run (the
previous two sections), so self.cleaned_data will be populated with any data that has survived so far. So you
also need to remember to allow for the fact that the fields you are wanting to validate might not have survived the
initial individual field checks.

There are two ways to report any errors from this step. Probably the most common method is to display the error at
the top of the form. To create such an error, you can raise a ValidationError from the clean() method. For
example:

class ContactForm(forms.Form):
Everything as before.
...

def clean(self):
cleaned_data = self.cleaned_data
cc_myself = cleaned_data.get("cc_myself")
subject = cleaned_data.get("subject")

if cc_myself and subject:
Only do something if both fields are valid so far.
if "help" not in subject:

raise forms.ValidationError("Did not send for ’help’ in "
"the subject despite CC’ing yourself.")

Always return the full collection of cleaned data.
return cleaned_data

In this code, if the validation error is raised, the form will display an error message at the top of the form (normally)
describing the problem.

6.8. Forms 639

Django Documentation, Release 1.2.7

The second approach might involve assigning the error message to one of the fields. In this case, let’s assign an error
message to both the “subject” and “cc_myself” rows in the form display. Be careful when doing this in practice, since
it can lead to confusing form output. We’re showing what is possible here and leaving it up to you and your designers
to work out what works effectively in your particular situation. Our new code (replacing the previous sample) looks
like this:

class ContactForm(forms.Form):
Everything as before.
...

def clean(self):
cleaned_data = self.cleaned_data
cc_myself = cleaned_data.get("cc_myself")
subject = cleaned_data.get("subject")

if cc_myself and subject and "help" not in subject:
We know these are not in self._errors now (see discussion
below).
msg = u"Must put ’help’ in subject when cc’ing yourself."
self._errors["cc_myself"] = self.error_class([msg])
self._errors["subject"] = self.error_class([msg])

These fields are no longer valid. Remove them from the
cleaned data.
del cleaned_data["cc_myself"]
del cleaned_data["subject"]

Always return the full collection of cleaned data.
return cleaned_data

As you can see, this approach requires a bit more effort, not withstanding the extra design effort to create a sen-
sible form display. The details are worth noting, however. Firstly, earlier we mentioned that you might need to
check if the field name keys already exist in the _errors dictionary. In this case, since we know the fields exist in
self.cleaned_data, they must have been valid when cleaned as individual fields, so there will be no correspond-
ing entries in _errors.

Secondly, once we have decided that the combined data in the two fields we are considering aren’t valid, we must
remember to remove them from the cleaned_data.

In fact, Django will currently completely wipe out the cleaned_data dictionary if there are any errors in the form.
However, this behaviour may change in the future, so it’s not a bad idea to clean up after yourself in the first place.

6.9 Generic views

Writing Web applications can be monotonous, because we repeat certain patterns again and again. In Django, the most
common of these patterns have been abstracted into “generic views” that let you quickly provide common views of an
object without actually needing to write any Python code.

A general introduction to generic views can be found in the topic guide.

This reference contains details of Django’s built-in generic views, along with a list of all keyword arguments
that a generic view expects. Remember that arguments may either come from the URL pattern or from the
extra_context additional-information dictionary.

Most generic views require the queryset key, which is a QuerySet instance; see Making queries for more infor-
mation about QuerySet objects.

640 Chapter 6. API Reference

Django Documentation, Release 1.2.7

6.9.1 “Simple” generic views

The django.views.generic.simple module contains simple views to handle a couple of common cases:
rendering a template when no view logic is needed, and issuing a redirect.

django.views.generic.simple.direct_to_template

Description:

Renders a given template, passing it a {{ params }} template variable, which is a dictionary of the parameters
captured in the URL.

Required arguments:

• template: The full name of a template to use.

Optional arguments:

• extra_context: A dictionary of values to add to the template context. By default, this is an empty dictionary.
If a value in the dictionary is callable, the generic view will call it just before rendering the template.

• mimetype: The MIME type to use for the resulting document. Defaults to the value of the
DEFAULT_CONTENT_TYPE setting.

Example:

Given the following URL patterns:

urlpatterns = patterns(’django.views.generic.simple’,
(r’^foo/$’, ’direct_to_template’, {’template’: ’foo_index.html’}),
(r’^foo/(?P<id>\d+)/$’, ’direct_to_template’, {’template’: ’foo_detail.html’}),

)

... a request to /foo/ would render the template foo_index.html, and a request to /foo/15/ would render the
foo_detail.html with a context variable {{ params.id }} that is set to 15.

django.views.generic.simple.redirect_to

Description:

Redirects to a given URL.

The given URL may contain dictionary-style string formatting, which will be interpolated against the parameters
captured in the URL. Because keyword interpolation is always done (even if no arguments are passed in), any "%"
characters in the URL must be written as "%%" so that Python will convert them to a single percent sign on output.

If the given URL is None, Django will return an HttpResponseGone (410).

Required arguments:

• url: The URL to redirect to, as a string. Or None to raise a 410 (Gone) HTTP error.

Optional arguments:

• permanent: Whether the redirect should be permanent. The only difference here is the HTTP status code
returned. If True, then the redirect will use status code 301. If False, then the redirect will use status code
302. By default, permanent is True.

New in version 1.1: The permanent keyword argument is new in Django 1.1. Example:

This example issues a permanent redirect (HTTP status code 301) from /foo/<id>/ to /bar/<id>/:

6.9. Generic views 641

Django Documentation, Release 1.2.7

urlpatterns = patterns(’django.views.generic.simple’,
(’^foo/(?P<id>\d+)/$’, ’redirect_to’, {’url’: ’/bar/%(id)s/’}),

)

This example issues a non-permanent redirect (HTTP status code 302) from /foo/<id>/ to /bar/<id>/:

urlpatterns = patterns(’django.views.generic.simple’,
(’^foo/(?P<id>\d+)/$’, ’redirect_to’, {’url’: ’/bar/%(id)s/’, ’permanent’: False}),

)

This example returns a 410 HTTP error for requests to /bar/:

urlpatterns = patterns(’django.views.generic.simple’,
(’^bar/$’, ’redirect_to’, {’url’: None}),

)

This example shows how "%" characters must be written in the URL in order to avoid confusion with Python’s string
formatting markers. If the redirect string is written as "%7Ejacob/" (with only a single %), an exception would be
raised:

urlpatterns = patterns(’django.views.generic.simple’,
(’^bar/$’, ’redirect_to’, {’url’: ’%%7Ejacob.’}),

)

6.9.2 Date-based generic views

Date-based generic views (in the module django.views.generic.date_based) are views for displaying drill-
down pages for date-based data.

django.views.generic.date_based.archive_index

Description:

A top-level index page showing the “latest” objects, by date. Objects with a date in the future are not included unless
you set allow_future to True.

Required arguments:

• queryset: A QuerySet of objects for which the archive serves.

• date_field: The name of the DateField or DateTimeField in the QuerySet‘s model that the date-
based archive should use to determine the objects on the page.

Optional arguments:

• num_latest: The number of latest objects to send to the template context. By default, it’s 15.

• template_name: The full name of a template to use in rendering the page. This lets you override the default
template name (see below).

• template_loader: The template loader to use when loading the template. By default, it’s
django.template.loader.

• extra_context: A dictionary of values to add to the template context. By default, this is an empty dictionary.
If a value in the dictionary is callable, the generic view will call it just before rendering the template.

• allow_empty: A boolean specifying whether to display the page if no objects are available. If this is False
and no objects are available, the view will raise a 404 instead of displaying an empty page. By default, this is
True.

642 Chapter 6. API Reference

Django Documentation, Release 1.2.7

• context_processors: A list of template-context processors to apply to the view’s template.

• mimetype: The MIME type to use for the resulting document. Defaults to the value of the
DEFAULT_CONTENT_TYPE setting.

• allow_future: A boolean specifying whether to include “future” objects on this page, where “future” means
objects in which the field specified in date_field is greater than the current date/time. By default, this is
False.

• template_object_name: Designates the name of the template variable to use in the template context. By
default, this is ’latest’.

Template name:

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_archive.html
by default, where:

• <model_name> is your model’s name in all lowercase. For a model StaffMember, that’d be
staffmember.

• <app_label> is the right-most part of the full Python path to your model’s app. For example, if your model
lives in apps/blog/models.py, that’d be blog.

Template context:

In addition to extra_context, the template’s context will be:

• date_list: A DateQuerySet object containing all years that have have objects available according to
queryset, represented as datetime.datetime objects. These are ordered in reverse. This is equivalent
to queryset.dates(date_field, ’year’)[::-1].

• latest: The num_latest objects in the system, ordered descending by date_field. For example, if
num_latest is 10, then latest will be a list of the latest 10 objects in queryset.

This variable’s name depends on the template_object_name parameter, which is ’latest’ by default.
If template_object_name is ’foo’, this variable’s name will be foo.

django.views.generic.date_based.archive_year

Description:

A yearly archive page showing all available months in a given year. Objects with a date in the future are not displayed
unless you set allow_future to True.

Required arguments:

• year: The four-digit year for which the archive serves.

• queryset: A QuerySet of objects for which the archive serves.

• date_field: The name of the DateField or DateTimeField in the QuerySet‘s model that the date-
based archive should use to determine the objects on the page.

Optional arguments:

• template_name: The full name of a template to use in rendering the page. This lets you override the default
template name (see below).

• template_loader: The template loader to use when loading the template. By default, it’s
django.template.loader.

• extra_context: A dictionary of values to add to the template context. By default, this is an empty dictionary.
If a value in the dictionary is callable, the generic view will call it just before rendering the template.

6.9. Generic views 643

Django Documentation, Release 1.2.7

• allow_empty: A boolean specifying whether to display the page if no objects are available. If this is False
and no objects are available, the view will raise a 404 instead of displaying an empty page. By default, this is
False.

• context_processors: A list of template-context processors to apply to the view’s template.

• template_object_name: Designates the name of the template variable to use in the template context. By
default, this is ’object’. The view will append ’_list’ to the value of this parameter in determining the
variable’s name.

• make_object_list: A boolean specifying whether to retrieve the full list of objects for this year and pass
those to the template. If True, this list of objects will be made available to the template as object_list.
(The name object_listmay be different; see the docs for object_list in the “Template context” section
below.) By default, this is False.

• mimetype: The MIME type to use for the resulting document. Defaults to the value of the
DEFAULT_CONTENT_TYPE setting.

• allow_future: A boolean specifying whether to include “future” objects on this page, where “future” means
objects in which the field specified in date_field is greater than the current date/time. By default, this is
False.

Template name:

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_archive_year.html
by default.

Template context:

In addition to extra_context, the template’s context will be:

• date_list: A DateQuerySet object containing all months that have have objects available according to
queryset, represented as datetime.datetime objects, in ascending order.

• year: The given year, as a four-character string.

• object_list: If the make_object_list parameter is True, this will be set to a list of objects available
for the given year, ordered by the date field. This variable’s name depends on the template_object_name
parameter, which is ’object’ by default. If template_object_name is ’foo’, this variable’s name
will be foo_list.

If make_object_list is False, object_list will be passed to the template as an empty list.

django.views.generic.date_based.archive_month

Description:

A monthly archive page showing all objects in a given month. Objects with a date in the future are not displayed unless
you set allow_future to True.

Required arguments:

• year: The four-digit year for which the archive serves (a string).

• month: The month for which the archive serves, formatted according to the month_format argument.

• queryset: A QuerySet of objects for which the archive serves.

• date_field: The name of the DateField or DateTimeField in the QuerySet‘s model that the date-
based archive should use to determine the objects on the page.

Optional arguments:

644 Chapter 6. API Reference

Django Documentation, Release 1.2.7

• month_format: A format string that regulates what format the month parameter uses. This should be in the
syntax accepted by Python’s time.strftime. (See the strftime docs.) It’s set to "%b" by default, which is
a three-letter month abbreviation. To change it to use numbers, use "%m".

• template_name: The full name of a template to use in rendering the page. This lets you override the default
template name (see below).

• template_loader: The template loader to use when loading the template. By default, it’s
django.template.loader.

• extra_context: A dictionary of values to add to the template context. By default, this is an empty dictionary.
If a value in the dictionary is callable, the generic view will call it just before rendering the template.

• allow_empty: A boolean specifying whether to display the page if no objects are available. If this is False
and no objects are available, the view will raise a 404 instead of displaying an empty page. By default, this is
False.

• context_processors: A list of template-context processors to apply to the view’s template.

• template_object_name: Designates the name of the template variable to use in the template context. By
default, this is ’object’. The view will append ’_list’ to the value of this parameter in determining the
variable’s name.

• mimetype: The MIME type to use for the resulting document. Defaults to the value of the
DEFAULT_CONTENT_TYPE setting.

• allow_future: A boolean specifying whether to include “future” objects on this page, where “future” means
objects in which the field specified in date_field is greater than the current date/time. By default, this is
False.

Template name:

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_archive_month.html
by default.

Template context: New in version 1.2: The inclusion of date_list in the template’s context is new. In addition to
extra_context, the template’s context will be:

• date_list: A DateQuerySet object containing all days that have have objects available in the given
month, according to queryset, represented as datetime.datetime objects, in ascending order.

• month: A datetime.date object representing the given month.

• next_month: A datetime.date object representing the first day of the next month. If the next month is
in the future, this will be None.

• previous_month: A datetime.date object representing the first day of the previous month. Unlike
next_month, this will never be None.

• object_list: A list of objects available for the given month. This variable’s name depends on the
template_object_name parameter, which is ’object’ by default. If template_object_name is
’foo’, this variable’s name will be foo_list.

django.views.generic.date_based.archive_week

Description:

A weekly archive page showing all objects in a given week. Objects with a date in the future are not displayed unless
you set allow_future to True.

Required arguments:

• year: The four-digit year for which the archive serves (a string).

6.9. Generic views 645

http://docs.python.org/library/time.html#time.strftime

Django Documentation, Release 1.2.7

• week: The week of the year for which the archive serves (a string). Weeks start with Sunday.

• queryset: A QuerySet of objects for which the archive serves.

• date_field: The name of the DateField or DateTimeField in the QuerySet‘s model that the date-
based archive should use to determine the objects on the page.

Optional arguments:

• template_name: The full name of a template to use in rendering the page. This lets you override the default
template name (see below).

• template_loader: The template loader to use when loading the template. By default, it’s
django.template.loader.

• extra_context: A dictionary of values to add to the template context. By default, this is an empty dictionary.
If a value in the dictionary is callable, the generic view will call it just before rendering the template.

• allow_empty: A boolean specifying whether to display the page if no objects are available. If this is False
and no objects are available, the view will raise a 404 instead of displaying an empty page. By default, this is
True.

• context_processors: A list of template-context processors to apply to the view’s template.

• template_object_name: Designates the name of the template variable to use in the template context. By
default, this is ’object’. The view will append ’_list’ to the value of this parameter in determining the
variable’s name.

• mimetype: The MIME type to use for the resulting document. Defaults to the value of the
DEFAULT_CONTENT_TYPE setting.

• allow_future: A boolean specifying whether to include “future” objects on this page, where “future” means
objects in which the field specified in date_field is greater than the current date/time. By default, this is
False.

Template name:

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_archive_week.html
by default.

Template context:

In addition to extra_context, the template’s context will be:

• week: A datetime.date object representing the first day of the given week.

• object_list: A list of objects available for the given week. This variable’s name depends on the
template_object_name parameter, which is ’object’ by default. If template_object_name is
’foo’, this variable’s name will be foo_list.

django.views.generic.date_based.archive_day

Description:

A day archive page showing all objects in a given day. Days in the future throw a 404 error, regardless of whether any
objects exist for future days, unless you set allow_future to True.

Required arguments:

• year: The four-digit year for which the archive serves (a string).

• month: The month for which the archive serves, formatted according to the month_format argument.

• day: The day for which the archive serves, formatted according to the day_format argument.

646 Chapter 6. API Reference

Django Documentation, Release 1.2.7

• queryset: A QuerySet of objects for which the archive serves.

• date_field: The name of the DateField or DateTimeField in the QuerySet‘s model that the date-
based archive should use to determine the objects on the page.

Optional arguments:

• month_format: A format string that regulates what format the month parameter uses. This should be in the
syntax accepted by Python’s time.strftime. (See the strftime docs.) It’s set to "%b" by default, which is
a three-letter month abbreviation. To change it to use numbers, use "%m".

• day_format: Like month_format, but for the day parameter. It defaults to "%d" (day of the month as a
decimal number, 01-31).

• template_name: The full name of a template to use in rendering the page. This lets you override the default
template name (see below).

• template_loader: The template loader to use when loading the template. By default, it’s
django.template.loader.

• extra_context: A dictionary of values to add to the template context. By default, this is an empty dictionary.
If a value in the dictionary is callable, the generic view will call it just before rendering the template.

• allow_empty: A boolean specifying whether to display the page if no objects are available. If this is False
and no objects are available, the view will raise a 404 instead of displaying an empty page. By default, this is
False.

• context_processors: A list of template-context processors to apply to the view’s template.

• template_object_name: Designates the name of the template variable to use in the template context. By
default, this is ’object’. The view will append ’_list’ to the value of this parameter in determining the
variable’s name.

• mimetype: The MIME type to use for the resulting document. Defaults to the value of the
DEFAULT_CONTENT_TYPE setting.

• allow_future: A boolean specifying whether to include “future” objects on this page, where “future” means
objects in which the field specified in date_field is greater than the current date/time. By default, this is
False.

Template name:

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_archive_day.html
by default.

Template context:

In addition to extra_context, the template’s context will be:

• day: A datetime.date object representing the given day.

• next_day: A datetime.date object representing the next day. If the next day is in the future, this will be
None.

• previous_day: A datetime.date object representing the previous day. Unlike next_day, this will
never be None.

• object_list: A list of objects available for the given day. This variable’s name depends on the
template_object_name parameter, which is ’object’ by default. If template_object_name is
’foo’, this variable’s name will be foo_list.

6.9. Generic views 647

http://docs.python.org/library/time.html#time.strftime

Django Documentation, Release 1.2.7

django.views.generic.date_based.archive_today

Description:

A day archive page showing all objects for today. This is exactly the same as archive_day, except the
year/month/day arguments are not used, and today’s date is used instead.

django.views.generic.date_based.object_detail

Description:

A page representing an individual object. If the object has a date value in the future, the view will throw a 404 error
by default, unless you set allow_future to True.

Required arguments:

• year: The object’s four-digit year (a string).

• month: The object’s month , formatted according to the month_format argument.

• day: The object’s day , formatted according to the day_format argument.

• queryset: A QuerySet that contains the object.

• date_field: The name of the DateField or DateTimeField in the QuerySet‘s model that the
generic view should use to look up the object according to year, month and day.

• Either object_id or (slug and slug_field) is required.

If you provide object_id, it should be the value of the primary-key field for the object being displayed on
this page.

Otherwise, slug should be the slug of the given object, and slug_field should be the name of the slug field
in the QuerySet‘s model. By default, slug_field is ’slug’.

Optional arguments:

• month_format: A format string that regulates what format the month parameter uses. This should be in the
syntax accepted by Python’s time.strftime. (See the strftime docs.) It’s set to "%b" by default, which is
a three-letter month abbreviation. To change it to use numbers, use "%m".

• day_format: Like month_format, but for the day parameter. It defaults to "%d" (day of the month as a
decimal number, 01-31).

• template_name: The full name of a template to use in rendering the page. This lets you override the default
template name (see below).

• template_name_field: The name of a field on the object whose value is the template name to use. This
lets you store template names in the data. In other words, if your object has a field ’the_template’ that
contains a string ’foo.html’, and you set template_name_field to ’the_template’, then the
generic view for this object will use the template ’foo.html’.

It’s a bit of a brain-bender, but it’s useful in some cases.

• template_loader: The template loader to use when loading the template. By default, it’s
django.template.loader.

• extra_context: A dictionary of values to add to the template context. By default, this is an empty dictionary.
If a value in the dictionary is callable, the generic view will call it just before rendering the template.

• context_processors: A list of template-context processors to apply to the view’s template.

• template_object_name: Designates the name of the template variable to use in the template context. By
default, this is ’object’.

648 Chapter 6. API Reference

http://docs.python.org/library/time.html#time.strftime

Django Documentation, Release 1.2.7

• mimetype: The MIME type to use for the resulting document. Defaults to the value of the
DEFAULT_CONTENT_TYPE setting.

• allow_future: A boolean specifying whether to include “future” objects on this page, where “future” means
objects in which the field specified in date_field is greater than the current date/time. By default, this is
False.

Template name:

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_detail.html
by default.

Template context:

In addition to extra_context, the template’s context will be:

• object: The object. This variable’s name depends on the template_object_name parameter, which is
’object’ by default. If template_object_name is ’foo’, this variable’s name will be foo.

6.9.3 List/detail generic views

The list-detail generic-view framework (in the django.views.generic.list_detail module) is similar to
the date-based one, except the former simply has two views: a list of objects and an individual object page.

django.views.generic.list_detail.object_list

Description:

A page representing a list of objects.

Required arguments:

• queryset: A QuerySet that represents the objects.

Optional arguments:

• paginate_by: An integer specifying how many objects should be displayed per page. If this is given, the
view will paginate objects with paginate_by objects per page. The view will expect either a page query
string parameter (via GET) or a page variable specified in the URLconf. See Notes on pagination below.

• page: The current page number, as an integer, or the string ’last’. This is 1-based. See Notes on pagination
below.

• template_name: The full name of a template to use in rendering the page. This lets you override the default
template name (see below).

• template_loader: The template loader to use when loading the template. By default, it’s
django.template.loader.

• extra_context: A dictionary of values to add to the template context. By default, this is an empty dictionary.
If a value in the dictionary is callable, the generic view will call it just before rendering the template.

• allow_empty: A boolean specifying whether to display the page if no objects are available. If this is False
and no objects are available, the view will raise a 404 instead of displaying an empty page. By default, this is
True.

• context_processors: A list of template-context processors to apply to the view’s template.

• template_object_name: Designates the name of the template variable to use in the template context. By
default, this is ’object’. The view will append ’_list’ to the value of this parameter in determining the
variable’s name.

6.9. Generic views 649

Django Documentation, Release 1.2.7

• mimetype: The MIME type to use for the resulting document. Defaults to the value of the
DEFAULT_CONTENT_TYPE setting.

Template name:

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_list.html
by default.

Template context:

In addition to extra_context, the template’s context will be:

• object_list: The list of objects. This variable’s name depends on the template_object_name pa-
rameter, which is ’object’ by default. If template_object_name is ’foo’, this variable’s name will
be foo_list.

• is_paginated: A boolean representing whether the results are paginated. Specifically, this is set to False
if the number of available objects is less than or equal to paginate_by.

If the results are paginated, the context will contain these extra variables:

• paginator: An instance of django.core.paginator.Paginator.

• page_obj: An instance of django.core.paginator.Page.

Notes on pagination

If paginate_by is specified, Django will paginate the results. You can specify the page number in the URL in one
of two ways:

• Use the page parameter in the URLconf. For example, this is what your URLconf might look like:

(r’^objects/page(?P<page>[0-9]+)/$’, ’object_list’, dict(info_dict))

• Pass the page number via the page query-string parameter. For example, a URL would look like this:

/objects/?page=3

• To loop over all the available page numbers, use the page_range variable. You can iterate over the list
provided by page_range to create a link to every page of results.

These values and lists are 1-based, not 0-based, so the first page would be represented as page 1.

For more on pagination, read the pagination documentation.

As a special case, you are also permitted to use last as a value for page:

/objects/?page=last

This allows you to access the final page of results without first having to determine how many pages there are.

Note that page must be either a valid page number or the value last; any other value for page will result in a 404
error.

django.views.generic.list_detail.object_detail

A page representing an individual object.

Description:

A page representing an individual object.

Required arguments:

650 Chapter 6. API Reference

Django Documentation, Release 1.2.7

• queryset: A QuerySet that contains the object.

• Either object_id or (slug and slug_field) is required.

If you provide object_id, it should be the value of the primary-key field for the object being displayed on
this page.

Otherwise, slug should be the slug of the given object, and slug_field should be the name of the slug field
in the QuerySet‘s model. By default, slug_field is ’slug’.

Optional arguments:

• template_name: The full name of a template to use in rendering the page. This lets you override the default
template name (see below).

• template_name_field: The name of a field on the object whose value is the template name to use. This
lets you store template names in the data. In other words, if your object has a field ’the_template’ that
contains a string ’foo.html’, and you set template_name_field to ’the_template’, then the
generic view for this object will use the template ’foo.html’.

It’s a bit of a brain-bender, but it’s useful in some cases.

• template_loader: The template loader to use when loading the template. By default, it’s
django.template.loader.

• extra_context: A dictionary of values to add to the template context. By default, this is an empty dictionary.
If a value in the dictionary is callable, the generic view will call it just before rendering the template.

• context_processors: A list of template-context processors to apply to the view’s template.

• template_object_name: Designates the name of the template variable to use in the template context. By
default, this is ’object’.

• mimetype: The MIME type to use for the resulting document. Defaults to the value of the
DEFAULT_CONTENT_TYPE setting.

Template name:

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_detail.html
by default.

Template context:

In addition to extra_context, the template’s context will be:

• object: The object. This variable’s name depends on the template_object_name parameter, which is
’object’ by default. If template_object_name is ’foo’, this variable’s name will be foo.

6.9.4 Create/update/delete generic views

The django.views.generic.create_update module contains a set of functions for creating, editing and
deleting objects.

django.views.generic.create_update.create_object and django.views.generic.create_update.update_object
now use the new forms library to build and display the form.

django.views.generic.create_update.create_object

Description:

A page that displays a form for creating an object, redisplaying the form with validation errors (if there are any) and
saving the object.

6.9. Generic views 651

Django Documentation, Release 1.2.7

Required arguments:

• Either form_class or model is required.

If you provide form_class, it should be a django.forms.ModelForm subclass. Use this argument when
you need to customize the model’s form. See the ModelForm docs for more information.

Otherwise, model should be a Django model class and the form used will be a standard ModelForm for
model.

Optional arguments:

• post_save_redirect: A URL to which the view will redirect after saving the object. By default, it’s
object.get_absolute_url().

post_save_redirect may contain dictionary string formatting, which will be interpolated against the
object’s field attributes. For example, you could use post_save_redirect="/polls/%(slug)s/".

• login_required: A boolean that designates whether a user must be logged in, in order to see the page and
save changes. This hooks into the Django authentication system. By default, this is False.

If this is True, and a non-logged-in user attempts to visit this page or save the form, Django will redirect the
request to /accounts/login/.

• template_name: The full name of a template to use in rendering the page. This lets you override the default
template name (see below).

• template_loader: The template loader to use when loading the template. By default, it’s
django.template.loader.

• extra_context: A dictionary of values to add to the template context. By default, this is an empty dictionary.
If a value in the dictionary is callable, the generic view will call it just before rendering the template.

• context_processors: A list of template-context processors to apply to the view’s template.

Template name:

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_form.html
by default.

Template context:

In addition to extra_context, the template’s context will be:

• form: A django.forms.ModelForm instance representing the form for creating the object. This lets you
refer to form fields easily in the template system.

For example, if the model has two fields, name and address:

<form action="" method="post">
<p>{{ form.name.label_tag }} {{ form.name }}</p>
<p>{{ form.address.label_tag }} {{ form.address }}</p>
</form>

See the forms documentation for more information about using Form objects in templates.

django.views.generic.create_update.update_object

Description:

A page that displays a form for editing an existing object, redisplaying the form with validation errors (if there are
any) and saving changes to the object. This uses a form automatically generated from the object’s model class.

Required arguments:

652 Chapter 6. API Reference

Django Documentation, Release 1.2.7

• Either form_class or model is required.

If you provide form_class, it should be a django.forms.ModelForm subclass. Use this argument when
you need to customize the model’s form. See the ModelForm docs for more information.

Otherwise, model should be a Django model class and the form used will be a standard ModelForm for
model.

• Either object_id or (slug and slug_field) is required.

If you provide object_id, it should be the value of the primary-key field for the object being displayed on
this page.

Otherwise, slug should be the slug of the given object, and slug_field should be the name of the slug field
in the QuerySet‘s model. By default, slug_field is ’slug’.

Optional arguments:

• post_save_redirect: A URL to which the view will redirect after saving the object. By default, it’s
object.get_absolute_url().

post_save_redirect may contain dictionary string formatting, which will be interpolated against the
object’s field attributes. For example, you could use post_save_redirect="/polls/%(slug)s/".

• login_required: A boolean that designates whether a user must be logged in, in order to see the page and
save changes. This hooks into the Django authentication system. By default, this is False.

If this is True, and a non-logged-in user attempts to visit this page or save the form, Django will redirect the
request to /accounts/login/.

• template_name: The full name of a template to use in rendering the page. This lets you override the default
template name (see below).

• template_loader: The template loader to use when loading the template. By default, it’s
django.template.loader.

• extra_context: A dictionary of values to add to the template context. By default, this is an empty dictionary.
If a value in the dictionary is callable, the generic view will call it just before rendering the template.

• context_processors: A list of template-context processors to apply to the view’s template.

• template_object_name: Designates the name of the template variable to use in the template context. By
default, this is ’object’.

Template name:

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_form.html
by default.

Template context:

In addition to extra_context, the template’s context will be:

• form: A django.forms.ModelForm instance representing the form for editing the object. This lets you
refer to form fields easily in the template system.

For example, if the model has two fields, name and address:

<form action="" method="post">
<p>{{ form.name.label_tag }} {{ form.name }}</p>
<p>{{ form.address.label_tag }} {{ form.address }}</p>
</form>

See the forms documentation for more information about using Form objects in templates.

6.9. Generic views 653

Django Documentation, Release 1.2.7

• object: The original object being edited. This variable’s name depends on the template_object_name
parameter, which is ’object’ by default. If template_object_name is ’foo’, this variable’s name
will be foo.

django.views.generic.create_update.delete_object

Description:

A view that displays a confirmation page and deletes an existing object. The given object will only be deleted if the
request method is POST. If this view is fetched via GET, it will display a confirmation page that should contain a form
that POSTs to the same URL.

Required arguments:

• model: The Django model class of the object that the form will create.

• Either object_id or (slug and slug_field) is required.

If you provide object_id, it should be the value of the primary-key field for the object being displayed on
this page.

Otherwise, slug should be the slug of the given object, and slug_field should be the name of the slug field
in the QuerySet‘s model. By default, slug_field is ’slug’.

• post_delete_redirect: A URL to which the view will redirect after deleting the object.

Optional arguments:

• login_required: A boolean that designates whether a user must be logged in, in order to see the page and
save changes. This hooks into the Django authentication system. By default, this is False.

If this is True, and a non-logged-in user attempts to visit this page or save the form, Django will redirect the
request to /accounts/login/.

• template_name: The full name of a template to use in rendering the page. This lets you override the default
template name (see below).

• template_loader: The template loader to use when loading the template. By default, it’s
django.template.loader.

• extra_context: A dictionary of values to add to the template context. By default, this is an empty dictionary.
If a value in the dictionary is callable, the generic view will call it just before rendering the template.

• context_processors: A list of template-context processors to apply to the view’s template.

• template_object_name: Designates the name of the template variable to use in the template context. By
default, this is ’object’.

Template name:

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_confirm_delete.html
by default.

Template context:

In addition to extra_context, the template’s context will be:

• object: The original object that’s about to be deleted. This variable’s name depends on the
template_object_name parameter, which is ’object’ by default. If template_object_name is
’foo’, this variable’s name will be foo.

654 Chapter 6. API Reference

Django Documentation, Release 1.2.7

6.10 Middleware

This document explains all middleware components that come with Django. For information on how how to use them
and how to write your own middleware, see the middleware usage guide.

6.10.1 Available middleware

Cache middleware

class UpdateCacheMiddleware

class FetchFromCacheMiddleware

Enable the site-wide cache. If these are enabled, each Django-powered page will be cached for as long as the
CACHE_MIDDLEWARE_SECONDS setting defines. See the cache documentation.

“Common” middleware

class CommonMiddleware

Adds a few conveniences for perfectionists:

• Forbids access to user agents in the DISALLOWED_USER_AGENTS setting, which should be a list of strings.

• Performs URL rewriting based on the APPEND_SLASH and PREPEND_WWW settings.

If APPEND_SLASH is True and the initial URL doesn’t end with a slash, and it is not found in the URLconf,
then a new URL is formed by appending a slash at the end. If this new URL is found in the URLconf, then
Django redirects the request to this new URL. Otherwise, the initial URL is processed as usual.

For example, foo.com/bar will be redirected to foo.com/bar/ if you don’t have a valid URL pattern for
foo.com/bar but do have a valid pattern for foo.com/bar/.

If PREPEND_WWW is True, URLs that lack a leading “www.” will be redirected to the same URL with a leading
“www.”

Both of these options are meant to normalize URLs. The philosophy is that each URL should exist in one,
and only one, place. Technically a URL foo.com/bar is distinct from foo.com/bar/ – a search-engine
indexer would treat them as separate URLs – so it’s best practice to normalize URLs.

• Sends broken link notification emails to MANAGERS if SEND_BROKEN_LINK_EMAILS is set to True.

• Handles ETags based on the USE_ETAGS setting. If USE_ETAGS is set to True, Django will calculate an ETag
for each request by MD5-hashing the page content, and it’ll take care of sending Not Modified responses,
if appropriate.

View metadata middleware

class XViewMiddleware

Sends custom X-ViewHTTP headers to HEAD requests that come from IP addresses defined in the INTERNAL_IPS
setting. This is used by Django’s automatic documentation system.

6.10. Middleware 655

Django Documentation, Release 1.2.7

GZIP middleware

class GZipMiddleware

Compresses content for browsers that understand gzip compression (all modern browsers).

It is suggested to place this first in the middleware list, so that the compression of the response content is the last thing
that happens. Will not compress content bodies less than 200 bytes long, when the response code is something other
than 200, JavaScript files (for IE compatibility), or responses that have the Content-Encoding header already
specified.

GZip compression can be applied to individual views using the gzip_page() decorator.

Conditional GET middleware

class ConditionalGetMiddleware

Handles conditional GET operations. If the response has a ETag or Last-Modified header, and the request has
If-None-Match or If-Modified-Since, the response is replaced by an HttpNotModified.

Also sets the Date and Content-Length response-headers.

Reverse proxy middleware

class SetRemoteAddrFromForwardedFor

Changed in version 1.1: Please, see the release notes This middleware was removed in Django 1.1. See the release
notes for details.

Locale middleware

class LocaleMiddleware

Enables language selection based on data from the request. It customizes content for each user. See the international-
ization documentation.

Message middleware

class MessageMiddleware

New in version 1.2: MessageMiddleware was added. Enables cookie- and session-based message support. See
the messages documentation.

Session middleware

class SessionMiddleware

Enables session support. See the session documentation.

Authentication middleware

class AuthenticationMiddleware

Adds the user attribute, representing the currently-logged-in user, to every incoming HttpRequest object. See
Authentication in Web requests.

656 Chapter 6. API Reference

Django Documentation, Release 1.2.7

CSRF protection middleware

class CsrfMiddleware

Adds protection against Cross Site Request Forgeries by adding hidden form fields to POST forms and checking
requests for the correct value. See the Cross Site Request Forgery protection documentation.

Transaction middleware

class TransactionMiddleware

Binds commit and rollback to the request/response phase. If a view function runs successfully, a commit is done. If it
fails with an exception, a rollback is done.

The order of this middleware in the stack is important: middleware modules running outside of it run with commit-
on-save - the default Django behavior. Middleware modules running inside it (coming later in the stack) will be under
the same transaction control as the view functions.

See the transaction management documentation.

6.11 Models

Model API reference. For introductory material, see Models.

6.11.1 Model field reference

This document contains all the gory details about all the field options and field types Django’s got to offer.

See Also:

If the built-in fields don’t do the trick, you can try django.contrib.localflavor, which contains assorted
pieces of code that are useful for particular countries or cultures. Also, you can easily write your own custom model
fields.

Note: Technically, these models are defined in django.db.models.fields, but for convenience they’re im-
ported into django.db.models; the standard convention is to use from django.db import models and
refer to fields as models.<Foo>Field.

Field options

The following arguments are available to all field types. All are optional.

null

Field.null

If True, Django will store empty values as NULL in the database. Default is False.

Note that empty string values will always get stored as empty strings, not as NULL. Only use null=True for non-
string fields such as integers, booleans and dates. For both types of fields, you will also need to set blank=True if
you wish to permit empty values in forms, as the null parameter only affects database storage (see blank).

6.11. Models 657

Django Documentation, Release 1.2.7

Avoid using null on string-based fields such as CharField and TextField unless you have an excellent reason.
If a string-based field has null=True, that means it has two possible values for “no data”: NULL, and the empty
string. In most cases, it’s redundant to have two possible values for “no data;” Django convention is to use the empty
string, not NULL.

Note: When using the Oracle database backend, the null=True option will be coerced for string-based fields that
have the empty string as a possible value, and the value NULL will be stored to denote the empty string.

blank

Field.blank

If True, the field is allowed to be blank. Default is False.

Note that this is different than null. null is purely database-related, whereas blank is validation-related. If
a field has blank=True, validation on Django’s admin site will allow entry of an empty value. If a field has
blank=False, the field will be required.

choices

Field.choices

An iterable (e.g., a list or tuple) of 2-tuples to use as choices for this field.

If this is given, Django’s admin will use a select box instead of the standard text field and will limit choices to the
choices given.

A choices list looks like this:

YEAR_IN_SCHOOL_CHOICES = (
(’FR’, ’Freshman’),
(’SO’, ’Sophomore’),
(’JR’, ’Junior’),
(’SR’, ’Senior’),
(’GR’, ’Graduate’),

)

The first element in each tuple is the actual value to be stored. The second element is the human-readable name for
the option.

The choices list can be defined either as part of your model class:

class Foo(models.Model):
GENDER_CHOICES = (

(’M’, ’Male’),
(’F’, ’Female’),

)
gender = models.CharField(max_length=1, choices=GENDER_CHOICES)

or outside your model class altogether:

GENDER_CHOICES = (
(’M’, ’Male’),
(’F’, ’Female’),

)
class Foo(models.Model):

gender = models.CharField(max_length=1, choices=GENDER_CHOICES)

658 Chapter 6. API Reference

Django Documentation, Release 1.2.7

You can also collect your available choices into named groups that can be used for organizational purposes:

MEDIA_CHOICES = (
(’Audio’, (

(’vinyl’, ’Vinyl’),
(’cd’, ’CD’),

)
),
(’Video’, (

(’vhs’, ’VHS Tape’),
(’dvd’, ’DVD’),

)
),
(’unknown’, ’Unknown’),

)

The first element in each tuple is the name to apply to the group. The second element is an iterable of 2-tuples, with
each 2-tuple containing a value and a human-readable name for an option. Grouped options may be combined with
ungrouped options within a single list (such as the unknown option in this example).

For each model field that has choices set, Django will add a method to retrieve the human-readable name for the
field’s current value. See get_FOO_display() in the database API documentation.

Finally, note that choices can be any iterable object – not necessarily a list or tuple. This lets you construct choices
dynamically. But if you find yourself hacking choices to be dynamic, you’re probably better off using a proper
database table with a ForeignKey. choices is meant for static data that doesn’t change much, if ever.

db_column

Field.db_column

The name of the database column to use for this field. If this isn’t given, Django will use the field’s name.

If your database column name is an SQL reserved word, or contains characters that aren’t allowed in Python variable
names – notably, the hyphen – that’s OK. Django quotes column and table names behind the scenes.

db_index

Field.db_index

If True, djadmin:django-admin.py sqlindexes <sqlindexes> will output a CREATE INDEX statement for this field.

db_tablespace

Field.db_tablespace

The name of the database tablespace to use for this field’s index, if this field is indexed. The default is the project’s
DEFAULT_INDEX_TABLESPACE setting, if set, or the db_tablespace of the model, if any. If the backend
doesn’t support tablespaces, this option is ignored.

default

Field.default

The default value for the field. This can be a value or a callable object. If callable it will be called every time a new
object is created.

6.11. Models 659

Django Documentation, Release 1.2.7

editable

Field.editable

If False, the field will not be editable in the admin or via forms automatically generated from the model class.
Default is True.

error_messages

New in version 1.2: Please, see the release notes

Field.error_messages

The error_messages argument lets you override the default messages that the field will raise. Pass in a dictionary
with keys matching the error messages you want to override.

help_text

Field.help_text

Extra “help” text to be displayed under the field on the object’s admin form. It’s useful for documentation even if your
object doesn’t have an admin form.

Note that this value is not HTML-escaped when it’s displayed in the admin interface. This lets you include HTML in
help_text if you so desire. For example:

help_text="Please use the following format: YYYY-MM-DD."

Alternatively you can use plain text and django.utils.html.escape() to escape any HTML special charac-
ters.

primary_key

Field.primary_key

If True, this field is the primary key for the model.

If you don’t specify primary_key=True for any fields in your model, Django will automatically add an
IntegerField to hold the primary key, so you don’t need to set primary_key=True on any of your fields
unless you want to override the default primary-key behavior. For more, see Automatic primary key fields.

primary_key=True implies null=False and unique=True. Only one primary key is allowed on an object.

unique

Field.unique

If True, this field must be unique throughout the table.

This is enforced at the database level and at the Django admin-form level. If you try to save a model with a duplicate
value in a unique field, a django.db.IntegrityError will be raised by the model’s save() method.

This option is valid on all field types except ManyToManyField and FileField.

660 Chapter 6. API Reference

Django Documentation, Release 1.2.7

unique_for_date

Field.unique_for_date

Set this to the name of a DateField or DateTimeField to require that this field be unique for the value of the
date field.

For example, if you have a field title that has unique_for_date="pub_date", then Django wouldn’t allow
the entry of two records with the same title and pub_date.

This is enforced at the Django admin-form level but not at the database level.

unique_for_month

Field.unique_for_month

Like unique_for_date, but requires the field to be unique with respect to the month.

unique_for_year

Field.unique_for_year

Like unique_for_date and unique_for_month.

verbose_name

Field.verbose_name

A human-readable name for the field. If the verbose name isn’t given, Django will automatically create it using the
field’s attribute name, converting underscores to spaces. See Verbose field names.

validators

New in version 1.2: Please, see the release notes

Field.validators

A list of validators to run for this field.See the validators documentation for more information.

Field types

AutoField

class AutoField(**options)

An IntegerField that automatically increments according to available IDs. You usually won’t need to use this
directly; a primary key field will automatically be added to your model if you don’t specify otherwise. See Automatic
primary key fields.

6.11. Models 661

Django Documentation, Release 1.2.7

BigIntegerField

New in version 1.2: Please, see the release notes

class BigIntegerField([**options])
A 64 bit integer, much like an IntegerField except that it is guaranteed to fit numbers from -
9223372036854775808 to 9223372036854775807. The admin represents this as an <input type="text"> (a
single-line input).

BooleanField

class BooleanField(**options)

A true/false field.

The admin represents this as a checkbox. Changed in version 1.2: Please, see the release notes

CharField

class CharField(max_length=None[, **options])
A string field, for small- to large-sized strings.

For large amounts of text, use TextField.

The admin represents this as an <input type="text"> (a single-line input).

CharField has one extra required argument:

CharField.max_length
The maximum length (in characters) of the field. The max_length is enforced at the database level and in
Django’s validation.

Note: If you are writing an application that must be portable to multiple database backends, you should be aware that
there are restrictions on max_length for some backends. Refer to the database backend notes for details.

MySQL users

If you are using this field with MySQLdb 1.2.2 and the utf8_bin collation (which is not the default), there are some
issues to be aware of. Refer to the MySQL database notes for details.

CommaSeparatedIntegerField

class CommaSeparatedIntegerField(max_length=None[, **options])
A field of integers separated by commas. As in CharField, the max_length argument is required and the note
about database portability mentioned there should be heeded.

DateField

class DateField([auto_now=False, auto_now_add=False, **options])

662 Chapter 6. API Reference

Django Documentation, Release 1.2.7

A date, represented in Python by a datetime.date instance. Has a few extra, optional arguments:

DateField.auto_now
Automatically set the field to now every time the object is saved. Useful for “last-modified” timestamps. Note
that the current date is always used; it’s not just a default value that you can override.

DateField.auto_now_add
Automatically set the field to now when the object is first created. Useful for creation of timestamps. Note that
the current date is always used; it’s not just a default value that you can override.

The admin represents this as an <input type="text"> with a JavaScript calendar, and a shortcut for “Today”.
The JavaScript calendar will always start the week on a Sunday.

Note: As currently implemented, setting auto_now or auto_now_add to True will cause the field to have
editable=False and blank=True set.

DateTimeField

class DateTimeField([auto_now=False, auto_now_add=False, **options])
A date and time, represented in Python by a datetime.datetime instance. Takes the same extra arguments as
DateField.

The admin represents this as two <input type="text"> fields, with JavaScript shortcuts.

DecimalField

class DecimalField(max_digits=None, decimal_places=None[, **options])
A fixed-precision decimal number, represented in Python by a Decimal instance. Has two required arguments:

DecimalField.max_digits
The maximum number of digits allowed in the number. Note that this number must be greater than
decimal_places, if it exists.

DecimalField.decimal_places
The number of decimal places to store with the number.

For example, to store numbers up to 999 with a resolution of 2 decimal places, you’d use:

models.DecimalField(..., max_digits=5, decimal_places=2)

And to store numbers up to approximately one billion with a resolution of 10 decimal places:

models.DecimalField(..., max_digits=19, decimal_places=10)

The admin represents this as an <input type="text"> (a single-line input).

Note: For more information about the differences between the FloatField and DecimalField classes, please
see FloatField vs. DecimalField.

EmailField

class EmailField([max_length=75, **options])

6.11. Models 663

Django Documentation, Release 1.2.7

A CharField that checks that the value is a valid e-mail address.

FileField

class FileField(upload_to=None[, max_length=100, **options])
A file-upload field.

Note: The primary_key and unique arguments are not supported, and will raise a TypeError if used.

Has one required argument:

FileField.upload_to
A local filesystem path that will be appended to your MEDIA_ROOT setting to determine the value of the url
attribute.

This path may contain strftime formatting, which will be replaced by the date/time of the file upload (so that
uploaded files don’t fill up the given directory).

This may also be a callable, such as a function, which will be called to obtain the upload path, including the
filename. This callable must be able to accept two arguments, and return a Unix-style path (with forward slashes)
to be passed along to the storage system. The two arguments that will be passed are:

Argu-
ment

Description

instanceAn instance of the model where the FileField is defined. More specifically, this is the
particular instance where the current file is being attached.
In most cases, this object will not have been saved to the database yet, so if it uses the default
AutoField, it might not yet have a value for its primary key field.

filenameThe filename that was originally given to the file. This may or may not be taken into account
when determining the final destination path.

Also has one optional argument:

FileField.storage
Optional. A storage object, which handles the storage and retrieval of your files. See Managing files for details
on how to provide this object.

The admin represents this field as an <input type="file"> (a file-upload widget).

Using a FileField or an ImageField (see below) in a model takes a few steps:

1. In your settings file, you’ll need to define MEDIA_ROOT as the full path to a directory where you’d like Django
to store uploaded files. (For performance, these files are not stored in the database.) Define MEDIA_URL as the
base public URL of that directory. Make sure that this directory is writable by the Web server’s user account.

2. Add the FileField or ImageField to your model, making sure to define the upload_to option to tell
Django to which subdirectory of MEDIA_ROOT it should upload files.

3. All that will be stored in your database is a path to the file (relative to MEDIA_ROOT). You’ll most likely
want to use the convenience url function provided by Django. For example, if your ImageField is called
mug_shot, you can get the absolute path to your image in a template with {{ object.mug_shot.url
}}.

For example, say your MEDIA_ROOT is set to ’/home/media’, and upload_to is set to
’photos/%Y/%m/%d’. The ’%Y/%m/%d’ part of upload_to is strftime formatting; ’%Y’ is the four-
digit year, ’%m’ is the two-digit month and ’%d’ is the two-digit day. If you upload a file on Jan. 15, 2007, it will be
saved in the directory /home/media/photos/2007/01/15.

664 Chapter 6. API Reference

http://docs.python.org/library/time.html#time.strftime
http://docs.python.org/library/time.html#time.strftime

Django Documentation, Release 1.2.7

If you wanted to retrieve the uploaded file’s on-disk filename, or the file’s size, you could use the name and size
attributes respectively; for more information on the available attributes and methods, see the File class reference and
the Managing files topic guide.

The uploaded file’s relative URL can be obtained using the url attribute. Internally, this calls the url() method of
the underlying Storage class.

Note that whenever you deal with uploaded files, you should pay close attention to where you’re uploading them and
what type of files they are, to avoid security holes. Validate all uploaded files so that you’re sure the files are what you
think they are. For example, if you blindly let somebody upload files, without validation, to a directory that’s within
your Web server’s document root, then somebody could upload a CGI or PHP script and execute that script by visiting
its URL on your site. Don’t allow that.

By default, FileField instances are created as varchar(100) columns in your database. As with other fields,
you can change the maximum length using the max_length argument.

FileField and FieldFile When you access a FileField on a model, you are given an instance of FieldFile as
a proxy for accessing the underlying file. This class has several methods that can be used to interact with file data:

FieldFile.open(mode=’rb’)

Behaves like the standard Python open()method and opens the file associated with this instance in the mode specified
by mode.

FieldFile.close()

Behaves like the standard Python file.close() method and closes the file associated with this instance.

FieldFile.save(name, content, save=True)

This method takes a filename and file contents and passes them to the storage class for the field, then associates the
stored file with the model field. If you want to manually associate file data with FileField instances on your model,
the save() method is used to persist that file data.

Takes two required arguments: namewhich is the name of the file, and contentwhich is a file-like object containing
the file’s contents. The optional save argument controls whether or not the instance is saved after the file has been
altered. Defaults to True.

FieldFile.delete(save=True)

Deletes the file associated with this instance and clears all attributes on the field. Note: This method will close the file
if it happens to be open when delete() is called.

The optional save argument controls whether or not the instance is saved after the file has been deleted. Defaults to
True.

FilePathField

class FilePathField(path=None[, match=None, recursive=False, max_length=100, **options])
A CharField whose choices are limited to the filenames in a certain directory on the filesystem. Has three special
arguments, of which the first is required:

FilePathField.path
Required. The absolute filesystem path to a directory from which this FilePathField should get its choices.
Example: "/home/images".

FilePathField.match
Optional. A regular expression, as a string, that FilePathField will use to filter filenames. Note that the

6.11. Models 665

Django Documentation, Release 1.2.7

regex will be applied to the base filename, not the full path. Example: "foo.*\.txt$", which will match a
file called foo23.txt but not bar.txt or foo23.gif.

FilePathField.recursive
Optional. Either True or False. Default is False. Specifies whether all subdirectories of path should be
included

Of course, these arguments can be used together.

The one potential gotcha is that match applies to the base filename, not the full path. So, this example:

FilePathField(path="/home/images", match="foo.*", recursive=True)

...will match /home/images/foo.gif but not /home/images/foo/bar.gif because the match applies to
the base filename (foo.gif and bar.gif).

By default, FilePathField instances are created as varchar(100) columns in your database. As with other
fields, you can change the maximum length using the max_length argument.

FloatField

class FloatField([**options])
A floating-point number represented in Python by a float instance.

The admin represents this as an <input type="text"> (a single-line input).

FloatField vs. DecimalField

The FloatField class is sometimes mixed up with the DecimalField class. Although they both represent
real numbers, they represent those numbers differently. FloatField uses Python’s float type internally, while
DecimalField uses Python’s Decimal type. For information on the difference between the two, see Python’s
documentation on Decimal fixed point and floating point arithmetic.

ImageField

class ImageField(upload_to=None[, height_field=None, width_field=None, max_length=100, **options
])

Inherits all attributes and methods from FileField, but also validates that the uploaded object is a valid image.

In addition to the special attributes that are available for FileField, an ImageField also has height and width
attributes.

To facilitate querying on those attributes, ImageField has two extra optional arguments:

ImageField.height_field
Name of a model field which will be auto-populated with the height of the image each time the model instance
is saved.

ImageField.width_field
Name of a model field which will be auto-populated with the width of the image each time the model instance
is saved.

Requires the Python Imaging Library.

By default, ImageField instances are created as varchar(100) columns in your database. As with other fields,
you can change the maximum length using the max_length argument.

666 Chapter 6. API Reference

http://docs.python.org/library/decimal.html
http://www.pythonware.com/products/pil/

Django Documentation, Release 1.2.7

IntegerField

class IntegerField([**options])
An integer. The admin represents this as an <input type="text"> (a single-line input).

IPAddressField

class IPAddressField([**options])
An IP address, in string format (e.g. “192.0.2.30”). The admin represents this as an <input type="text"> (a
single-line input).

NullBooleanField

class NullBooleanField([**options])
Like a BooleanField, but allows NULL as one of the options. Use this instead of a BooleanField with
null=True. The admin represents this as a <select> box with “Unknown”, “Yes” and “No” choices.

PositiveIntegerField

class PositiveIntegerField([**options])
Like an IntegerField, but must be positive.

PositiveSmallIntegerField

class PositiveSmallIntegerField([**options])
Like a PositiveIntegerField, but only allows values under a certain (database-dependent) point.

SlugField

class SlugField([max_length=50, **options])
Slug is a newspaper term. A slug is a short label for something, containing only letters, numbers, underscores or
hyphens. They’re generally used in URLs.

Like a CharField, you can specify max_length (read the note about database portability and max_length in that
section, too). If max_length is not specified, Django will use a default length of 50.

Implies setting Field.db_index to True.

It is often useful to automatically prepopulate a SlugField based on the value of some other value. You can do this
automatically in the admin using prepopulated_fields.

SmallIntegerField

class SmallIntegerField([**options])
Like an IntegerField, but only allows values under a certain (database-dependent) point.

6.11. Models 667

Django Documentation, Release 1.2.7

TextField

class TextField([**options])
A large text field. The admin represents this as a <textarea> (a multi-line input).

MySQL users

If you are using this field with MySQLdb 1.2.1p2 and the utf8_bin collation (which is not the default), there are
some issues to be aware of. Refer to the MySQL database notes for details.

TimeField

class TimeField([auto_now=False, auto_now_add=False, **options])
A time, represented in Python by a datetime.time instance. Accepts the same auto-population options as
DateField.

The admin represents this as an <input type="text"> with some JavaScript shortcuts.

URLField

class URLField([verify_exists=False, max_length=200, **options])
A CharField for a URL. Has one extra optional argument:

URLField.verify_exists
If True (the default), the URL given will be checked for existence (i.e., the URL actually loads and doesn’t
give a 404 response).

Note that when you’re using the single-threaded development server, validating a URL being served by the same
server will hang. This should not be a problem for multithreaded servers.

Changed in version 1.2.6: Please, see the release notes The admin represents this as an <input
type="text"> (a single-line input).

Like all CharField subclasses, URLField takes the optional max_length, a default of 200 is used.

XMLField

class XMLField(schema_path=None[, **options])
A TextField that stores XML data and a path to a schema. Takes one optional argument:

schema_path
The filesystem path to a schema for the field.

Relationship fields

Django also defines a set of fields that represent relations.

668 Chapter 6. API Reference

Django Documentation, Release 1.2.7

ForeignKey

class ForeignKey(othermodel[, **options])
A many-to-one relationship. Requires a positional argument: the class to which the model is related. To create a recur-
sive relationship – an object that has a many-to-one relationship with itself – use models.ForeignKey(’self’).
If you need to create a relationship on a model that has not yet been defined, you can use the name of the model,

rather than the model object itself:

class Car(models.Model):
manufacturer = models.ForeignKey(’Manufacturer’)
...

class Manufacturer(models.Model):
...

To refer to models defined in another application, you can explicitly specify a model with the full application label.
For example, if the Manufacturer model above is defined in another application called production, you’d need
to use:

class Car(models.Model):
manufacturer = models.ForeignKey(’production.Manufacturer’)

This sort of reference can be useful when resolving circular import dependencies between two applications.

Database Representation Behind the scenes, Django appends "_id" to the field name to create its database column
name. In the above example, the database table for the Car model will have a manufacturer_id column. (You
can change this explicitly by specifying db_column) However, your code should never have to deal with the database
column name, unless you write custom SQL. You’ll always deal with the field names of your model object.

Arguments ForeignKey accepts an extra set of arguments – all optional – that define the details of how the
relation works.

ForeignKey.limit_choices_to
A dictionary of lookup arguments and values (see Making queries) that limit the available admin choices for
this object. Use this with functions from the Python datetime module to limit choices of objects by date. For
example:

limit_choices_to = {’pub_date__lte’: datetime.now}

only allows the choice of related objects with a pub_date before the current date/time to be chosen.

Instead of a dictionary this can also be a Q object for more complex queries. However, if limit_choices_to
is a Q object then it will only have an effect on the choices available in the admin when the field is not listed in
raw_id_fields in the ModelAdmin for the model.

ForeignKey.related_name
The name to use for the relation from the related object back to this one. See the related objects documentation
for a full explanation and example. Note that you must set this value when defining relations on abstract models;
and when you do so some special syntax is available.

If you wish to suppress the provision of a backwards relation, you may simply provide a related_name
which ends with a ’+’ character. For example:

user = models.ForeignKey(User, related_name=’+’)

will ensure that no backwards relation to this model is provided on the User model.

6.11. Models 669

Django Documentation, Release 1.2.7

ForeignKey.to_field
The field on the related object that the relation is to. By default, Django uses the primary key of the related
object.

ManyToManyField

class ManyToManyField(othermodel[, **options])
A many-to-many relationship. Requires a positional argument: the class to which the model is related. This works
exactly the same as it does for ForeignKey, including all the options regarding recursive and lazy relationships.

Database Representation Behind the scenes, Django creates an intermediary join table to represent the many-to-
many relationship. By default, this table name is generated using the name of the many-to-many field and the model
that contains it. Since some databases don’t support table names above a certain length, these table names will be
automatically truncated to 64 characters and a uniqueness hash will be used. This means you might see table names
like author_books_9cdf4; this is perfectly normal. You can manually provide the name of the join table using
the db_table option.

Arguments ManyToManyField accepts an extra set of arguments – all optional – that control how the relationship
functions.

ManyToManyField.related_name
Same as ForeignKey.related_name.

ManyToManyField.limit_choices_to
Same as ForeignKey.limit_choices_to.

limit_choices_to has no effect when used on a ManyToManyField with a custom intermediate table
specified using the through parameter.

ManyToManyField.symmetrical
Only used in the definition of ManyToManyFields on self. Consider the following model:

class Person(models.Model):
friends = models.ManyToManyField("self")

When Django processes this model, it identifies that it has a ManyToManyField on itself, and as a result, it
doesn’t add a person_set attribute to the Person class. Instead, the ManyToManyField is assumed to
be symmetrical – that is, if I am your friend, then you are my friend.

If you do not want symmetry in many-to-many relationships with self, set symmetrical to False. This
will force Django to add the descriptor for the reverse relationship, allowing ManyToManyField relationships
to be non-symmetrical.

ManyToManyField.through
Django will automatically generate a table to manage many-to-many relationships. However, if you want to
manually specify the intermediary table, you can use the through option to specify the Django model that
represents the intermediate table that you want to use.

The most common use for this option is when you want to associate extra data with a many-to-many relationship.

ManyToManyField.db_table
The name of the table to create for storing the many-to-many data. If this is not provided, Django will assume a
default name based upon the names of the two tables being joined.

670 Chapter 6. API Reference

Django Documentation, Release 1.2.7

OneToOneField

class OneToOneField(othermodel[, parent_link=False, **options])
A one-to-one relationship. Conceptually, this is similar to a ForeignKey with unique=True, but the “reverse”
side of the relation will directly return a single object.

This is most useful as the primary key of a model which “extends” another model in some way; Multi-table inheritance
is implemented by adding an implicit one-to-one relation from the child model to the parent model, for example.

One positional argument is required: the class to which the model will be related. This works exactly the same
as it does for ForeignKey, including all the options regarding recursive and lazy relationships. Additionally,
OneToOneField accepts all of the extra arguments accepted by ForeignKey, plus one extra argument:

OneToOneField.parent_link
When True and used in a model which inherits from another (concrete) model, indicates that this field should
be used as the link back to the parent class, rather than the extra OneToOneField which would normally be
implicitly created by subclassing.

6.11.2 Related objects reference

class RelatedManager
A “related manager” is a manager used in a one-to-many or many-to-many related context. This happens in two
cases:

•The “other side” of a ForeignKey relation. That is:

class Reporter(models.Model):
...

class Article(models.Model):
reporter = models.ForeignKey(Reporter)

In the above example, the methods below will be available on the manager reporter.article_set.

•Both sides of a ManyToManyField relation:

class Topping(models.Model):
...

class Pizza(models.Model):
toppings = models.ManyToManyField(Topping)

In this example, the methods below will be available both on topping.pizza_set and on
pizza.toppings.

These related managers have some extra methods:

add(obj1[, obj2, ...])
Adds the specified model objects to the related object set.

Example:

>>> b = Blog.objects.get(id=1)
>>> e = Entry.objects.get(id=234)
>>> b.entry_set.add(e) # Associates Entry e with Blog b.

create(**kwargs)
Creates a new object, saves it and puts it in the related object set. Returns the newly created object:

6.11. Models 671

Django Documentation, Release 1.2.7

>>> b = Blog.objects.get(id=1)
>>> e = b.entry_set.create(
... headline=’Hello’,
... body_text=’Hi’,
... pub_date=datetime.date(2005, 1, 1)
...)

No need to call e.save() at this point -- it’s already been saved.

This is equivalent to (but much simpler than):

>>> b = Blog.objects.get(id=1)
>>> e = Entry(
... blog=b,
... headline=’Hello’,
... body_text=’Hi’,
... pub_date=datetime.date(2005, 1, 1)
...)
>>> e.save(force_insert=True)

Note that there’s no need to specify the keyword argument of the model that defines the relationship. In
the above example, we don’t pass the parameter blog to create(). Django figures out that the new
Entry object’s blog field should be set to b.

remove(obj1[, obj2, ...])
Removes the specified model objects from the related object set:

>>> b = Blog.objects.get(id=1)
>>> e = Entry.objects.get(id=234)
>>> b.entry_set.remove(e) # Disassociates Entry e from Blog b.

In order to prevent database inconsistency, this method only exists on ForeignKey objects where
null=True. If the related field can’t be set to None (NULL), then an object can’t be removed from
a relation without being added to another. In the above example, removing e from b.entry_set() is
equivalent to doing e.blog = None, and because the blog ForeignKey doesn’t have null=True,
this is invalid.

clear()
Removes all objects from the related object set:

>>> b = Blog.objects.get(id=1)
>>> b.entry_set.clear()

Note this doesn’t delete the related objects – it just disassociates them.

Just like remove(), clear() is only available on ForeignKeys where null=True.

6.11.3 Model Meta options

This document explains all the possible metadata options that you can give your model in its internal class Meta.

Available Meta options

abstract

Options.abstract
If abstract = True, this model will be an abstract base class.

672 Chapter 6. API Reference

Django Documentation, Release 1.2.7

app_label

Options.app_label
If a model exists outside of the standard models.py (for instance, if the app’s models are in submodules of
myapp.models), the model must define which app it is part of:

app_label = ’myapp’

db_table

Options.db_table
The name of the database table to use for the model:

db_table = ’music_album’

Table names To save you time, Django automatically derives the name of the database table from the name of your
model class and the app that contains it. A model’s database table name is constructed by joining the model’s “app
label” – the name you used in manage.py startapp – to the model’s class name, with an underscore between
them.

For example, if you have an app bookstore (as created by manage.py startapp bookstore), a model
defined as class Book will have a database table named bookstore_book.

To override the database table name, use the db_table parameter in class Meta.

If your database table name is an SQL reserved word, or contains characters that aren’t allowed in Python variable
names – notably, the hyphen – that’s OK. Django quotes column and table names behind the scenes.

db_tablespace

Options.db_tablespace
The name of the database tablespace to use for the model. If the backend doesn’t support tablespaces, this option
is ignored.

get_latest_by

Options.get_latest_by
The name of a DateField or DateTimeField in the model. This specifies the default field to use in your
model Manager‘s latest method.

Example:

get_latest_by = "order_date"

See the docs for latest() for more.

managed

Options.managed
New in version 1.1: Please, see the release notes Defaults to True, meaning Django will create the appropriate
database tables in syncdb and remove them as part of a reset management command. That is, Django
manages the database tables’ lifecycles.

6.11. Models 673

Django Documentation, Release 1.2.7

If False, no database table creation or deletion operations will be performed for this model. This is useful if
the model represents an existing table or a database view that has been created by some other means. This is the
only difference when managed=False. All other aspects of model handling are exactly the same as normal.
This includes

1.Adding an automatic primary key field to the model if you don’t declare it. To avoid confusion for later
code readers, it’s recommended to specify all the columns from the database table you are modeling when
using unmanaged models.

2.If a model with managed=False contains a ManyToManyField that points to another unmanaged
model, then the intermediate table for the many-to-many join will also not be created. However, the
intermediary table between one managed and one unmanaged model will be created.

If you need to change this default behavior, create the intermediary table as an explicit model (with
managed set as needed) and use the ManyToManyField.through attribute to make the relation
use your custom model.

For tests involving models with managed=False, it’s up to you to ensure the correct tables are created as part
of the test setup.

If you’re interested in changing the Python-level behavior of a model class, you could use managed=False
and create a copy of an existing model. However, there’s a better approach for that situation: Proxy models.

order_with_respect_to

Options.order_with_respect_to
Marks this object as “orderable” with respect to the given field. This is almost always used with related objects
to allow them to be ordered with respect to a parent object. For example, if an Answer relates to a Question
object, and a question has more than one answer, and the order of answers matters, you’d do this:

class Answer(models.Model):
question = models.ForeignKey(Question)
...

class Meta:
order_with_respect_to = ’question’

When order_with_respect_to is set, two additional methods are provided to retrieve and to set the
order of the related objects: get_RELATED_order() and set_RELATED_order(), where RELATED is
the lowercased model name. For example, assuming that a Question object has multiple related Answer
objects, the list returned contains the primary keys of the related Answer objects:

>>> question = Question.objects.get(id=1)
>>> question.get_answer_order()
[1, 2, 3]

The order of a Question object’s related Answer objects can be set by passing in a list of Answer primary
keys:

>>> question.set_answer_order([3, 1, 2])

The related objects also get two methods, get_next_in_order() and get_previous_in_order(),
which can be used to access those objects in their proper order. Assuming the Answer objects are ordered by
id:

>>> answer = Answer.objects.get(id=2)
>>> answer.get_next_in_order()
<Answer: 3>

674 Chapter 6. API Reference

Django Documentation, Release 1.2.7

>>> answer.get_previous_in_order()
<Answer: 1>

ordering

Options.ordering
The default ordering for the object, for use when obtaining lists of objects:

ordering = [’-order_date’]

This is a tuple or list of strings. Each string is a field name with an optional “-” prefix, which indicates descending
order. Fields without a leading “-” will be ordered ascending. Use the string ”?” to order randomly.

Note: Regardless of how many fields are in ordering, the admin site uses only the first field.

For example, to order by a pub_date field ascending, use this:

ordering = [’pub_date’]

To order by pub_date descending, use this:

ordering = [’-pub_date’]

To order by pub_date descending, then by author ascending, use this:

ordering = [’-pub_date’, ’author’]

permissions

Options.permissions
Extra permissions to enter into the permissions table when creating this object. Add, delete and change permis-
sions are automatically created for each object that has admin set. This example specifies an extra permission,
can_deliver_pizzas:

permissions = (("can_deliver_pizzas", "Can deliver pizzas"),)

This is a list or tuple of 2-tuples in the format (permission_code,
human_readable_permission_name).

proxy

Options.proxy
New in version 1.1: Please, see the release notes If proxy = True, a model which subclasses another model
will be treated as a proxy model.

unique_together

Options.unique_together
Sets of field names that, taken together, must be unique:

unique_together = (("driver", "restaurant"),)

6.11. Models 675

Django Documentation, Release 1.2.7

This is a list of lists of fields that must be unique when considered together. It’s used in the Django admin and
is enforced at the database level (i.e., the appropriate UNIQUE statements are included in the CREATE TABLE
statement).

For convenience, unique_together can be a single list when dealing with a single set of fields:

unique_together = ("driver", "restaurant")

verbose_name

Options.verbose_name
A human-readable name for the object, singular:

verbose_name = "pizza"

If this isn’t given, Django will use a munged version of the class name: CamelCase becomes camel case.

verbose_name_plural

Options.verbose_name_plural
The plural name for the object:

verbose_name_plural = "stories"

If this isn’t given, Django will use verbose_name + "s".

6.11.4 Model instance reference

This document describes the details of the Model API. It builds on the material presented in the model and database
query guides, so you’ll probably want to read and understand those documents before reading this one.

Throughout this reference we’ll use the example Weblog models presented in the database query guide.

Creating objects

To create a new instance of a model, just instantiate it like any other Python class:

class Model(**kwargs)

The keyword arguments are simply the names of the fields you’ve defined on your model. Note that instantiating a
model in no way touches your database; for that, you need to save().

Validating objects

New in version 1.2: Please, see the release notes There are three steps involved in validating a model:

1. Validate the model fields

2. Validate the model as a whole

3. Validate the field uniqueness

676 Chapter 6. API Reference

Django Documentation, Release 1.2.7

All three steps are performed when you call by a model’s full_clean() method.

When you use a ModelForm, the call to is_valid() will perform these validation steps for all the fields that are
included on the form. (See the ModelForm documentation for more information.) You should only need to call a
model’s full_clean() method if you plan to handle validation errors yourself, or if you have excluded fields from
the ModelForm that require validation.

Model.full_clean(exclude=None)

This method calls Model.clean_fields(), Model.clean(), and Model.validate_unique(), in that
order and raises a ValidationError that has a message_dict attribute containing errors from all three stages.

The optional exclude argument can be used to provide a list of field names that can be excluded from validation
and cleaning. ModelForm uses this argument to exclude fields that aren’t present on your form from being validated
since any errors raised could not be corrected by the user.

Note that full_clean() will not be called automatically when you call your model’s save() method, nor as a
result of ModelForm validation. You’ll need to call it manually when you want to run model validation outside of a
ModelForm.

Example:

try:
article.full_clean()

except ValidationError, e:
Do something based on the errors contained in e.message_dict.
Display them to a user, or handle them programatically.

The first step full_clean() performs is to clean each individual field.

Model.clean_fields(exclude=None)

This method will validate all fields on your model. The optional exclude argument lets you provide a list of field
names to exclude from validation. It will raise a ValidationError if any fields fail validation.

The second step full_clean() performs is to call Model.clean(). This method should be overridden to
perform custom validation on your model.

Model.clean()

This method should be used to provide custom model validation, and to modify attributes on your model if desired.
For instance, you could use it to automatically provide a value for a field, or to do validation that requires access to
more than a single field:

def clean(self):
from django.core.exceptions import ValidationError
Don’t allow draft entries to have a pub_date.
if self.status == ’draft’ and self.pub_date is not None:

raise ValidationError(’Draft entries may not have a publication date.’)
Set the pub_date for published items if it hasn’t been set already.
if self.status == ’published’ and self.pub_date is None:

self.pub_date = datetime.datetime.now()

Any ValidationError raised by Model.clean() will be stored under a special key that is used for errors that
are tied to the entire model instead of to a specific field. You can access these errors with NON_FIELD_ERRORS:

from django.core.exceptions import ValidationError, NON_FIELD_ERRORS
try:

article.full_clean()
except ValidationError, e:

non_field_errors = e.message_dict[NON_FIELD_ERRORS]

Finally, full_clean() will check any unique constraints on your model.

6.11. Models 677

Django Documentation, Release 1.2.7

Model.validate_unique(exclude=None)

This method is similar to clean_fields, but validates all uniqueness constraints on your model instead of indi-
vidual field values. The optional exclude argument allows you to provide a list of field names to exclude from
validation. It will raise a ValidationError if any fields fail validation.

Note that if you provide an exclude argument to validate_unique, any unique_together constraint that
contains one of the fields you provided will not be checked.

Saving objects

To save an object back to the database, call save():

Model.save([force_insert=False, force_update=False, using=DEFAULT_DB_ALIAS])
New in version 1.2: The using argument was added. If you want customized saving behavior, you can override this
save() method. See Overriding predefined model methods for more details.

The model save process also has some subtleties; see the sections below.

Auto-incrementing primary keys

If a model has an AutoField – an auto-incrementing primary key – then that auto-incremented value will be calcu-
lated and saved as an attribute on your object the first time you call save():

>>> b2 = Blog(name=’Cheddar Talk’, tagline=’Thoughts on cheese.’)
>>> b2.id # Returns None, because b doesn’t have an ID yet.
>>> b2.save()
>>> b2.id # Returns the ID of your new object.

There’s no way to tell what the value of an ID will be before you call save(), because that value is calculated by
your database, not by Django.

(For convenience, each model has an AutoField named id by default unless you explicitly specify
primary_key=True on a field. See the documentation for AutoField for more details.

The pk property
Model.pk
Regardless of whether you define a primary key field yourself, or let Django supply one for you, each model will have
a property called pk. It behaves like a normal attribute on the model, but is actually an alias for whichever attribute is
the primary key field for the model. You can read and set this value, just as you would for any other attribute, and it
will update the correct field in the model.

Explicitly specifying auto-primary-key values If a model has an AutoField but you want to define a new ob-
ject’s ID explicitly when saving, just define it explicitly before saving, rather than relying on the auto-assignment of
the ID:

>>> b3 = Blog(id=3, name=’Cheddar Talk’, tagline=’Thoughts on cheese.’)
>>> b3.id # Returns 3.
>>> b3.save()
>>> b3.id # Returns 3.

If you assign auto-primary-key values manually, make sure not to use an already-existing primary-key value! If you
create a new object with an explicit primary-key value that already exists in the database, Django will assume you’re
changing the existing record rather than creating a new one.

678 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Given the above ’Cheddar Talk’ blog example, this example would override the previous record in the database:

b4 = Blog(id=3, name=’Not Cheddar’, tagline=’Anything but cheese.’)
b4.save() # Overrides the previous blog with ID=3!

See How Django knows to UPDATE vs. INSERT, below, for the reason this happens.

Explicitly specifying auto-primary-key values is mostly useful for bulk-saving objects, when you’re confident you
won’t have primary-key collision.

What happens when you save?

When you save an object, Django performs the following steps:

1. Emit a pre-save signal. The signal django.db.models.signals.pre_save is sent, allowing any
functions listening for that signal to take some customized action.

2. Pre-process the data. Each field on the object is asked to perform any automated data modification that the
field may need to perform.

Most fields do no pre-processing – the field data is kept as-is. Pre-processing is only used on fields that have
special behavior. For example, if your model has a DateField with auto_now=True, the pre-save phase
will alter the data in the object to ensure that the date field contains the current date stamp. (Our documentation
doesn’t yet include a list of all the fields with this “special behavior.”)

3. Prepare the data for the database. Each field is asked to provide its current value in a data type that can be
written to the database.

Most fields require no data preparation. Simple data types, such as integers and strings, are ‘ready to write’ as a
Python object. However, more complex data types often require some modification.

For example, DateFields use a Python datetime object to store data. Databases don’t store datetime
objects, so the field value must be converted into an ISO-compliant date string for insertion into the database.

4. Insert the data into the database. The pre-processed, prepared data is then composed into an SQL statement
for insertion into the database.

5. Emit a post-save signal. The signal django.db.models.signals.post_save is sent, allowing any
functions listening for that signal to take some customized action.

How Django knows to UPDATE vs. INSERT

You may have noticed Django database objects use the same save() method for creating and changing objects.
Django abstracts the need to use INSERT or UPDATE SQL statements. Specifically, when you call save(), Django
follows this algorithm:

• If the object’s primary key attribute is set to a value that evaluates to True (i.e., a value other than None or
the empty string), Django executes a SELECT query to determine whether a record with the given primary key
already exists.

• If the record with the given primary key does already exist, Django executes an UPDATE query.

• If the object’s primary key attribute is not set, or if it’s set but a record doesn’t exist, Django executes an
INSERT.

The one gotcha here is that you should be careful not to specify a primary-key value explicitly when saving new
objects, if you cannot guarantee the primary-key value is unused. For more on this nuance, see Explicitly specifying
auto-primary-key values above and Forcing an INSERT or UPDATE below.

6.11. Models 679

Django Documentation, Release 1.2.7

Forcing an INSERT or UPDATE In some rare circumstances, it’s necessary to be able to force the save()method
to perform an SQL INSERT and not fall back to doing an UPDATE. Or vice-versa: update, if possible, but not insert
a new row. In these cases you can pass the force_insert=True or force_update=True parameters to the
save() method. Passing both parameters is an error, since you cannot both insert and update at the same time.

It should be very rare that you’ll need to use these parameters. Django will almost always do the right thing and trying
to override that will lead to errors that are difficult to track down. This feature is for advanced use only.

Updating attributes based on existing fields

Sometimes you’ll need to perform a simple arithmetic task on a field, such as incrementing or decrementing the current
value. The obvious way to achieve this is to do something like:

>>> product = Product.objects.get(name=’Venezuelan Beaver Cheese’)
>>> product.number_sold += 1
>>> product.save()

If the old number_sold value retrieved from the database was 10, then the value of 11 will be written back to the
database.

This can be optimized slightly by expressing the update relative to the original field value, rather than as an explicit
assignment of a new value. Django provides F() expressions as a way of performing this kind of relative update. Using
F() expressions, the previous example would be expressed as:

>>> from django.db.models import F
>>> product = Product.objects.get(name=’Venezuelan Beaver Cheese’)
>>> product.number_sold = F(’number_sold’) + 1
>>> product.save()

This approach doesn’t use the initial value from the database. Instead, it makes the database do the update based on
whatever value is current at the time that the save() is executed.

Once the object has been saved, you must reload the object in order to access the actual value that was applied to the
updated field:

>>> product = Products.objects.get(pk=product.pk)
>>> print product.number_sold
42

For more details, see the documentation on F() expressions and their use in update queries.

Deleting objects

Model.delete([using=DEFAULT_DB_ALIAS])
New in version 1.2: The using argument was added. Issues a SQL DELETE for the object. This only deletes the
object in the database; the Python instance will still be around, and will still have data in its fields.

For more details, including how to delete objects in bulk, see Deleting objects.

If you want customized deletion behavior, you can override this delete()method. See Overriding predefined model
methods for more details.

Other model instance methods

A few object methods have special purposes.

680 Chapter 6. API Reference

Django Documentation, Release 1.2.7

__str__

Model.__str__()

__str__() is a Python “magic method” that defines what should be returned if you call str() on the object.
Django uses str(obj) (or the related function, unicode(obj) – see below) in a number of places, most notably
as the value displayed to render an object in the Django admin site and as the value inserted into a template when it
displays an object. Thus, you should always return a nice, human-readable string for the object’s __str__. Although
this isn’t required, it’s strongly encouraged (see the description of __unicode__, below, before putting __str__
methods everywhere).

For example:

class Person(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)

def __str__(self):
Note use of django.utils.encoding.smart_str() here because
first_name and last_name will be unicode strings.
return smart_str(’%s %s’ % (self.first_name, self.last_name))

__unicode__

Model.__unicode__()

The __unicode__()method is called whenever you call unicode() on an object. Since Django’s database back-
ends will return Unicode strings in your model’s attributes, you would normally want to write a __unicode__()
method for your model. The example in the previous section could be written more simply as:

class Person(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)

def __unicode__(self):
return u’%s %s’ % (self.first_name, self.last_name)

If you define a __unicode__() method on your model and not a __str__() method, Django will automatically
provide you with a __str__() that calls __unicode__() and then converts the result correctly to a UTF-8
encoded string object. This is recommended development practice: define only __unicode__() and let Django
take care of the conversion to string objects when required.

get_absolute_url

Model.get_absolute_url()

Define a get_absolute_url() method to tell Django how to calculate the URL for an object. For example:

def get_absolute_url(self):
return "/people/%i/" % self.id

Django uses this in its admin interface. If an object defines get_absolute_url(), the object-editing
page will have a “View on site” link that will jump you directly to the object’s public view, according to
get_absolute_url().

Also, a couple of other bits of Django, such as the syndication feed framework, use get_absolute_url() as a
convenience to reward people who’ve defined the method.

6.11. Models 681

Django Documentation, Release 1.2.7

It’s good practice to use get_absolute_url() in templates, instead of hard-coding your objects’ URLs. For
example, this template code is bad:

{{ object.name }}

But this template code is good:

{{ object.name }}

Note: The string you return from get_absolute_url() must contain only ASCII characters (required by the
URI spec, RFC 2396) that have been URL-encoded, if necessary. Code and templates using get_absolute_url()
should be able to use the result directly without needing to do any further processing. You may wish to use the
django.utils.encoding.iri_to_uri() function to help with this if you are using unicode strings a lot.

The permalink decorator The problem with the way we wrote get_absolute_url() above is that it slightly
violates the DRY principle: the URL for this object is defined both in the URLconf file and in the model.

You can further decouple your models from the URLconf using the permalink decorator:

permalink()

This decorator is passed the view function, a list of positional parameters and (optionally) a dictionary of named
parameters. Django then works out the correct full URL path using the URLconf, substituting the parameters you
have given into the URL. For example, if your URLconf contained a line such as:

(r’^people/(\d+)/$’, ’people.views.details’),

...your model could have a get_absolute_url method that looked like this:

from django.db import models

@models.permalink
def get_absolute_url(self):

return (’people.views.details’, [str(self.id)])

Similarly, if you had a URLconf entry that looked like:

(r’/archive/(?P<year>\d{4})/(?P<month>\d{1,2})/(?P<day>\d{1,2})/$’, archive_view)

...you could reference this using permalink() as follows:

@models.permalink
def get_absolute_url(self):

return (’archive_view’, (), {
’year’: self.created.year,
’month’: self.created.month,
’day’: self.created.day})

Notice that we specify an empty sequence for the second parameter in this case, because we only want to pass keyword
parameters, not positional ones.

In this way, you’re tying the model’s absolute path to the view that is used to display it, without repeating the URL
information anywhere. You can still use the get_absolute_url method in templates, as before.

In some cases, such as the use of generic views or the re-use of custom views for multiple models, specifying the view
function may confuse the reverse URL matcher (because multiple patterns point to the same view).

682 Chapter 6. API Reference

http://www.ietf.org/rfc/rfc2396.txt

Django Documentation, Release 1.2.7

For that problem, Django has named URL patterns. Using a named URL pattern, it’s possible to give a name to a
pattern, and then reference the name rather than the view function. A named URL pattern is defined by replacing the
pattern tuple by a call to the url function):

from django.conf.urls.defaults import *

url(r’^people/(\d+)/$’,
’django.views.generic.list_detail.object_detail’,
name=’people_view’),

...and then using that name to perform the reverse URL resolution instead of the view name:

from django.db import models

@models.permalink
def get_absolute_url(self):

return (’people_view’, [str(self.id)])

More details on named URL patterns are in the URL dispatch documentation.

Extra instance methods

In addition to save(), delete(), a model object might get any or all of the following methods:

Model.get_FOO_display()

For every field that has choices set, the object will have a get_FOO_display() method, where FOO is the name
of the field. This method returns the “human-readable” value of the field. For example, in the following model:

GENDER_CHOICES = (
(’M’, ’Male’),
(’F’, ’Female’),

)
class Person(models.Model):

name = models.CharField(max_length=20)
gender = models.CharField(max_length=1, choices=GENDER_CHOICES)

...each Person instance will have a get_gender_display() method. Example:

>>> p = Person(name=’John’, gender=’M’)
>>> p.save()
>>> p.gender
’M’
>>> p.get_gender_display()
’Male’

Model.get_next_by_FOO(**kwargs)

Model.get_previous_by_FOO(**kwargs)

For every DateField and DateTimeField that does not have null=True, the object will have
get_next_by_FOO() and get_previous_by_FOO() methods, where FOO is the name of the field. This
returns the next and previous object with respect to the date field, raising the appropriate DoesNotExist exception
when appropriate.

Both methods accept optional keyword arguments, which should be in the format described in Field lookups.

Note that in the case of identical date values, these methods will use the ID as a fallback check. This guarantees that
no records are skipped or duplicated.

6.11. Models 683

Django Documentation, Release 1.2.7

6.11.5 QuerySet API reference

This document describes the details of the QuerySet API. It builds on the material presented in the model and
database query guides, so you’ll probably want to read and understand those documents before reading this one.

Throughout this reference we’ll use the example Weblog models presented in the database query guide.

When QuerySets are evaluated

Internally, a QuerySet can be constructed, filtered, sliced, and generally passed around without actually hitting the
database. No database activity actually occurs until you do something to evaluate the queryset.

You can evaluate a QuerySet in the following ways:

• Iteration. A QuerySet is iterable, and it executes its database query the first time you iterate over it. For
example, this will print the headline of all entries in the database:

for e in Entry.objects.all():
print e.headline

• Slicing. As explained in Limiting QuerySets, a QuerySet can be sliced, using Python’s array-slicing syntax.
Usually slicing a QuerySet returns another (unevaluated) QuerySet, but Django will execute the database
query if you use the “step” parameter of slice syntax.

• Pickling/Caching. See the following section for details of what is involved when pickling QuerySets. The
important thing for the purposes of this section is that the results are read from the database.

• repr(). A QuerySet is evaluated when you call repr() on it. This is for convenience in the Python interactive
interpreter, so you can immediately see your results when using the API interactively.

• len(). A QuerySet is evaluated when you call len() on it. This, as you might expect, returns the length of
the result list.

Note: Don’t use len() on QuerySets if all you want to do is determine the number of records in the set.
It’s much more efficient to handle a count at the database level, using SQL’s SELECT COUNT(*), and Django
provides a count() method for precisely this reason. See count() below.

• list(). Force evaluation of a QuerySet by calling list() on it. For example:

entry_list = list(Entry.objects.all())

Be warned, though, that this could have a large memory overhead, because Django will load each element of
the list into memory. In contrast, iterating over a QuerySet will take advantage of your database to load data
and instantiate objects only as you need them.

• bool(). Testing a QuerySet in a boolean context, such as using bool(), or, and or an if statement, will
cause the query to be executed. If there is at least one result, the QuerySet is True, otherwise False. For
example:

if Entry.objects.filter(headline="Test"):
print "There is at least one Entry with the headline Test"

Note: Don’t use this if all you want to do is determine if at least one result exists, and don’t need the actual
objects. It’s more efficient to use exists() (see below).

Pickling QuerySets

If you pickle a QuerySet, this will force all the results to be loaded into memory prior to pickling. Pickling is usually
used as a precursor to caching and when the cached queryset is reloaded, you want the results to already be present

684 Chapter 6. API Reference

http://docs.python.org/library/pickle.html

Django Documentation, Release 1.2.7

and ready for use (reading from the database can take some time, defeating the purpose of caching). This means that
when you unpickle a QuerySet, it contains the results at the moment it was pickled, rather than the results that are
currently in the database.

If you only want to pickle the necessary information to recreate the QuerySet from the database at a later time,
pickle the query attribute of the QuerySet. You can then recreate the original QuerySet (without any results
loaded) using some code like this:

>>> import pickle
>>> query = pickle.loads(s) # Assuming ’s’ is the pickled string.
>>> qs = MyModel.objects.all()
>>> qs.query = query # Restore the original ’query’.

The query attribute is an opaque object. It represents the internals of the query construction and is not part of the
public API. However, it is safe (and fully supported) to pickle and unpickle the attribute’s contents as described here.

You can’t share pickles between versions

Pickles of QuerySets are only valid for the version of Django that was used to generate them. If you generate a pickle
using Django version N, there is no guarantee that pickle will be readable with Django version N+1. Pickles should
not be used as part of a long-term archival strategy.

QuerySet API

Though you usually won’t create one manually – you’ll go through a Manager – here’s the formal declaration of a
QuerySet:

class QuerySet([model=None])
Usually when you’ll interact with a QuerySet you’ll use it by chaining filters. To make this work, most QuerySet
methods return new querysets.

Methods that return new QuerySets

Django provides a range of QuerySet refinement methods that modify either the types of results returned by the
QuerySet or the way its SQL query is executed.

filter
filter(**kwargs)
Returns a new QuerySet containing objects that match the given lookup parameters.

The lookup parameters (**kwargs) should be in the format described in Field lookups below. Multiple parameters
are joined via AND in the underlying SQL statement.

exclude
exclude(**kwargs)
Returns a new QuerySet containing objects that do not match the given lookup parameters.

The lookup parameters (**kwargs) should be in the format described in Field lookups below. Multiple parameters
are joined via AND in the underlying SQL statement, and the whole thing is enclosed in a NOT().

This example excludes all entries whose pub_date is later than 2005-1-3 AND whose headline is “Hello”:

6.11. Models 685

Django Documentation, Release 1.2.7

Entry.objects.exclude(pub_date__gt=datetime.date(2005, 1, 3), headline=’Hello’)

In SQL terms, that evaluates to:

SELECT ...
WHERE NOT (pub_date > ’2005-1-3’ AND headline = ’Hello’)

This example excludes all entries whose pub_date is later than 2005-1-3 OR whose headline is “Hello”:

Entry.objects.exclude(pub_date__gt=datetime.date(2005, 1, 3)).exclude(headline=’Hello’)

In SQL terms, that evaluates to:

SELECT ...
WHERE NOT pub_date > ’2005-1-3’
AND NOT headline = ’Hello’

Note the second example is more restrictive.

annotate
annotate(*args, **kwargs)
New in version 1.1: Please, see the release notes Annotates each object in the QuerySet with the provided list of
aggregate values (averages, sums, etc) that have been computed over the objects that are related to the objects in the
QuerySet. Each argument to annotate() is an annotation that will be added to each object in the QuerySet
that is returned.

The aggregation functions that are provided by Django are described in Aggregation Functions below.

Annotations specified using keyword arguments will use the keyword as the alias for the annotation. Anonymous
arguments will have an alias generated for them based upon the name of the aggregate function and the model field
that is being aggregated.

For example, if you were manipulating a list of blogs, you may want to determine how many entries have been made
in each blog:

>>> q = Blog.objects.annotate(Count(’entry’))
The name of the first blog
>>> q[0].name
’Blogasaurus’
The number of entries on the first blog
>>> q[0].entry__count
42

The Blog model doesn’t define an entry__count attribute by itself, but by using a keyword argument to specify
the aggregate function, you can control the name of the annotation:

>>> q = Blog.objects.annotate(number_of_entries=Count(’entry’))
The number of entries on the first blog, using the name provided
>>> q[0].number_of_entries
42

For an in-depth discussion of aggregation, see the topic guide on Aggregation.

order_by
order_by(*fields)
By default, results returned by a QuerySet are ordered by the ordering tuple given by the ordering option in the
model’s Meta. You can override this on a per-QuerySet basis by using the order_by method.

Example:

686 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Entry.objects.filter(pub_date__year=2005).order_by(’-pub_date’, ’headline’)

The result above will be ordered by pub_date descending, then by headline ascending. The negative sign in
front of "-pub_date" indicates descending order. Ascending order is implied. To order randomly, use "?", like
so:

Entry.objects.order_by(’?’)

Note: order_by(’?’) queries may be expensive and slow, depending on the database backend you’re using.

To order by a field in a different model, use the same syntax as when you are querying across model relations. That is,
the name of the field, followed by a double underscore (__), followed by the name of the field in the new model, and
so on for as many models as you want to join. For example:

Entry.objects.order_by(’blog__name’, ’headline’)

If you try to order by a field that is a relation to another model, Django will use the default ordering on the related
model (or order by the related model’s primary key if there is no Meta.ordering specified. For example:

Entry.objects.order_by(’blog’)

...is identical to:

Entry.objects.order_by(’blog__id’)

...since the Blog model has no default ordering specified.

Be cautious when ordering by fields in related models if you are also using distinct(). See the note in
distinct() for an explanation of how related model ordering can change the expected results.

It is permissible to specify a multi-valued field to order the results by (for example, a ManyToMany field). Normally
this won’t be a sensible thing to do and it’s really an advanced usage feature. However, if you know that your queryset’s
filtering or available data implies that there will only be one ordering piece of data for each of the main items you are
selecting, the ordering may well be exactly what you want to do. Use ordering on multi-valued fields with care and
make sure the results are what you expect.

There’s no way to specify whether ordering should be case sensitive. With respect to case-sensitivity, Django will
order results however your database backend normally orders them.

If you don’t want any ordering to be applied to a query, not even the default ordering, call order_by() with no
parameters. New in version 1.1: Please, see the release notes You can tell if a query is ordered or not by checking the
QuerySet.ordered attribute, which will be True if the QuerySet has been ordered in any way.

reverse
reverse()
Use the reverse() method to reverse the order in which a queryset’s elements are returned. Calling reverse()
a second time restores the ordering back to the normal direction.

To retrieve the ‘’last” five items in a queryset, you could do this:

my_queryset.reverse()[:5]

Note that this is not quite the same as slicing from the end of a sequence in Python. The above example will return
the last item first, then the penultimate item and so on. If we had a Python sequence and looked at seq[-5:], we
would see the fifth-last item first. Django doesn’t support that mode of access (slicing from the end), because it’s not
possible to do it efficiently in SQL.

Also, note that reverse() should generally only be called on a QuerySet which has a defined ordering (e.g.,
when querying against a model which defines a default ordering, or when using order_by()). If no such ordering

6.11. Models 687

Django Documentation, Release 1.2.7

is defined for a given QuerySet, calling reverse() on it has no real effect (the ordering was undefined prior to
calling reverse(), and will remain undefined afterward).

distinct
distinct()
Returns a new QuerySet that uses SELECT DISTINCT in its SQL query. This eliminates duplicate rows from the
query results.

By default, a QuerySet will not eliminate duplicate rows. In practice, this is rarely a problem, because simple
queries such as Blog.objects.all() don’t introduce the possibility of duplicate result rows. However, if your
query spans multiple tables, it’s possible to get duplicate results when a QuerySet is evaluated. That’s when you’d
use distinct().

Note: Any fields used in an order_by() call are included in the SQL SELECT columns. This can sometimes lead
to unexpected results when used in conjunction with distinct(). If you order by fields from a related model, those
fields will be added to the selected columns and they may make otherwise duplicate rows appear to be distinct. Since
the extra columns don’t appear in the returned results (they are only there to support ordering), it sometimes looks like
non-distinct results are being returned.

Similarly, if you use a values() query to restrict the columns selected, the columns used in any order_by() (or
default model ordering) will still be involved and may affect uniqueness of the results.

The moral here is that if you are using distinct() be careful about ordering by related models. Similarly, when
using distinct() and values() together, be careful when ordering by fields not in the values() call.

values
values(*fields)
Returns a ValuesQuerySet – a QuerySet that returns dictionaries when used as an iterable, rather than model-
instance objects.

Each of those dictionaries represents an object, with the keys corresponding to the attribute names of model objects.

This example compares the dictionaries of values() with the normal model objects:

This list contains a Blog object.
>>> Blog.objects.filter(name__startswith=’Beatles’)
[<Blog: Beatles Blog>]

This list contains a dictionary.
>>> Blog.objects.filter(name__startswith=’Beatles’).values()
[{’id’: 1, ’name’: ’Beatles Blog’, ’tagline’: ’All the latest Beatles news.’}]

values() takes optional positional arguments, *fields, which specify field names to which the SELECT should
be limited. If you specify the fields, each dictionary will contain only the field keys/values for the fields you specify.
If you don’t specify the fields, each dictionary will contain a key and value for every field in the database table.

Example:

>>> Blog.objects.values()
[{’id’: 1, ’name’: ’Beatles Blog’, ’tagline’: ’All the latest Beatles news.’}],
>>> Blog.objects.values(’id’, ’name’)
[{’id’: 1, ’name’: ’Beatles Blog’}]

A couple of subtleties that are worth mentioning:

• The values() method does not return anything for ManyToManyField attributes and will raise an error if
you try to pass in this type of field to it.

688 Chapter 6. API Reference

Django Documentation, Release 1.2.7

• If you have a field called foo that is a ForeignKey, the default values() call will return a dictionary
key called foo_id, since this is the name of the hidden model attribute that stores the actual value (the foo
attribute refers to the related model). When you are calling values() and passing in field names, you can pass
in either foo or foo_id and you will get back the same thing (the dictionary key will match the field name
you passed in).

For example:

>>> Entry.objects.values()
[{’blog_id’: 1, ’headline’: u’First Entry’, ...}, ...]

>>> Entry.objects.values(’blog’)
[{’blog’: 1}, ...]

>>> Entry.objects.values(’blog_id’)
[{’blog_id’: 1}, ...]

• When using values() together with distinct(), be aware that ordering can affect the results. See the
note in distinct() for details.

• If you use a values() clause after an extra() clause, any fields defined by a select argument in the
extra() must be explicitly included in the values() clause. However, if the extra() clause is used after
the values(), the fields added by the select will be included automatically.

A ValuesQuerySet is useful when you know you’re only going to need values from a small number of the available
fields and you won’t need the functionality of a model instance object. It’s more efficient to select only the fields you
need to use.

Finally, note a ValuesQuerySet is a subclass of QuerySet, so it has all methods of QuerySet. You can call
filter() on it, or order_by(), or whatever. Yes, that means these two calls are identical:

Blog.objects.values().order_by(’id’)
Blog.objects.order_by(’id’).values()

The people who made Django prefer to put all the SQL-affecting methods first, followed (optionally) by any output-
affecting methods (such as values()), but it doesn’t really matter. This is your chance to really flaunt your individ-
ualism.

values_list
values_list(*fields)
This is similar to values() except that instead of returning dictionaries, it returns tuples when iterated over. Each
tuple contains the value from the respective field passed into the values_list() call – so the first item is the first
field, etc. For example:

>>> Entry.objects.values_list(’id’, ’headline’)
[(1, u’First entry’), ...]

If you only pass in a single field, you can also pass in the flat parameter. If True, this will mean the returned results
are single values, rather than one-tuples. An example should make the difference clearer:

>>> Entry.objects.values_list(’id’).order_by(’id’)
[(1,), (2,), (3,), ...]

>>> Entry.objects.values_list(’id’, flat=True).order_by(’id’)
[1, 2, 3, ...]

It is an error to pass in flat when there is more than one field.

If you don’t pass any values to values_list(), it will return all the fields in the model, in the order they were
declared.

6.11. Models 689

Django Documentation, Release 1.2.7

dates
dates(field, kind, order=’ASC’)
Returns a DateQuerySet – a QuerySet that evaluates to a list of datetime.datetime objects representing
all available dates of a particular kind within the contents of the QuerySet.

field should be the name of a DateField or DateTimeField of your model.

kind should be either "year", "month" or "day". Each datetime.datetime object in the result list is
“truncated” to the given type.

• "year" returns a list of all distinct year values for the field.

• "month" returns a list of all distinct year/month values for the field.

• "day" returns a list of all distinct year/month/day values for the field.

order, which defaults to ’ASC’, should be either ’ASC’ or ’DESC’. This specifies how to order the results.

Examples:

>>> Entry.objects.dates(’pub_date’, ’year’)
[datetime.datetime(2005, 1, 1)]
>>> Entry.objects.dates(’pub_date’, ’month’)
[datetime.datetime(2005, 2, 1), datetime.datetime(2005, 3, 1)]
>>> Entry.objects.dates(’pub_date’, ’day’)
[datetime.datetime(2005, 2, 20), datetime.datetime(2005, 3, 20)]
>>> Entry.objects.dates(’pub_date’, ’day’, order=’DESC’)
[datetime.datetime(2005, 3, 20), datetime.datetime(2005, 2, 20)]
>>> Entry.objects.filter(headline__contains=’Lennon’).dates(’pub_date’, ’day’)
[datetime.datetime(2005, 3, 20)]

none
none()
Returns an EmptyQuerySet – a QuerySet that always evaluates to an empty list. This can be used in cases where
you know that you should return an empty result set and your caller is expecting a QuerySet object (instead of
returning an empty list, for example.)

Examples:

>>> Entry.objects.none()
[]

all
all()
Returns a copy of the current QuerySet (or QuerySet subclass you pass in). This can be useful in some situations
where you might want to pass in either a model manager or a QuerySet and do further filtering on the result. You
can safely call all() on either object and then you’ll definitely have a QuerySet to work with.

select_related
select_related()
Returns a QuerySet that will automatically “follow” foreign-key relationships, selecting that additional related-
object data when it executes its query. This is a performance booster which results in (sometimes much) larger queries
but means later use of foreign-key relationships won’t require database queries.

The following examples illustrate the difference between plain lookups and select_related() lookups. Here’s
standard lookup:

690 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Hits the database.
e = Entry.objects.get(id=5)

Hits the database again to get the related Blog object.
b = e.blog

And here’s select_related lookup:

Hits the database.
e = Entry.objects.select_related().get(id=5)

Doesn’t hit the database, because e.blog has been prepopulated
in the previous query.
b = e.blog

select_related() follows foreign keys as far as possible. If you have the following models:

class City(models.Model):
...

class Person(models.Model):
...
hometown = models.ForeignKey(City)

class Book(models.Model):
...
author = models.ForeignKey(Person)

...then a call to Book.objects.select_related().get(id=4) will cache the related Person and the
related City:

b = Book.objects.select_related().get(id=4)
p = b.author # Doesn’t hit the database.
c = p.hometown # Doesn’t hit the database.

b = Book.objects.get(id=4) # No select_related() in this example.
p = b.author # Hits the database.
c = p.hometown # Hits the database.

Note that, by default, select_related() does not follow foreign keys that have null=True.

Usually, using select_related() can vastly improve performance because your app can avoid many database
calls. However, in situations with deeply nested sets of relationships select_related() can sometimes end up
following “too many” relations, and can generate queries so large that they end up being slow.

In these situations, you can use the depth argument to select_related() to control how many “levels” of
relations select_related() will actually follow:

b = Book.objects.select_related(depth=1).get(id=4)
p = b.author # Doesn’t hit the database.
c = p.hometown # Requires a database call.

Sometimes you only want to access specific models that are related to your root model, not all of the related models.
In these cases, you can pass the related field names to select_related() and it will only follow those relations.
You can even do this for models that are more than one relation away by separating the field names with double
underscores, just as for filters. For example, if you have this model:

class Room(models.Model):
...
building = models.ForeignKey(...)

6.11. Models 691

Django Documentation, Release 1.2.7

class Group(models.Model):
...
teacher = models.ForeignKey(...)
room = models.ForeignKey(Room)
subject = models.ForeignKey(...)

...and you only needed to work with the room and subject attributes, you could write this:

g = Group.objects.select_related(’room’, ’subject’)

This is also valid:

g = Group.objects.select_related(’room__building’, ’subject’)

...and would also pull in the building relation.

You can refer to any ForeignKey or OneToOneField relation in the list of fields passed to select_related.
Ths includes foreign keys that have null=True (unlike the default select_related() call). It’s an error to
use both a list of fields and the depth parameter in the same select_related() call, since they are conflict-
ing options. Changed in version 1.2: Please, see the release notes You can also refer to the reverse direction of a
OneToOneFields in the list of fields passed to select_related – that is, you can traverse a OneToOneField
back to the object on which the field is defined. Instead of specifying the field name, use the related_name for the
field on the related object.

OneToOneFields will not be traversed in the reverse direction if you are performing a depth-based
select_related.

extra
extra(select=None, where=None, params=None, tables=None, order_by=None, select_params=None)
Sometimes, the Django query syntax by itself can’t easily express a complex WHERE clause. For these edge cases,
Django provides the extra() QuerySet modifier – a hook for injecting specific clauses into the SQL generated by
a QuerySet.

By definition, these extra lookups may not be portable to different database engines (because you’re explicitly writing
SQL code) and violate the DRY principle, so you should avoid them if possible.

Specify one or more of params, select, where or tables. None of the arguments is required, but you should
use at least one of them.

• select The select argument lets you put extra fields in the SELECT clause. It should be a dictionary
mapping attribute names to SQL clauses to use to calculate that attribute.

Example:

Entry.objects.extra(select={’is_recent’: "pub_date > ’2006-01-01’"})

As a result, each Entry object will have an extra attribute, is_recent, a boolean representing whether
the entry’s pub_date is greater than Jan. 1, 2006.

Django inserts the given SQL snippet directly into the SELECT statement, so the resulting SQL of the
above example would be something like:

SELECT blog_entry.*, (pub_date > ’2006-01-01’) AS is_recent
FROM blog_entry;

The next example is more advanced; it does a subquery to give each resulting Blog object an
entry_count attribute, an integer count of associated Entry objects:

692 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Blog.objects.extra(
select={

’entry_count’: ’SELECT COUNT(*) FROM blog_entry WHERE blog_entry.blog_id = blog_blog.id’
},

)

(In this particular case, we’re exploiting the fact that the query will already contain the blog_blog table
in its FROM clause.)

The resulting SQL of the above example would be:

SELECT blog_blog.*, (SELECT COUNT(*) FROM blog_entry WHERE blog_entry.blog_id = blog_blog.id) AS entry_count
FROM blog_blog;

Note that the parenthesis required by most database engines around subqueries are not required in Django’s
select clauses. Also note that some database backends, such as some MySQL versions, don’t support
subqueries.

In some rare cases, you might wish to pass parameters to the SQL fragments in extra(select=...).
For this purpose, use the select_params parameter. Since select_params is a se-
quence and the select attribute is a dictionary, some care is required so that the parame-
ters are matched up correctly with the extra select pieces. In this situation, you should use a
django.utils.datastructures.SortedDict for the select value, not just a normal Python
dictionary.

This will work, for example:

Blog.objects.extra(
select=SortedDict([(’a’, ’%s’), (’b’, ’%s’)]),
select_params=(’one’, ’two’))

The only thing to be careful about when using select parameters in extra() is to avoid using the substring
"%%s" (that’s two percent characters before the s) in the select strings. Django’s tracking of parameters
looks for %s and an escaped % character like this isn’t detected. That will lead to incorrect results.

• where / tables You can define explicit SQL WHERE clauses – perhaps to perform non-explicit joins – by
using where. You can manually add tables to the SQL FROM clause by using tables.

where and tables both take a list of strings. All where parameters are “AND”ed to any other search
criteria.

Example:

Entry.objects.extra(where=[’id IN (3, 4, 5, 20)’])

...translates (roughly) into the following SQL:

SELECT * FROM blog_entry WHERE id IN (3, 4, 5, 20);

Be careful when using the tables parameter if you’re specifying tables that are already used in the query.
When you add extra tables via the tables parameter, Django assumes you want that table included an
extra time, if it is already included. That creates a problem, since the table name will then be given an
alias. If a table appears multiple times in an SQL statement, the second and subsequent occurrences must
use aliases so the database can tell them apart. If you’re referring to the extra table you added in the extra
where parameter this is going to cause errors.

Normally you’ll only be adding extra tables that don’t already appear in the query. However, if the case
outlined above does occur, there are a few solutions. First, see if you can get by without including the extra
table and use the one already in the query. If that isn’t possible, put your extra() call at the front of the
queryset construction so that your table is the first use of that table. Finally, if all else fails, look at the

6.11. Models 693

Django Documentation, Release 1.2.7

query produced and rewrite your where addition to use the alias given to your extra table. The alias will
be the same each time you construct the queryset in the same way, so you can rely upon the alias name to
not change.

• order_by If you need to order the resulting queryset using some of the new fields or tables you have included
via extra() use the order_by parameter to extra() and pass in a sequence of strings. These
strings should either be model fields (as in the normal order_by() method on querysets), of the form
table_name.column_name or an alias for a column that you specified in the select parameter to
extra().

For example:

q = Entry.objects.extra(select={’is_recent’: "pub_date > ’2006-01-01’"})
q = q.extra(order_by = [’-is_recent’])

This would sort all the items for which is_recent is true to the front of the result set (True sorts before
False in a descending ordering).

This shows, by the way, that you can make multiple calls to extra() and it will behave as you expect
(adding new constraints each time).

• params The where parameter described above may use standard Python database string placeholders – ’%s’
to indicate parameters the database engine should automatically quote. The params argument is a list of
any extra parameters to be substituted.

Example:

Entry.objects.extra(where=[’headline=%s’], params=[’Lennon’])

Always use params instead of embedding values directly into where because params will ensure
values are quoted correctly according to your particular backend. (For example, quotes will be escaped
correctly.)

Bad:

Entry.objects.extra(where=["headline=’Lennon’"])

Good:

Entry.objects.extra(where=[’headline=%s’], params=[’Lennon’])

defer
defer(*fields)
New in version 1.1: Please, see the release notes In some complex data-modeling situations, your models might
contain a lot of fields, some of which could contain a lot of data (for example, text fields), or require expensive
processing to convert them to Python objects. If you are using the results of a queryset in some situation where you
know you don’t need those particular fields, you can tell Django not to retrieve them from the database.

This is done by passing the names of the fields to not load to defer():

Entry.objects.defer("headline", "body")

A queryset that has deferred fields will still return model instances. Each deferred field will be retrieved from the
database if you access that field (one at a time, not all the deferred fields at once).

You can make multiple calls to defer(). Each call adds new fields to the deferred set:

Defers both the body and headline fields.
Entry.objects.defer("body").filter(rating=5).defer("headline")

694 Chapter 6. API Reference

Django Documentation, Release 1.2.7

The order in which fields are added to the deferred set does not matter. Calling defer() with a field name that has
already been deferred is harmless (the field will still be deferred).

You can defer loading of fields in related models (if the related models are loading via select_related()) by
using the standard double-underscore notation to separate related fields:

Blog.objects.select_related().defer("entry__headline", "entry__body")

If you want to clear the set of deferred fields, pass None as a parameter to defer():

Load all fields immediately.
my_queryset.defer(None)

Some fields in a model won’t be deferred, even if you ask for them. You can never defer the loading of the primary
key. If you are using select_related() to retrieve other models at the same time you shouldn’t defer the loading
of the field that connects from the primary model to the related one (at the moment, that doesn’t raise an error, but it
will eventually).

Note: The defer() method (and its cousin, only(), below) are only for advanced use-cases. They provide an
optimization for when you have analyzed your queries closely and understand exactly what information you need and
have measured that the difference between returning the fields you need and the full set of fields for the model will
be significant. When you are initially developing your applications, don’t bother using defer(); leave it until your
query construction has settled down and you understand where the hot-points are.

only
only(*fields)
New in version 1.1: Please, see the release notes The only() method is more or less the opposite of defer(). You
call it with the fields that should not be deferred when retrieving a model. If you have a model where almost all the
fields need to be deferred, using only() to specify the complementary set of fields could result in simpler code.

If you have a model with fields name, age and biography, the following two querysets are the same, in terms of
deferred fields:

Person.objects.defer("age", "biography")
Person.objects.only("name")

Whenever you call only() it replaces the set of fields to load immediately. The method’s name is mnemonic: only
those fields are loaded immediately; the remainder are deferred. Thus, successive calls to only() result in only the
final fields being considered:

This will defer all fields except the headline.
Entry.objects.only("body", "rating").only("headline")

Since defer() acts incrementally (adding fields to the deferred list), you can combine calls to only() and
defer() and things will behave logically:

Final result is that everything except "headline" is deferred.
Entry.objects.only("headline", "body").defer("body")

Final result loads headline and body immediately (only() replaces any
existing set of fields).
Entry.objects.defer("body").only("headline", "body")

using
using(alias)

6.11. Models 695

Django Documentation, Release 1.2.7

New in version 1.2: Please, see the release notes This method is for controlling which database the QuerySet will
be evaluated against if you are using more than one database. The only argument this method takes is the alias of a
database, as defined in DATABASES.

For example:

queries the database with the ’default’ alias.
>>> Entry.objects.all()

queries the database with the ’backup’ alias
>>> Entry.objects.using(’backup’)

Methods that do not return QuerySets

The following QuerySet methods evaluate the QuerySet and return something other than a QuerySet.

These methods do not use a cache (see Caching and QuerySets). Rather, they query the database each time they’re
called.

get
get(**kwargs)
Returns the object matching the given lookup parameters, which should be in the format described in Field lookups.

get() raises MultipleObjectsReturned if more than one object was found. The
MultipleObjectsReturned exception is an attribute of the model class.

get() raises a DoesNotExist exception if an object wasn’t found for the given parameters. This exception is also
an attribute of the model class. Example:

Entry.objects.get(id=’foo’) # raises Entry.DoesNotExist

The DoesNotExist exception inherits from django.core.exceptions.ObjectDoesNotExist, so you
can target multiple DoesNotExist exceptions. Example:

from django.core.exceptions import ObjectDoesNotExist
try:

e = Entry.objects.get(id=3)
b = Blog.objects.get(id=1)

except ObjectDoesNotExist:
print "Either the entry or blog doesn’t exist."

create
create(**kwargs)
A convenience method for creating an object and saving it all in one step. Thus:

p = Person.objects.create(first_name="Bruce", last_name="Springsteen")

and:

p = Person(first_name="Bruce", last_name="Springsteen")
p.save(force_insert=True)

are equivalent.

The force_insert parameter is documented elsewhere, but all it means is that a new object will always be created.
Normally you won’t need to worry about this. However, if your model contains a manual primary key value that you
set and if that value already exists in the database, a call to create() will fail with an IntegrityError since

696 Chapter 6. API Reference

Django Documentation, Release 1.2.7

primary keys must be unique. So remember to be prepared to handle the exception if you are using manual primary
keys.

get_or_create
get_or_create(**kwargs)
A convenience method for looking up an object with the given kwargs, creating one if necessary.

Returns a tuple of (object, created), where object is the retrieved or created object and created is a
boolean specifying whether a new object was created.

This is meant as a shortcut to boilerplatish code and is mostly useful for data-import scripts. For example:

try:
obj = Person.objects.get(first_name=’John’, last_name=’Lennon’)

except Person.DoesNotExist:
obj = Person(first_name=’John’, last_name=’Lennon’, birthday=date(1940, 10, 9))
obj.save()

This pattern gets quite unwieldy as the number of fields in a model goes up. The above example can be rewritten using
get_or_create() like so:

obj, created = Person.objects.get_or_create(first_name=’John’, last_name=’Lennon’,
defaults={’birthday’: date(1940, 10, 9)})

Any keyword arguments passed to get_or_create() – except an optional one called defaults – will be used
in a get() call. If an object is found, get_or_create() returns a tuple of that object and False. If an object is
not found, get_or_create() will instantiate and save a new object, returning a tuple of the new object and True.
The new object will be created roughly according to this algorithm:

defaults = kwargs.pop(’defaults’, {})
params = dict([(k, v) for k, v in kwargs.items() if ’__’ not in k])
params.update(defaults)
obj = self.model(**params)
obj.save()

In English, that means start with any non-’defaults’ keyword argument that doesn’t contain a double underscore
(which would indicate a non-exact lookup). Then add the contents of defaults, overriding any keys if necessary,
and use the result as the keyword arguments to the model class. As hinted at above, this is a simplification of the
algorithm that is used, but it contains all the pertinent details. The internal implementation has some more error-
checking than this and handles some extra edge-conditions; if you’re interested, read the code.

If you have a field named defaults and want to use it as an exact lookup in get_or_create(), just use
’defaults__exact’, like so:

Foo.objects.get_or_create(defaults__exact=’bar’, defaults={’defaults’: ’baz’})

The get_or_create() method has similar error behaviour to create() when you are using manually specified
primary keys. If an object needs to be created and the key already exists in the database, an IntegrityError will
be raised.

Finally, a word on using get_or_create() in Django views. As mentioned earlier, get_or_create() is
mostly useful in scripts that need to parse data and create new records if existing ones aren’t available. But if you
need to use get_or_create() in a view, please make sure to use it only in POST requests unless you have a good
reason not to. GET requests shouldn’t have any effect on data; use POST whenever a request to a page has a side effect
on your data. For more, see Safe methods in the HTTP spec.

count
count()

6.11. Models 697

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1.1

Django Documentation, Release 1.2.7

Returns an integer representing the number of objects in the database matching the QuerySet. count() never
raises exceptions.

Example:

Returns the total number of entries in the database.
Entry.objects.count()

Returns the number of entries whose headline contains ’Lennon’
Entry.objects.filter(headline__contains=’Lennon’).count()

count() performs a SELECT COUNT(*) behind the scenes, so you should always use count() rather than
loading all of the record into Python objects and calling len() on the result (unless you need to load the objects into
memory anyway, in which case len() will be faster).

Depending on which database you’re using (e.g. PostgreSQL vs. MySQL), count() may return a long integer
instead of a normal Python integer. This is an underlying implementation quirk that shouldn’t pose any real-world
problems.

in_bulk
in_bulk(id_list)
Takes a list of primary-key values and returns a dictionary mapping each primary-key value to an instance of the object
with the given ID.

Example:

>>> Blog.objects.in_bulk([1])
{1: <Blog: Beatles Blog>}
>>> Blog.objects.in_bulk([1, 2])
{1: <Blog: Beatles Blog>, 2: <Blog: Cheddar Talk>}
>>> Blog.objects.in_bulk([])
{}

If you pass in_bulk() an empty list, you’ll get an empty dictionary.

iterator
iterator()
Evaluates the QuerySet (by performing the query) and returns an iterator over the results. A QuerySet typically
caches its results internally so that repeated evaluations do not result in additional queries; iterator() will instead
read results directly, without doing any caching at the QuerySet level. For a QuerySet which returns a large
number of objects, this often results in better performance and a significant reduction in memory

Note that using iterator() on a QuerySet which has already been evaluated will force it to evaluate again,
repeating the query.

latest
latest(field_name=None)
Returns the latest object in the table, by date, using the field_name provided as the date field.

This example returns the latest Entry in the table, according to the pub_date field:

Entry.objects.latest(’pub_date’)

If your model’s Meta specifies get_latest_by, you can leave off the field_name argument to latest().
Django will use the field specified in get_latest_by by default.

Like get(), latest() raises DoesNotExist if an object doesn’t exist with the given parameters.

698 Chapter 6. API Reference

http://www.python.org/dev/peps/pep-0234/

Django Documentation, Release 1.2.7

Note latest() exists purely for convenience and readability.

aggregate
aggregate(*args, **kwargs)
New in version 1.1: Please, see the release notes Returns a dictionary of aggregate values (averages, sums, etc)
calculated over the QuerySet. Each argument to aggregate() specifies a value that will be included in the
dictionary that is returned.

The aggregation functions that are provided by Django are described in Aggregation Functions below.

Aggregates specified using keyword arguments will use the keyword as the name for the annotation. Anonymous
arguments will have an name generated for them based upon the name of the aggregate function and the model field
that is being aggregated.

For example, if you were manipulating blog entries, you may want to know the number of authors that have contributed
blog entries:

>>> q = Blog.objects.aggregate(Count(’entry’))
{’entry__count’: 16}

By using a keyword argument to specify the aggregate function, you can control the name of the aggregation value
that is returned:

>>> q = Blog.objects.aggregate(number_of_entries=Count(’entry’))
{’number_of_entries’: 16}

For an in-depth discussion of aggregation, see the topic guide on Aggregation.

exists
exists()
New in version 1.2: Please, see the release notes Returns True if the QuerySet contains any results, and False if
not. This tries to perform the query in the simplest and fastest way possible, but it does execute nearly the same
query. This means that calling QuerySet.exists() is faster than bool(some_query_set), but not by
a large degree. If some_query_set has not yet been evaluated, but you know that it will be at some point,
then using some_query_set.exists() will do more overall work (an additional query) than simply using
bool(some_query_set).

update
update(**kwargs)
Performs an SQL update query for the specified fields, and returns the number of rows affected. The update()
method is applied instantly and the only restriction on the QuerySet that is updated is that it can only update
columns in the model’s main table. Filtering based on related fields is still possible. You cannot call update() on a
QuerySet that has had a slice taken or can otherwise no longer be filtered.

For example, if you wanted to update all the entries in a particular blog to use the same headline:

>>> b = Blog.objects.get(pk=1)

Update all the headlines belonging to this Blog.
>>> Entry.objects.select_related().filter(blog=b).update(headline=’Everything is the same’)

The update() method does a bulk update and does not call any save() methods on your models, nor does it emit
the pre_save or post_save signals (which are a consequence of calling save()).

6.11. Models 699

Django Documentation, Release 1.2.7

delete
delete()
Performs an SQL delete query on all rows in the QuerySet. The delete() is applied instantly. You cannot call
delete() on a QuerySet that has had a slice taken or can otherwise no longer be filtered.

For example, to delete all the entries in a particular blog:

>>> b = Blog.objects.get(pk=1)

Delete all the entries belonging to this Blog.
>>> Entry.objects.filter(blog=b).delete()

Django emulates the SQL constraint ON DELETE CASCADE – in other words, any objects with foreign keys pointing
at the objects to be deleted will be deleted along with them. For example:

blogs = Blog.objects.all()
This will delete all Blogs and all of their Entry objects.
blogs.delete()

The delete() method does a bulk delete and does not call any delete() methods on your models. It does,
however, emit the pre_delete and post_delete signals for all deleted objects (including cascaded deletions).

Field lookups

Field lookups are how you specify the meat of an SQL WHERE clause. They’re specified as keyword arguments to the
QuerySet methods filter(), exclude() and get().

For an introduction, see Field lookups.

exact Exact match. If the value provided for comparison is None, it will be interpreted as an SQL NULL (See isnull
for more details).

Examples:

Entry.objects.get(id__exact=14)
Entry.objects.get(id__exact=None)

SQL equivalents:

SELECT ... WHERE id = 14;
SELECT ... WHERE id IS NULL;

MySQL comparisons

In MySQL, a database table’s “collation” setting determines whether exact comparisons are case-sensitive. This is
a database setting, not a Django setting. It’s possible to configure your MySQL tables to use case-sensitive compar-
isons, but some trade-offs are involved. For more information about this, see the collation section in the databases
documentation.

iexact Case-insensitive exact match.

Example:

Blog.objects.get(name__iexact=’beatles blog’)

SQL equivalent:

700 Chapter 6. API Reference

Django Documentation, Release 1.2.7

SELECT ... WHERE name ILIKE ’beatles blog’;

Note this will match ’Beatles Blog’, ’beatles blog’, ’BeAtLes BLoG’, etc.

SQLite users

When using the SQLite backend and Unicode (non-ASCII) strings, bear in mind the database note about string com-
parisons. SQLite does not do case-insensitive matching for Unicode strings.

contains Case-sensitive containment test.

Example:

Entry.objects.get(headline__contains=’Lennon’)

SQL equivalent:

SELECT ... WHERE headline LIKE ’%Lennon%’;

Note this will match the headline ’Today Lennon honored’ but not ’today lennon honored’.

SQLite doesn’t support case-sensitive LIKE statements; contains acts like icontains for SQLite.

icontains Case-insensitive containment test.

Example:

Entry.objects.get(headline__icontains=’Lennon’)

SQL equivalent:

SELECT ... WHERE headline ILIKE ’%Lennon%’;

SQLite users

When using the SQLite backend and Unicode (non-ASCII) strings, bear in mind the database note about string com-
parisons.

in In a given list.

Example:

Entry.objects.filter(id__in=[1, 3, 4])

SQL equivalent:

SELECT ... WHERE id IN (1, 3, 4);

You can also use a queryset to dynamically evaluate the list of values instead of providing a list of literal values:

inner_qs = Blog.objects.filter(name__contains=’Cheddar’)
entries = Entry.objects.filter(blog__in=inner_qs)

This queryset will be evaluated as subselect statement:

SELECT ... WHERE blog.id IN (SELECT id FROM ... WHERE NAME LIKE ’%Cheddar%’)

6.11. Models 701

Django Documentation, Release 1.2.7

The above code fragment could also be written as follows:

inner_q = Blog.objects.filter(name__contains=’Cheddar’).values(’pk’).query
entries = Entry.objects.filter(blog__in=inner_q)

Changed in version 1.1: In Django 1.0, only the latter piece of code is valid. This second form is a bit less readable
and unnatural to write, since it accesses the internal query attribute and requires a ValuesQuerySet. If your code
doesn’t require compatibility with Django 1.0, use the first form, passing in a queryset directly.

If you pass in a ValuesQuerySet or ValuesListQuerySet (the result of calling values() or
values_list() on a queryset) as the value to an __in lookup, you need to ensure you are only extracting one
field in the result. For example, this will work (filtering on the blog names):

inner_qs = Blog.objects.filter(name__contains=’Ch’).values(’name’)
entries = Entry.objects.filter(blog__name__in=inner_qs)

This example will raise an exception, since the inner query is trying to extract two field values, where only one is
expected:

Bad code! Will raise a TypeError.
inner_qs = Blog.objects.filter(name__contains=’Ch’).values(’name’, ’id’)
entries = Entry.objects.filter(blog__name__in=inner_qs)

Warning: This query attribute should be considered an opaque internal attribute. It’s fine to use it like above,
but its API may change between Django versions.

Performance considerations

Be cautious about using nested queries and understand your database server’s performance characteristics (if in doubt,
benchmark!). Some database backends, most notably MySQL, don’t optimize nested queries very well. It is more
efficient, in those cases, to extract a list of values and then pass that into the second query. That is, execute two queries
instead of one:

values = Blog.objects.filter(
name__contains=’Cheddar’).values_list(’pk’, flat=True)

entries = Entry.objects.filter(blog__in=list(values))

Note the list() call around the Blog QuerySet to force execution of the first query. Without it, a nested query
would be executed, because QuerySets are lazy.

gt Greater than.

Example:

Entry.objects.filter(id__gt=4)

SQL equivalent:

SELECT ... WHERE id > 4;

gte Greater than or equal to.

lt Less than.

lte Less than or equal to.

702 Chapter 6. API Reference

Django Documentation, Release 1.2.7

startswith Case-sensitive starts-with.

Example:

Entry.objects.filter(headline__startswith=’Will’)

SQL equivalent:

SELECT ... WHERE headline LIKE ’Will%’;

SQLite doesn’t support case-sensitive LIKE statements; startswith acts like istartswith for SQLite.

istartswith Case-insensitive starts-with.

Example:

Entry.objects.filter(headline__istartswith=’will’)

SQL equivalent:

SELECT ... WHERE headline ILIKE ’Will%’;

SQLite users

When using the SQLite backend and Unicode (non-ASCII) strings, bear in mind the database note about string com-
parisons.

endswith Case-sensitive ends-with.

Example:

Entry.objects.filter(headline__endswith=’cats’)

SQL equivalent:

SELECT ... WHERE headline LIKE ’%cats’;

SQLite doesn’t support case-sensitive LIKE statements; endswith acts like iendswith for SQLite.

iendswith Case-insensitive ends-with.

Example:

Entry.objects.filter(headline__iendswith=’will’)

SQL equivalent:

SELECT ... WHERE headline ILIKE ’%will’

SQLite users

When using the SQLite backend and Unicode (non-ASCII) strings, bear in mind the database note about string com-
parisons.

6.11. Models 703

Django Documentation, Release 1.2.7

range Range test (inclusive).

Example:

start_date = datetime.date(2005, 1, 1)
end_date = datetime.date(2005, 3, 31)
Entry.objects.filter(pub_date__range=(start_date, end_date))

SQL equivalent:

SELECT ... WHERE pub_date BETWEEN ’2005-01-01’ and ’2005-03-31’;

You can use range anywhere you can use BETWEEN in SQL – for dates, numbers and even characters.

year For date/datetime fields, exact year match. Takes a four-digit year.

Example:

Entry.objects.filter(pub_date__year=2005)

SQL equivalent:

SELECT ... WHERE EXTRACT(’year’ FROM pub_date) = ’2005’;

(The exact SQL syntax varies for each database engine.)

month For date/datetime fields, exact month match. Takes an integer 1 (January) through 12 (December).

Example:

Entry.objects.filter(pub_date__month=12)

SQL equivalent:

SELECT ... WHERE EXTRACT(’month’ FROM pub_date) = ’12’;

(The exact SQL syntax varies for each database engine.)

day For date/datetime fields, exact day match.

Example:

Entry.objects.filter(pub_date__day=3)

SQL equivalent:

SELECT ... WHERE EXTRACT(’day’ FROM pub_date) = ’3’;

(The exact SQL syntax varies for each database engine.)

Note this will match any record with a pub_date on the third day of the month, such as January 3, July 3, etc.

week_day New in version 1.1: Please, see the release notes For date/datetime fields, a ‘day of the week’ match.

Takes an integer value representing the day of week from 1 (Sunday) to 7 (Saturday).

Example:

Entry.objects.filter(pub_date__week_day=2)

704 Chapter 6. API Reference

Django Documentation, Release 1.2.7

(No equivalent SQL code fragment is included for this lookup because implementation of the relevant query varies
among different database engines.)

Note this will match any record with a pub_date that falls on a Monday (day 2 of the week), regardless of the month
or year in which it occurs. Week days are indexed with day 1 being Sunday and day 7 being Saturday.

isnull Takes either True or False, which correspond to SQL queries of IS NULL and IS NOT NULL, respec-
tively.

Example:

Entry.objects.filter(pub_date__isnull=True)

SQL equivalent:

SELECT ... WHERE pub_date IS NULL;

search A boolean full-text search, taking advantage of full-text indexing. This is like contains but is significantly
faster due to full-text indexing.

Example:

Entry.objects.filter(headline__search="+Django -jazz Python")

SQL equivalent:

SELECT ... WHERE MATCH(tablename, headline) AGAINST (+Django -jazz Python IN BOOLEAN MODE);

Note this is only available in MySQL and requires direct manipulation of the database to add the full-text index. By
default Django uses BOOLEAN MODE for full text searches. See the MySQL documentation for additional details.

regex Case-sensitive regular expression match.

The regular expression syntax is that of the database backend in use. In the case of SQLite, which has no built in
regular expression support, this feature is provided by a (Python) user-defined REGEXP function, and the regular
expression syntax is therefore that of Python’s re module.

Example:

Entry.objects.get(title__regex=r’^(An?|The) +’)

SQL equivalents:

SELECT ... WHERE title REGEXP BINARY ’^(An?|The) +’; -- MySQL

SELECT ... WHERE REGEXP_LIKE(title, ’^(an?|the) +’, ’c’); -- Oracle

SELECT ... WHERE title ~ ’^(An?|The) +’; -- PostgreSQL

SELECT ... WHERE title REGEXP ’^(An?|The) +’; -- SQLite

Using raw strings (e.g., r’foo’ instead of ’foo’) for passing in the regular expression syntax is recommended.

iregex Case-insensitive regular expression match.

Example:

6.11. Models 705

http://dev.mysql.com/doc/refman/5.1/en/fulltext-boolean.html

Django Documentation, Release 1.2.7

Entry.objects.get(title__iregex=r’^(an?|the) +’)

SQL equivalents:

SELECT ... WHERE title REGEXP ’^(an?|the) +’; -- MySQL

SELECT ... WHERE REGEXP_LIKE(title, ’^(an?|the) +’, ’i’); -- Oracle

SELECT ... WHERE title ~* ’^(an?|the) +’; -- PostgreSQL

SELECT ... WHERE title REGEXP ’(?i)^(an?|the) +’; -- SQLite

Aggregation functions

New in version 1.1: Please, see the release notes Django provides the following aggregation functions in the
django.db.models module. For details on how to use these aggregate functions, see the topic guide on ag-
gregation.

Avg
class Avg(field)
Returns the mean value of the given field.

• Default alias: <field>__avg

• Return type: float

Count
class Count(field, distinct=False)
Returns the number of objects that are related through the provided field.

• Default alias: <field>__count

• Return type: integer

Has one optional argument:

distinct
If distinct=True, the count will only include unique instances. This has the SQL equivalent of
COUNT(DISTINCT field). Default value is False.

Max
class Max(field)
Returns the maximum value of the given field.

• Default alias: <field>__max

• Return type: same as input field

Min
class Min(field)
Returns the minimum value of the given field.

• Default alias: <field>__min

• Return type: same as input field

706 Chapter 6. API Reference

Django Documentation, Release 1.2.7

StdDev
class StdDev(field, sample=False)
Returns the standard deviation of the data in the provided field.

• Default alias: <field>__stddev

• Return type: float

Has one optional argument:

sample
By default, StdDev returns the population standard deviation. However, if sample=True, the return value
will be the sample standard deviation.

SQLite

SQLite doesn’t provide StdDev out of the box. An implementation is available as an extension module for SQLite.
Consult the SQlite documentation for instructions on obtaining and installing this extension.

Sum
class Sum(field)
Computes the sum of all values of the given field.

• Default alias: <field>__sum

• Return type: same as input field

Variance
class Variance(field, sample=False)
Returns the variance of the data in the provided field.

• Default alias: <field>__variance

• Return type: float

Has one optional argument:

sample
By default, Variance returns the population variance. However, if sample=True, the return value will be
the sample variance.

SQLite

SQLite doesn’t provide Variance out of the box. An implementation is available as an extension module for SQLite.
Consult the SQlite documentation for instructions on obtaining and installing this extension.

6.12 Request and response objects

6.12.1 Quick overview

Django uses request and response objects to pass state through the system.

When a page is requested, Django creates an HttpRequest object that contains metadata about the request. Then
Django loads the appropriate view, passing the HttpRequest as the first argument to the view function. Each view
is responsible for returning an HttpResponse object.

6.12. Request and response objects 707

Django Documentation, Release 1.2.7

This document explains the APIs for HttpRequest and HttpResponse objects.

6.12.2 HttpRequest objects

class HttpRequest

Attributes

All attributes except session should be considered read-only.

HttpRequest.path
A string representing the full path to the requested page, not including the domain.

Example: "/music/bands/the_beatles/"

HttpRequest.path_info
Under some web server configurations, the portion of the URL after the host name is split up into a script prefix
portion and a path info portion (this happens, for example, when using the django.root option with the
modpython handler from Apache). The path_info attribute always contains the path info portion of the path,
no matter what web server is being used. Using this instead of attr:~HttpRequest.path can make your code much
easier to move between test and deployment servers.

For example, if the django.root for your application is set to "/minfo", then
path might be "/minfo/music/bands/the_beatles/" and path_info would be
"/music/bands/the_beatles/".

HttpRequest.method
A string representing the HTTP method used in the request. This is guaranteed to be uppercase. Example:

if request.method == ’GET’:
do_something()

elif request.method == ’POST’:
do_something_else()

HttpRequest.encoding
A string representing the current encoding used to decode form submission data (or None, which means the
DEFAULT_CHARSET setting is used). You can write to this attribute to change the encoding used when ac-
cessing the form data. Any subsequent attribute accesses (such as reading from GET or POST) will use the new
encoding value. Useful if you know the form data is not in the DEFAULT_CHARSET encoding.

HttpRequest.GET
A dictionary-like object containing all given HTTP GET parameters. See the QueryDict documentation
below.

HttpRequest.POST
A dictionary-like object containing all given HTTP POST parameters. See the QueryDict documentation
below.

It’s possible that a request can come in via POST with an empty POST dictionary – if, say, a form is requested
via the POST HTTP method but does not include form data. Therefore, you shouldn’t use if request.POST
to check for use of the POST method; instead, use if request.method == "POST" (see above).

Note: POST does not include file-upload information. See FILES.

HttpRequest.REQUEST
For convenience, a dictionary-like object that searches POST first, then GET. Inspired by PHP’s $_REQUEST.

For example, if GET = {"name": "john"} and POST = {"age": ’34’}, REQUEST["name"]
would be "john", and REQUEST["age"] would be "34".

708 Chapter 6. API Reference

Django Documentation, Release 1.2.7

It’s strongly suggested that you use GET and POST instead of REQUEST, because the former are more explicit.

HttpRequest.COOKIES
A standard Python dictionary containing all cookies. Keys and values are strings.

HttpRequest.FILES
A dictionary-like object containing all uploaded files. Each key in FILES is the name from the <input
type="file" name="" />. Each value in FILES is an UploadedFile as described below.

See Managing files for more information.

Note that FILES will only contain data if the request method was POST and the <form> that posted to the
request had enctype="multipart/form-data". Otherwise, FILES will be a blank dictionary-like ob-
ject.

HttpRequest.META
A standard Python dictionary containing all available HTTP headers. Available headers depend on the client
and server, but here are some examples:

•CONTENT_LENGTH

•CONTENT_TYPE

•HTTP_ACCEPT_ENCODING

•HTTP_ACCEPT_LANGUAGE

•HTTP_HOST – The HTTP Host header sent by the client.

•HTTP_REFERER – The referring page, if any.

•HTTP_USER_AGENT – The client’s user-agent string.

•QUERY_STRING – The query string, as a single (unparsed) string.

•REMOTE_ADDR – The IP address of the client.

•REMOTE_HOST – The hostname of the client.

•REMOTE_USER – The user authenticated by the Web server, if any.

•REQUEST_METHOD – A string such as "GET" or "POST".

•SERVER_NAME – The hostname of the server.

•SERVER_PORT – The port of the server.

With the exception of CONTENT_LENGTH and CONTENT_TYPE, as given above, any HTTP headers in the
request are converted to META keys by converting all characters to uppercase, replacing any hyphens with
underscores and adding an HTTP_ prefix to the name. So, for example, a header called X-Bender would be
mapped to the META key HTTP_X_BENDER.

HttpRequest.user
A django.contrib.auth.models.User object representing the currently logged-
in user. If the user isn’t currently logged in, user will be set to an instance of
django.contrib.auth.models.AnonymousUser. You can tell them apart with
is_authenticated(), like so:

if request.user.is_authenticated():
Do something for logged-in users.

else:
Do something for anonymous users.

user is only available if your Django installation has the AuthenticationMiddleware activated. For
more, see User authentication in Django.

6.12. Request and response objects 709

Django Documentation, Release 1.2.7

HttpRequest.session
A readable-and-writable, dictionary-like object that represents the current session. This is only available if your
Django installation has session support activated. See the session documentation for full details.

HttpRequest.raw_post_data
The raw HTTP POST data. This is only useful for advanced processing. Use POST instead.

HttpRequest.urlconf
Not defined by Django itself, but will be read if other code (e.g., a custom middleware class) sets it. When
present, this will be used as the root URLconf for the current request, overriding the ROOT_URLCONF setting.
See How Django processes a request for details.

Methods

HttpRequest.get_host()
Returns the originating host of the request using information from the HTTP_X_FORWARDED_HOST (if en-
abled in the settings) and HTTP_HOST headers (in that order). If they don’t provide a value, the method uses a
combination of SERVER_NAME and SERVER_PORT as detailed in PEP 3333.

Example: "127.0.0.1:8000"

Note: The get_host() method fails when the host is behind multiple proxies. One solution is to use
middleware to rewrite the proxy headers, as in the following example:

class MultipleProxyMiddleware(object):
FORWARDED_FOR_FIELDS = [

’HTTP_X_FORWARDED_FOR’,
’HTTP_X_FORWARDED_HOST’,
’HTTP_X_FORWARDED_SERVER’,

]

def process_request(self, request):
"""
Rewrites the proxy headers so that only the most
recent proxy is used.
"""
for field in self.FORWARDED_FOR_FIELDS:

if field in request.META:
if ’,’ in request.META[field]:

parts = request.META[field].split(’,’)
request.META[field] = parts[-1].strip()

HttpRequest.get_full_path()
Returns the path, plus an appended query string, if applicable.

Example: "/music/bands/the_beatles/?print=true"

HttpRequest.build_absolute_uri(location)
Returns the absolute URI form of location. If no location is provided, the location will be set to
request.get_full_path().

If the location is already an absolute URI, it will not be altered. Otherwise the absolute URI is built using the
server variables available in this request.

Example: "http://example.com/music/bands/the_beatles/?print=true"

HttpRequest.is_secure()
Returns True if the request is secure; that is, if it was made with HTTPS.

710 Chapter 6. API Reference

http://www.python.org/dev/peps/pep-3333

Django Documentation, Release 1.2.7

HttpRequest.is_ajax()
Returns True if the request was made via an XMLHttpRequest, by checking the
HTTP_X_REQUESTED_WITH header for the string ’XMLHttpRequest’. Most modern JavaScript
libraries send this header. If you write your own XMLHttpRequest call (on the browser side), you’ll have to set
this header manually if you want is_ajax() to work.

6.12.3 UploadedFile objects

class UploadedFile

Attributes

UploadedFile.name
The name of the uploaded file.

UploadedFile.size
The size, in bytes, of the uploaded file.

Methods

UploadedFile.chunks(chunk_size=None)
Returns a generator that yields sequential chunks of data.

UploadedFile.read(num_bytes=None)
Read a number of bytes from the file.

6.12.4 QueryDict objects

class QueryDict

In an HttpRequest object, the GET and POST attributes are instances of django.http.QueryDict.
QueryDict is a dictionary-like class customized to deal with multiple values for the same key. This is necessary
because some HTML form elements, notably <select multiple="multiple">, pass multiple values for the
same key.

QueryDict instances are immutable, unless you create a copy() of them. That means you can’t change attributes
of request.POST and request.GET directly.

Methods

QueryDict implements all the standard dictionary methods, because it’s a subclass of dictionary. Exceptions are
outlined here:

QueryDict.__getitem__(key)
Returns the value for the given key. If the key has more than one value, __getitem__() returns the last
value. Raises django.utils.datastructures.MultiValueDictKeyError if the key does not
exist. (This is a subclass of Python’s standard KeyError, so you can stick to catching KeyError.)

QueryDict.__setitem__(key, value)
Sets the given key to [value] (a Python list whose single element is value). Note that this, as other dictio-
nary functions that have side effects, can only be called on a mutable QueryDict (one that was created via
copy()).

6.12. Request and response objects 711

Django Documentation, Release 1.2.7

QueryDict.__contains__(key)
Returns True if the given key is set. This lets you do, e.g., if "foo" in request.GET.

QueryDict.get(key, default)
Uses the same logic as __getitem__() above, with a hook for returning a default value if the key doesn’t
exist.

QueryDict.setdefault(key, default)
Just like the standard dictionary setdefault() method, except it uses __setitem__() internally.

QueryDict.update(other_dict)
Takes either a QueryDict or standard dictionary. Just like the standard dictionary update() method, except
it appends to the current dictionary items rather than replacing them. For example:

>>> q = QueryDict(’a=1’)
>>> q = q.copy() # to make it mutable
>>> q.update({’a’: ’2’})
>>> q.getlist(’a’)
[u’1’, u’2’]
>>> q[’a’] # returns the last
[u’2’]

QueryDict.items()
Just like the standard dictionary items() method, except this uses the same last-value logic as
__getitem__(). For example:

>>> q = QueryDict(’a=1&a=2&a=3’)
>>> q.items()
[(u’a’, u’3’)]

QueryDict.iteritems()
Just like the standard dictionary iteritems() method. Like QueryDict.items() this uses the same
last-value logic as QueryDict.__getitem__().

QueryDict.iterlists()
Like QueryDict.iteritems() except it includes all values, as a list, for each member of the dictionary.

QueryDict.values()
Just like the standard dictionary values() method, except this uses the same last-value logic as
__getitem__(). For example:

>>> q = QueryDict(’a=1&a=2&a=3’)
>>> q.values()
[u’3’]

QueryDict.itervalues()
Just like QueryDict.values(), except an iterator.

In addition, QueryDict has the following methods:

QueryDict.copy()
Returns a copy of the object, using copy.deepcopy() from the Python standard library. The copy will be
mutable – that is, you can change its values.

QueryDict.getlist(key)
Returns the data with the requested key, as a Python list. Returns an empty list if the key doesn’t exist. It’s
guaranteed to return a list of some sort.

QueryDict.setlist(key, list_)
Sets the given key to list_ (unlike __setitem__()).

712 Chapter 6. API Reference

Django Documentation, Release 1.2.7

QueryDict.appendlist(key, item)
Appends an item to the internal list associated with key.

QueryDict.setlistdefault(key, default_list)
Just like setdefault, except it takes a list of values instead of a single value.

QueryDict.lists()
Like items(), except it includes all values, as a list, for each member of the dictionary. For example:

>>> q = QueryDict(’a=1&a=2&a=3’)
>>> q.lists()
[(u’a’, [u’1’, u’2’, u’3’])]

QueryDict.urlencode()
Returns a string of the data in query-string format. Example: "a=2&b=3&b=5".

6.12.5 HttpResponse objects

class HttpResponse

In contrast to HttpRequest objects, which are created automatically by Django, HttpResponse objects are your
responsibility. Each view you write is responsible for instantiating, populating and returning an HttpResponse.

The HttpResponse class lives in the django.http module.

Usage

Passing strings

Typical usage is to pass the contents of the page, as a string, to the HttpResponse constructor:

>>> response = HttpResponse("Here’s the text of the Web page.")
>>> response = HttpResponse("Text only, please.", mimetype="text/plain")

But if you want to add content incrementally, you can use response as a file-like object:

>>> response = HttpResponse()
>>> response.write("<p>Here’s the text of the Web page.</p>")
>>> response.write("<p>Here’s another paragraph.</p>")

Passing iterators

Finally, you can pass HttpResponse an iterator rather than passing it hard-coded strings. If you use this technique,
follow these guidelines:

• The iterator should return strings.

• If an HttpResponse has been initialized with an iterator as its content, you can’t use the class:HttpResponse
instance as a file-like object. Doing so will raise Exception.

Setting headers

To set or remove a header in your response, treat it like a dictionary:

6.12. Request and response objects 713

Django Documentation, Release 1.2.7

>>> response = HttpResponse()
>>> response[’Cache-Control’] = ’no-cache’
>>> del response[’Cache-Control’]

Note that unlike a dictionary, del doesn’t raise KeyError if the header doesn’t exist. New in version 1.1: Please,
see the release notes HTTP headers cannot contain newlines. An attempt to set a header containing a newline character
(CR or LF) will raise BadHeaderError

Telling the browser to treat the response as a file attachment

To tell the browser to treat the response as a file attachment, use the mimetype argument and set the
Content-Disposition header. For example, this is how you might return a Microsoft Excel spreadsheet:

>>> response = HttpResponse(my_data, mimetype=’application/vnd.ms-excel’)
>>> response[’Content-Disposition’] = ’attachment; filename=foo.xls’

There’s nothing Django-specific about the Content-Disposition header, but it’s easy to forget the syntax, so
we’ve included it here.

Attributes

HttpResponse.content
A normal Python string representing the content, encoded from a Unicode object if necessary.

HttpResponse.status_code
The HTTP Status code for the response.

Methods

HttpResponse.__init__(content=’‘, mimetype=None, status=200, con-
tent_type=DEFAULT_CONTENT_TYPE)

Instantiates an HttpResponse object with the given page content (a string) and MIME type. The
DEFAULT_CONTENT_TYPE is ’text/html’.

content can be an iterator or a string. If it’s an iterator, it should return strings, and those strings will be joined
together to form the content of the response.

status is the HTTP Status code for the response.

content_type is an alias for mimetype. Historically, this parameter was only called mimetype, but since
this is actually the value included in the HTTP Content-Type header, it can also include the character set
encoding, which makes it more than just a MIME type specification. If mimetype is specified (not None),
that value is used. Otherwise, content_type is used. If neither is given, the DEFAULT_CONTENT_TYPE
setting is used.

HttpResponse.__setitem__(header, value)
Sets the given header name to the given value. Both header and value should be strings.

HttpResponse.__delitem__(header)
Deletes the header with the given name. Fails silently if the header doesn’t exist. Case-insensitive.

HttpResponse.__getitem__(header)
Returns the value for the given header name. Case-insensitive.

HttpResponse.has_header(header)
Returns True or False based on a case-insensitive check for a header with the given name.

714 Chapter 6. API Reference

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

Django Documentation, Release 1.2.7

HttpResponse.set_cookie(key, value=’‘, max_age=None, expires=None, path=’/’, domain=None, se-
cure=None)

Sets a cookie. The parameters are the same as in the cookie Morsel object in the Python standard library.

•max_age should be a number of seconds, or None (default) if the cookie should last only as long as the
client’s browser session.

•expires should be a string in the format "Wdy, DD-Mon-YY HH:MM:SS GMT".

•Use domain if you want to set a cross-domain cookie. For example, domain=".lawrence.com"
will set a cookie that is readable by the domains www.lawrence.com, blogs.lawrence.com and calen-
dars.lawrence.com. Otherwise, a cookie will only be readable by the domain that set it.

HttpResponse.delete_cookie(key, path=’/’, domain=None)
Deletes the cookie with the given key. Fails silently if the key doesn’t exist.

Due to the way cookies work, path and domain should be the same values you used in set_cookie() –
otherwise the cookie may not be deleted.

HttpResponse.write(content)
This method makes an HttpResponse instance a file-like object.

HttpResponse.flush()
This method makes an HttpResponse instance a file-like object.

HttpResponse.tell()
This method makes an HttpResponse instance a file-like object.

HttpResponse subclasses

Django includes a number of HttpResponse subclasses that handle different types of HTTP responses. Like
HttpResponse, these subclasses live in django.http.

class HttpResponseRedirect
The constructor takes a single argument – the path to redirect to. This can be a fully qualified URL (e.g.
’http://www.yahoo.com/search/’) or an absolute path with no domain (e.g. ’/search/’). Note
that this returns an HTTP status code 302.

class HttpResponsePermanentRedirect
Like HttpResponseRedirect, but it returns a permanent redirect (HTTP status code 301) instead of a
“found” redirect (status code 302).

class HttpResponseNotModified
The constructor doesn’t take any arguments. Use this to designate that a page hasn’t been modified since the
user’s last request (status code 304).

class HttpResponseBadRequest
Acts just like HttpResponse but uses a 400 status code.

class HttpResponseNotFound
Acts just like HttpResponse but uses a 404 status code.

class HttpResponseForbidden
Acts just like HttpResponse but uses a 403 status code.

class HttpResponseNotAllowed
Like HttpResponse, but uses a 405 status code. Takes a single, required argument: a list of permitted
methods (e.g. [’GET’, ’POST’]).

class HttpResponseGone
Acts just like HttpResponse but uses a 410 status code.

6.12. Request and response objects 715

http://docs.python.org/library/cookie.html#Cookie.Morsel

Django Documentation, Release 1.2.7

class HttpResponseServerError
Acts just like HttpResponse but uses a 500 status code.

6.13 Settings

• Available settings
• Deprecated settings

6.13.1 Available settings

Here’s a full list of all available settings, in alphabetical order, and their default values.

ABSOLUTE_URL_OVERRIDES

Default: {} (Empty dictionary)

A dictionary mapping "app_label.model_name" strings to functions that take a model object and return its
URL. This is a way of overriding get_absolute_url() methods on a per-installation basis. Example:

ABSOLUTE_URL_OVERRIDES = {
’blogs.weblog’: lambda o: "/blogs/%s/" % o.slug,
’news.story’: lambda o: "/stories/%s/%s/" % (o.pub_year, o.slug),

}

Note that the model name used in this setting should be all lower-case, regardless of the case of the actual model class
name.

ADMIN_FOR

Default: () (Empty tuple)

Used for admin-site settings modules, this should be a tuple of settings modules (in the format ’foo.bar.baz’)
for which this site is an admin.

The admin site uses this in its automatically-introspected documentation of models, views and template tags.

ADMIN_MEDIA_PREFIX

Default: ’/media/’

The URL prefix for admin media – CSS, JavaScript and images used by the Django administrative interface. Make
sure to use a trailing slash, and to have this be different from the MEDIA_URL setting (since the same URL cannot be
mapped onto two different sets of files).

ADMINS

Default: () (Empty tuple)

716 Chapter 6. API Reference

Django Documentation, Release 1.2.7

A tuple that lists people who get code error notifications. When DEBUG=False and a view raises an exception,
Django will e-mail these people with the full exception information. Each member of the tuple should be a tuple of
(Full name, e-mail address). Example:

((’John’, ’john@example.com’), (’Mary’, ’mary@example.com’))

Note that Django will e-mail all of these people whenever an error happens. See Error reporting via e-mail for more
information.

ALLOWED_INCLUDE_ROOTS

Default: () (Empty tuple)

A tuple of strings representing allowed prefixes for the {% ssi %} template tag. This is a security measure, so that
template authors can’t access files that they shouldn’t be accessing.

For example, if ALLOWED_INCLUDE_ROOTS is (’/home/html’, ’/var/www’), then {% ssi
/home/html/foo.txt %} would work, but {% ssi /etc/passwd %} wouldn’t.

APPEND_SLASH

Default: True

When set to True, if the request URL does not match any of the patterns in the URLconf and it doesn’t end in a
slash, an HTTP redirect is issued to the same URL with a slash appended. Note that the redirect may cause any data
submitted in a POST request to be lost.

The APPEND_SLASH setting is only used if CommonMiddleware is installed (see Middleware). See also
PREPEND_WWW.

AUTHENTICATION_BACKENDS

Default: (’django.contrib.auth.backends.ModelBackend’,)

A tuple of authentication backend classes (as strings) to use when attempting to authenticate a user. See the authenti-
cation backends documentation for details.

AUTH_PROFILE_MODULE

Default: Not defined

The site-specific user profile model used by this site. See Storing additional information about users.

CACHE_BACKEND

Default: ’locmem://’

The cache backend to use. See Django’s cache framework.

6.13. Settings 717

Django Documentation, Release 1.2.7

CACHE_MIDDLEWARE_ANONYMOUS_ONLY

Default: False

If the value of this setting is True, only anonymous requests (i.e., not those made by a logged-in user) will be cached.
Otherwise, the middleware caches every page that doesn’t have GET or POST parameters.

If you set the value of this setting to True, you should make sure you’ve activated
AuthenticationMiddleware.

See the cache documentation for more information.

CACHE_MIDDLEWARE_KEY_PREFIX

Default: ” (Empty string)

The cache key prefix that the cache middleware should use. See Django’s cache framework.

CACHE_MIDDLEWARE_SECONDS

Default: 600

The default number of seconds to cache a page when the caching middleware or cache_page() decorator is used.

CSRF_COOKIE_DOMAIN

New in version 1.2: Please, see the release notes Default: None

The domain to be used when setting the CSRF cookie. This can be useful for allowing cross-subdomain requests to be
exluded from the normal cross site request forgery protection. It should be set to a string such as ".lawrence.com"
to allow a POST request from a form on one subdomain to be accepted by accepted by a view served from another
subdomain.

CSRF_COOKIE_NAME

New in version 1.2: Please, see the release notes Default: ’csrftoken’

The name of the cookie to use for the CSRF authentication token. This can be whatever you want. See Cross Site
Request Forgery protection.

CSRF_FAILURE_VIEW

New in version 1.2: Please, see the release notes Default: ’django.views.csrf.csrf_failure’

A dotted path to the view function to be used when an incoming request is rejected by the CSRF protection. The
function should have this signature:

def csrf_failure(request, reason="")

where reason is a short message (intended for developers or logging, not for end users) indicating the reason the
request was rejected. See Cross Site Request Forgery protection.

718 Chapter 6. API Reference

Django Documentation, Release 1.2.7

DATABASES

New in version 1.2: Please, see the release notes Default: {} (Empty dictionary)

A dictionary containing the settings for all databases to be used with Django. It is a nested dictionary whose contents
maps database aliases to a dictionary containing the options for an individual database.

The DATABASES setting must configure a default database; any number of additional databases may also be
specified.

The simplest possible settings file is for a single-database setup using SQLite. This can be configured using the
following:

DATABASES = {
’default’: {

’ENGINE’: ’django.db.backends.sqlite3’,
’NAME’: ’mydatabase’

}
}

For other database backends, or more complex SQLite configurations, other options will be required. The following
inner options are available.

ENGINE

Default: ” (Empty string)

The database backend to use. The built-in database backends are:

• ’django.db.backends.postgresql_psycopg2’

• ’django.db.backends.postgresql’

• ’django.db.backends.mysql’

• ’django.db.backends.sqlite3’

• ’django.db.backends.oracle’

You can use a database backend that doesn’t ship with Django by setting ENGINE to a fully-qualified path (i.e.
mypackage.backends.whatever). Writing a whole new database backend from scratch is left as an exercise
to the reader; see the other backends for examples.

Note: Prior to Django 1.2, you could use a short version of the backend name to reference the built-in database
backends (e.g., you could use ’sqlite3’ to refer to the SQLite backend). This format has been deprecated, and
will be removed in Django 1.4.

HOST

Default: ” (Empty string)

Which host to use when connecting to the database. An empty string means localhost. Not used with SQLite.

If this value starts with a forward slash (’/’) and you’re using MySQL, MySQL will connect via a Unix socket to the
specified socket. For example:

"HOST": ’/var/run/mysql’

6.13. Settings 719

Django Documentation, Release 1.2.7

If you’re using MySQL and this value doesn’t start with a forward slash, then this value is assumed to be the host.

If you’re using PostgreSQL, an empty string means to use a Unix domain socket for the connection, rather than
a network connection to localhost. If you explicitly need to use a TCP/IP connection on the local machine with
PostgreSQL, specify localhost here.

NAME

Default: ” (Empty string)

The name of the database to use. For SQLite, it’s the full path to the database file. When specifying the path, always
use forward slashes, even on Windows (e.g. C:/homes/user/mysite/sqlite3.db).

OPTIONS

Default: {} (Empty dictionary)

Extra parameters to use when connecting to the database. Available parameters vary depending on your database
backend.

Some information on available parameters can be found in the Database Backends documentation. For more informa-
tion, consult your backend module’s own documentation.

PASSWORD

Default: ” (Empty string)

The password to use when connecting to the database. Not used with SQLite.

PORT

Default: ” (Empty string)

The port to use when connecting to the database. An empty string means the default port. Not used with SQLite.

USER

Default: ” (Empty string)

The username to use when connecting to the database. Not used with SQLite.

TEST_CHARSET

Default: None

The character set encoding used to create the test database. The value of this string is passed directly through to the
database, so its format is backend-specific.

Supported for the PostgreSQL (postgresql, postgresql_psycopg2) and MySQL (mysql) backends.

720 Chapter 6. API Reference

http://www.postgresql.org/docs/8.2/static/multibyte.html
http://dev.mysql.com/doc/refman/5.0/en/charset-database.html

Django Documentation, Release 1.2.7

TEST_COLLATION

Default: None

The collation order to use when creating the test database. This value is passed directly to the backend, so its format
is backend-specific.

Only supported for the mysql backend (see the MySQL manual for details).

TEST_DEPENDENCIES

New in version 1.2.4: Please, see the release notes Default: [’default’], for all databases other than default,
which has no dependencies.

The creation-order dependencies of the database. See the documentation on controlling the creation order of test
databases for details.

TEST_MIRROR

Default: None

The alias of the database that this database should mirror during testing.

This setting exists to allow for testing of master/slave configurations of multiple databases. See the documentation on
testing master/slave configurations for details.

TEST_NAME

Default: None

The name of database to use when running the test suite.

If the default value (None) is used with the SQLite database engine, the tests will use a memory resident database.
For all other database engines the test database will use the name ’test_’ + DATABASE_NAME.

See Testing Django applications.

TEST_USER

Default: None

This is an Oracle-specific setting.

The username to use when connecting to the Oracle database that will be used when running tests.

DATABASE_ROUTERS

New in version 1.2: Please, see the release notes Default: [] (Empty list)

The list of routers that will be used to determine which database to use when performing a database queries.

See the documentation on automatic database routing in multi database configurations.

6.13. Settings 721

http://dev.mysql.com/doc/refman/5.0/en/charset-database.html

Django Documentation, Release 1.2.7

DATE_FORMAT

Default: ’N j, Y’ (e.g. Feb. 4, 2003)

The default formatting to use for displaying date fields in any part of the system. Note that if USE_L10N is set
to True, then the locale-dictated format has higher precedence and will be applied instead. See allowed date
format strings. Changed in version 1.2: This setting can now be overriden by setting USE_L10N to True. See
also DATETIME_FORMAT, TIME_FORMAT and SHORT_DATE_FORMAT.

DATE_INPUT_FORMATS

New in version 1.2: Please, see the release notes Default:

(’%Y-%m-%d’, ’%m/%d/%Y’, ’%m/%d/%y’, ’%b %d %Y’,
’%b %d, %Y’, ’%d %b %Y’, ’%d %b, %Y’, ’%B %d %Y’,
’%B %d, %Y’, ’%d %B %Y’, ’%d %B, %Y’)

A tuple of formats that will be accepted when inputting data on a date field. Formats will be tried in order, using the
first valid. Note that these format strings are specified in Python’s datetime module syntax, that is different from the
one used by Django for formatting dates to be displayed.

See also DATETIME_INPUT_FORMATS and TIME_INPUT_FORMATS.

DATETIME_FORMAT

Default: ’N j, Y, P’ (e.g. Feb. 4, 2003, 4 p.m.)

The default formatting to use for displaying datetime fields in any part of the system. Note that if USE_L10N is set
to True, then the locale-dictated format has higher precedence and will be applied instead. See allowed date
format strings. Changed in version 1.2: This setting can now be overriden by setting USE_L10N to True. See
also DATE_FORMAT, TIME_FORMAT and SHORT_DATETIME_FORMAT.

DATETIME_INPUT_FORMATS

New in version 1.2: Please, see the release notes Default:

(’%Y-%m-%d %H:%M:%S’, ’%Y-%m-%d %H:%M’, ’%Y-%m-%d’,
’%m/%d/%Y %H:%M:%S’, ’%m/%d/%Y %H:%M’, ’%m/%d/%Y’,
’%m/%d/%y %H:%M:%S’, ’%m/%d/%y %H:%M’, ’%m/%d/%y’)

A tuple of formats that will be accepted when inputting data on a datetime field. Formats will be tried in order, using
the first valid. Note that these format strings are specified in Python’s datetime module syntax, that is different from
the one used by Django for formatting dates to be displayed.

See also DATE_INPUT_FORMATS and TIME_INPUT_FORMATS.

DEBUG

Default: False

A boolean that turns on/off debug mode.

If you define custom settings, django/views/debug.py has a HIDDEN_SETTINGS regular expression which will hide
from the DEBUG view anything that contains ’SECRET’, ’PASSWORD’, ’PROFANITIES’, or ’SIGNATURE’.
This allows untrusted users to be able to give backtraces without seeing sensitive (or offensive) settings.

722 Chapter 6. API Reference

http://docs.python.org/library/datetime.html#strftime-strptime-behavior
http://docs.python.org/library/datetime.html#strftime-strptime-behavior
http://code.djangoproject.com/browser/django/trunk/django/views/debug.py

Django Documentation, Release 1.2.7

Still, note that there are always going to be sections of your debug output that are inappropriate for public consumption.
File paths, configuration options, and the like all give attackers extra information about your server.

It is also important to remember that when running with DEBUG turned on, Django will remember every SQL query it
executes. This is useful when you are debugging, but on a production server, it will rapidly consume memory.

Never deploy a site into production with DEBUG turned on.

DEBUG_PROPAGATE_EXCEPTIONS

Default: False

If set to True, Django’s normal exception handling of view functions will be suppressed, and exceptions will propagate
upwards. This can be useful for some test setups, and should never be used on a live site.

DECIMAL_SEPARATOR

New in version 1.2: Please, see the release notes Default: ’.’ (Dot)

Default decimal separator used when formatting decimal numbers.

DEFAULT_CHARSET

Default: ’utf-8’

Default charset to use for all HttpResponse objects, if a MIME type isn’t manually specified. Used with
DEFAULT_CONTENT_TYPE to construct the Content-Type header.

DEFAULT_CONTENT_TYPE

Default: ’text/html’

Default content type to use for all HttpResponse objects, if a MIME type isn’t manually specified. Used with
DEFAULT_CHARSET to construct the Content-Type header.

DEFAULT_FILE_STORAGE

Default: django.core.files.storage.FileSystemStorage

Default file storage class to be used for any file-related operations that don’t specify a particular storage system. See
Managing files.

DEFAULT_FROM_EMAIL

Default: ’webmaster@localhost’

Default e-mail address to use for various automated correspondence from the site manager(s).

DEFAULT_INDEX_TABLESPACE

Default: ” (Empty string)

Default tablespace to use for indexes on fields that don’t specify one, if the backend supports it.

6.13. Settings 723

Django Documentation, Release 1.2.7

DEFAULT_TABLESPACE

Default: ” (Empty string)

Default tablespace to use for models that don’t specify one, if the backend supports it.

DISALLOWED_USER_AGENTS

Default: () (Empty tuple)

List of compiled regular expression objects representing User-Agent strings that are not allowed to visit any page, sys-
temwide. Use this for bad robots/crawlers. This is only used if CommonMiddleware is installed (see Middleware).

EMAIL_BACKEND

New in version 1.2: Please, see the release notes Default: ’django.core.mail.backends.smtp.EmailBackend’

The backend to use for sending emails. For the list of available backends see Sending e-mail.

EMAIL_FILE_PATH

New in version 1.2: Please, see the release notes Default: Not defined

The directory used by the file email backend to store output files.

EMAIL_HOST

Default: ’localhost’

The host to use for sending e-mail.

See also EMAIL_PORT.

EMAIL_HOST_PASSWORD

Default: ” (Empty string)

Password to use for the SMTP server defined in EMAIL_HOST. This setting is used in conjunction with
EMAIL_HOST_USER when authenticating to the SMTP server. If either of these settings is empty, Django won’t
attempt authentication.

See also EMAIL_HOST_USER.

EMAIL_HOST_USER

Default: ” (Empty string)

Username to use for the SMTP server defined in EMAIL_HOST. If empty, Django won’t attempt authentication.

See also EMAIL_HOST_PASSWORD.

724 Chapter 6. API Reference

Django Documentation, Release 1.2.7

EMAIL_PORT

Default: 25

Port to use for the SMTP server defined in EMAIL_HOST.

EMAIL_SUBJECT_PREFIX

Default: ’[Django] ’

Subject-line prefix for e-mail messages sent with django.core.mail.mail_admins or
django.core.mail.mail_managers. You’ll probably want to include the trailing space.

EMAIL_USE_TLS

Default: False

Whether to use a TLS (secure) connection when talking to the SMTP server.

FILE_CHARSET

Default: ’utf-8’

The character encoding used to decode any files read from disk. This includes template files and initial SQL data files.

FILE_UPLOAD_HANDLERS

Default:

("django.core.files.uploadhandler.MemoryFileUploadHandler",
"django.core.files.uploadhandler.TemporaryFileUploadHandler",)

A tuple of handlers to use for uploading. See Managing files for details.

FILE_UPLOAD_MAX_MEMORY_SIZE

Default: 2621440 (i.e. 2.5 MB).

The maximum size (in bytes) that an upload will be before it gets streamed to the file system. See Managing files for
details.

FILE_UPLOAD_PERMISSIONS

Default: None

The numeric mode (i.e. 0644) to set newly uploaded files to. For more information about what these modes mean,
see the documentation for os.chmod

If this isn’t given or is None, you’ll get operating-system dependent behavior. On most platforms, temporary files will
have a mode of 0600, and files saved from memory will be saved using the system’s standard umask.

6.13. Settings 725

http://docs.python.org/library/os.html#os.chmod

Django Documentation, Release 1.2.7

Warning: Always prefix the mode with a 0.
If you’re not familiar with file modes, please note that the leading 0 is very important: it indicates an octal number,
which is the way that modes must be specified. If you try to use 644, you’ll get totally incorrect behavior.

FILE_UPLOAD_TEMP_DIR

Default: None

The directory to store data temporarily while uploading files. If None, Django will use the standard temporary
directory for the operating system. For example, this will default to ‘/tmp’ on *nix-style operating systems.

See Managing files for details.

FIRST_DAY_OF_WEEK

New in version 1.2: Please, see the release notes Default: 0 (Sunday)

Number representing the first day of the week. This is especially useful when displaying a calendar. This value is only
used when not using format internationalization, or when a format cannot be found for the current locale.

The value must be an integer from 0 to 6, where 0 means Sunday, 1 means Monday and so on.

FIXTURE_DIRS

Default: () (Empty tuple)

List of locations of the fixture data files, in search order. Note that these paths should use Unix-style forward slashes,
even on Windows. See Testing Django applications.

FORCE_SCRIPT_NAME

Default: None

If not None, this will be used as the value of the SCRIPT_NAME environment variable in any HTTP request. This
setting can be used to override the server-provided value of SCRIPT_NAME, which may be a rewritten version of the
preferred value or not supplied at all.

FORMAT_MODULE_PATH

New in version 1.2: Please, see the release notes Default: None

A full Python path to a Python package that contains format definitions for project locales. If not None, Django will
check for a formats.py file, under the directory named as the current locale, and will use the formats defined on
this file.

For example, if FORMAT_MODULE_PATH is set to mysite.formats, and current language is en (English),
Django will expect a directory tree like:

mysite/
formats/

__init__.py
en/

__init__.py
formats.py

726 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Available formats are DATE_FORMAT, TIME_FORMAT, DATETIME_FORMAT, YEAR_MONTH_FORMAT,
MONTH_DAY_FORMAT, SHORT_DATE_FORMAT, SHORT_DATETIME_FORMAT, FIRST_DAY_OF_WEEK,
DECIMAL_SEPARATOR, THOUSAND_SEPARATOR and NUMBER_GROUPING.

IGNORABLE_404_ENDS

Default: (’mail.pl’, ’mailform.pl’, ’mail.cgi’, ’mailform.cgi’, ’favicon.ico’,
’.php’)

See also IGNORABLE_404_STARTS and Error reporting via e-mail.

IGNORABLE_404_STARTS

Default: (’/cgi-bin/’, ’/_vti_bin’, ’/_vti_inf’)

A tuple of strings that specify beginnings of URLs that should be ignored by the 404 e-mailer. See
SEND_BROKEN_LINK_EMAILS, IGNORABLE_404_ENDS and the Error reporting via e-mail.

INSTALLED_APPS

Default: () (Empty tuple)

A tuple of strings designating all applications that are enabled in this Django installation. Each string should be a full
Python path to a Python package that contains a Django application, as created by django-admin.py startapp.

App names must be unique

The application names (that is, the final dotted part of the path to the module containing models.py) defined
in INSTALLED_APPS must be unique. For example, you can’t include both django.contrib.auth and
myproject.auth in INSTALLED_APPS.

INTERNAL_IPS

Default: () (Empty tuple)

A tuple of IP addresses, as strings, that:

• See debug comments, when DEBUG is True

• Receive X headers if the XViewMiddleware is installed (see Middleware)

LANGUAGE_CODE

Default: ’en-us’

A string representing the language code for this installation. This should be in standard language format. For example,
U.S. English is "en-us". See Internationalization and localization.

6.13. Settings 727

Django Documentation, Release 1.2.7

LANGUAGE_COOKIE_NAME

Default: ’django_language’

The name of the cookie to use for the language cookie. This can be whatever you want (but should be different from
SESSION_COOKIE_NAME). See Internationalization and localization.

LANGUAGES

Default: A tuple of all available languages. This list is continually growing and including a copy here would
inevitably become rapidly out of date. You can see the current list of translated languages by looking in
django/conf/global_settings.py (or view the online source).

The list is a tuple of two-tuples in the format (language code, language name), the language code part
should be a language name – for example, (’ja’, ’Japanese’). This specifies which languages are available
for language selection. See Internationalization and localization.

Generally, the default value should suffice. Only set this setting if you want to restrict language selection to a subset
of the Django-provided languages.

If you define a custom LANGUAGES setting, it’s OK to mark the languages as translation strings (as in the default value
referred to above) – but use a “dummy” gettext() function, not the one in django.utils.translation.
You should never import django.utils.translation from within your settings file, because that module in
itself depends on the settings, and that would cause a circular import.

The solution is to use a “dummy” gettext() function. Here’s a sample settings file:

gettext = lambda s: s

LANGUAGES = (
(’de’, gettext(’German’)),
(’en’, gettext(’English’)),

)

With this arrangement, django-admin.py makemessages will still find and mark these strings for translation,
but the translation won’t happen at runtime – so you’ll have to remember to wrap the languages in the real gettext()
in any code that uses LANGUAGES at runtime.

LOCALE_PATHS

Default: () (Empty tuple)

A tuple of directories where Django looks for translation files. See Using internationalization in your own projects.

LOGIN_REDIRECT_URL

Default: ’/accounts/profile/’

The URL where requests are redirected after login when the contrib.auth.login view gets no next parameter.

This is used by the login_required() decorator, for example.

LOGIN_URL

Default: ’/accounts/login/’

The URL where requests are redirected for login, especially when using the login_required() decorator.

728 Chapter 6. API Reference

http://code.djangoproject.com/browser/django/trunk/django/conf/global_settings.py

Django Documentation, Release 1.2.7

LOGOUT_URL

Default: ’/accounts/logout/’

LOGIN_URL counterpart.

MANAGERS

Default: () (Empty tuple)

A tuple in the same format as ADMINS that specifies who should get broken-link notifications when
SEND_BROKEN_LINK_EMAILS=True.

MEDIA_ROOT

Default: ” (Empty string)

Absolute path to the directory that holds media for this installation. Example:
"/home/media/media.lawrence.com/" See also MEDIA_URL.

MEDIA_URL

Default: ” (Empty string)

URL that handles the media served from MEDIA_ROOT. Example: "http://media.lawrence.com"

Note that this should have a trailing slash if it has a path component.

Good: "http://www.example.com/static/" Bad: "http://www.example.com/static"

MESSAGE_LEVEL

New in version 1.2: Please, see the release notes Default: messages.INFO

Sets the minimum message level that will be recorded by the messages framework. See the messages documentation
for more details.

MESSAGE_STORAGE

New in version 1.2: Please, see the release notes Default: ’django.contrib.messages.storage.user_messages.LegacyFallbackStorage’

Controls where Django stores message data. See the messages documentation for more details.

MESSAGE_TAGS

New in version 1.2: Please, see the release notes Default:

{messages.DEBUG: ’debug’,
messages.INFO: ’info’,
messages.SUCCESS: ’success’,
messages.WARNING: ’warning’,
messages.ERROR: ’error’,}

Sets the mapping of message levels to message tags. See the messages documentation for more details.

6.13. Settings 729

Django Documentation, Release 1.2.7

MIDDLEWARE_CLASSES

Default:

(’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.middleware.csrf.CsrfViewMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’django.contrib.messages.middleware.MessageMiddleware’,)

A tuple of middleware classes to use. See Middleware. Changed in version 1.2:
’django.contrib.messages.middleware.MessageMiddleware’ was added to the default. For
more information, see the messages documentation.

MONTH_DAY_FORMAT

Default: ’F j’

The default formatting to use for date fields on Django admin change-list pages – and, possibly, by other parts of the
system – in cases when only the month and day are displayed.

For example, when a Django admin change-list page is being filtered by a date drilldown, the header for a given day
displays the day and month. Different locales have different formats. For example, U.S. English would say “January
1,” whereas Spanish might say “1 Enero.”

See allowed date format strings. See also DATE_FORMAT, DATETIME_FORMAT, TIME_FORMAT and
YEAR_MONTH_FORMAT.

NUMBER_GROUPING

New in version 1.2: Please, see the release notes Default: 0

Number of digits grouped together on the integer part of a number. Common use is to display a thousand separator.
If this setting is 0, then, no grouping will be applied to the number. If this setting is greater than 0 then the setting
THOUSAND_SEPARATOR will be used as the separator between those groups.

See also THOUSAND_SEPARATOR and USE_THOUSAND_SEPARATOR.

PASSWORD_RESET_TIMEOUT_DAYS

Default: 3

The number of days a password reset link is valid for. Used by the django.contrib.auth password reset
mechanism.

PREPEND_WWW

Default: False

Whether to prepend the “www.” subdomain to URLs that don’t have it. This is only used if CommonMiddleware is
installed (see Middleware). See also APPEND_SLASH.

730 Chapter 6. API Reference

Django Documentation, Release 1.2.7

PROFANITIES_LIST

A tuple of profanities, as strings, that will trigger a validation error when the hasNoProfanities validator is
called.

We don’t list the default values here, because that would be profane. To see the default values, see the file
django/conf/global_settings.py.

RESTRUCTUREDTEXT_FILTER_SETTINGS

Default: {}

A dictionary containing settings for the restructuredtext markup filter from the django.contrib.markup appli-
cation. They override the default writer settings. See the Docutils restructuredtext writer settings docs for details.

ROOT_URLCONF

Default: Not defined

A string representing the full Python import path to your root URLconf. For example: "mydjangoapps.urls".
Can be overridden on a per-request basis by setting the attribute urlconf on the incoming HttpRequest object.
See How Django processes a request for details.

SECRET_KEY

Default: ” (Empty string)

A secret key for this particular Django installation. Used to provide a seed in secret-key hashing algorithms. Set this
to a random string – the longer, the better. django-admin.py startproject creates one automatically.

SEND_BROKEN_LINK_EMAILS

Default: False

Whether to send an e-mail to the MANAGERS each time somebody visits a Django-powered page that is 404ed with a
non-empty referer (i.e., a broken link). This is only used if CommonMiddleware is installed (see Middleware. See
also IGNORABLE_404_STARTS, IGNORABLE_404_ENDS and Error reporting via e-mail.

SERIALIZATION_MODULES

Default: Not defined.

A dictionary of modules containing serializer definitions (provided as strings), keyed by a string identifier for that
serialization type. For example, to define a YAML serializer, use:

SERIALIZATION_MODULES = { ’yaml’ : ’path.to.yaml_serializer’ }

SERVER_EMAIL

Default: ’root@localhost’

The e-mail address that error messages come from, such as those sent to ADMINS and MANAGERS.

6.13. Settings 731

http://code.djangoproject.com/browser/django/trunk/django/conf/global_settings.py
http://docutils.sourceforge.net/docs/user/config.html#html4css1-writer

Django Documentation, Release 1.2.7

SESSION_COOKIE_AGE

Default: 1209600 (2 weeks, in seconds)

The age of session cookies, in seconds. See How to use sessions.

SESSION_COOKIE_DOMAIN

Default: None

The domain to use for session cookies. Set this to a string such as ".lawrence.com" for cross-domain cookies, or
use None for a standard domain cookie. See the How to use sessions.

SESSION_COOKIE_NAME

Default: ’sessionid’

The name of the cookie to use for sessions. This can be whatever you want (but should be different from
LANGUAGE_COOKIE_NAME). See the How to use sessions.

SESSION_COOKIE_PATH

Default: ’/’

The path set on the session cookie. This should either match the URL path of your Django installation or be parent of
that path.

This is useful if you have multiple Django instances running under the same hostname. They can use different cookie
paths, and each instance will only see its own session cookie.

SESSION_COOKIE_SECURE

Default: False

Whether to use a secure cookie for the session cookie. If this is set to True, the cookie will be marked as “secure,”
which means browsers may ensure that the cookie is only sent under an HTTPS connection. See the How to use
sessions.

SESSION_ENGINE

Changed in version 1.1: The cached_db backend was added Default:
django.contrib.sessions.backends.db

Controls where Django stores session data. Valid values are:

• ’django.contrib.sessions.backends.db’

• ’django.contrib.sessions.backends.file’

• ’django.contrib.sessions.backends.cache’

• ’django.contrib.sessions.backends.cached_db’

See How to use sessions.

732 Chapter 6. API Reference

Django Documentation, Release 1.2.7

SESSION_EXPIRE_AT_BROWSER_CLOSE

Default: False

Whether to expire the session when the user closes his or her browser. See the How to use sessions.

SESSION_FILE_PATH

Default: None

If you’re using file-based session storage, this sets the directory in which Django will store session data. See How to
use sessions. When the default value (None) is used, Django will use the standard temporary directory for the system.

SESSION_SAVE_EVERY_REQUEST

Default: False

Whether to save the session data on every request. See How to use sessions.

SHORT_DATE_FORMAT

New in version 1.2: Please, see the release notes Default: m/d/Y (e.g. 12/31/2003)

An available formatting that can be used for displaying date fields on templates. Note that if USE_L10N is set
to True, then the corresponding locale-dictated format has higher precedence and will be applied. See allowed
date format strings.

See also DATE_FORMAT and SHORT_DATETIME_FORMAT.

SHORT_DATETIME_FORMAT

New in version 1.2: Please, see the release notes Default: m/d/Y P (e.g. 12/31/2003 4 p.m.)

An available formatting that can be used for displaying datetime fields on templates. Note that if USE_L10N is set
to True, then the corresponding locale-dictated format has higher precedence and will be applied. See allowed
date format strings.

See also DATE_FORMAT and SHORT_DATETIME_FORMAT.

SITE_ID

Default: Not defined

The ID, as an integer, of the current site in the django_site database table. This is used so that application data
can hook into specific site(s) and a single database can manage content for multiple sites.

See The “sites” framework.

TEMPLATE_CONTEXT_PROCESSORS

Default:

6.13. Settings 733

Django Documentation, Release 1.2.7

("django.contrib.auth.context_processors.auth",
"django.core.context_processors.debug",
"django.core.context_processors.i18n",
"django.core.context_processors.media",
"django.contrib.messages.context_processors.messages")

A tuple of callables that are used to populate the context in RequestContext. These callables take a re-
quest object as their argument and return a dictionary of items to be merged into the context. Changed in
version 1.2: "django.contrib.messages.context_processors.messages" was added to the de-
fault. For more information, see the messages documentation.Changed in version 1.2: The auth context pro-
cessor was moved in this release from its old location django.core.context_processors.auth to
django.contrib.auth.context_processors.auth.

TEMPLATE_DEBUG

Default: False

A boolean that turns on/off template debug mode. If this is True, the fancy error page will display a detailed report
for any TemplateSyntaxError. This report contains the relevant snippet of the template, with the appropriate
line highlighted.

Note that Django only displays fancy error pages if DEBUG is True, so you’ll want to set that to take advantage of
this setting.

See also DEBUG.

TEMPLATE_DIRS

Default: () (Empty tuple)

List of locations of the template source files, in search order. Note that these paths should use Unix-style forward
slashes, even on Windows.

See The Django template language.

TEMPLATE_LOADERS

Default:

(’django.template.loaders.filesystem.Loader’,
’django.template.loaders.app_directories.Loader’)

A tuple of template loader classes, specified as strings. Each Loader class knows how to import templates from a
particular source. Optionally, a tuple can be used instead of a string. The first item in the tuple should be the Loader‘s
module, subsequent items are passed to the Loader during initialization. See The Django template language: For
Python programmers. Changed in version 1.2: The class-based API for template loaders was introduced in Django 1.2
although the TEMPLATE_LOADERS setting will accept strings that specify function-based loaders until compatibility
with them is completely removed in Django 1.4.

TEMPLATE_STRING_IF_INVALID

Default: ” (Empty string)

Output, as a string, that the template system should use for invalid (e.g. misspelled) variables. See How invalid
variables are handled..

734 Chapter 6. API Reference

Django Documentation, Release 1.2.7

TEST_RUNNER

Default: ’django.test.simple.DjangoTestSuiteRunner’ Changed in version 1.2: Prior to 1.2, test
runners were a function, not a class. The name of the class to use for starting the test suite. See Testing Django
applications.

THOUSAND_SEPARATOR

New in version 1.2: Please, see the release notes Default , (Comma)

Default thousand separator used when formatting numbers. This setting is used only when NUMBER_GROUPING and
USE_THOUSAND_SEPARATOR are set.

See also NUMBER_GROUPING, DECIMAL_SEPARATOR and USE_THOUSAND_SEPARATOR.

TIME_FORMAT

Default: ’P’ (e.g. 4 p.m.)

The default formatting to use for displaying time fields in any part of the system. Note that if USE_L10N is set
to True, then the locale-dictated format has higher precedence and will be applied instead. See allowed date
format strings. Changed in version 1.2: This setting can now be overriden by setting USE_L10N to True. See
also DATE_FORMAT and DATETIME_FORMAT.

TIME_INPUT_FORMATS

New in version 1.2: Please, see the release notes Default: (’%H:%M:%S’, ’%H:%M’)

A tuple of formats that will be accepted when inputting data on a time field. Formats will be tried in order, using the
first valid. Note that these format strings are specified in Python’s datetime module syntax, that is different from the
one used by Django for formatting dates to be displayed.

See also DATE_INPUT_FORMATS and DATETIME_INPUT_FORMATS.

TIME_ZONE

Default: ’America/Chicago’Changed in version 1.2: Nonewas added as an allowed value. A string representing
the time zone for this installation, or None. See available choices. (Note that list of available choices lists more than
one on the same line; you’ll want to use just one of the choices for a given time zone. For instance, one line says
’Europe/London GB GB-Eire’, but you should use the first bit of that – ’Europe/London’ – as your
TIME_ZONE setting.)

Note that this is the time zone to which Django will convert all dates/times – not necessarily the timezone of the server.
For example, one server may serve multiple Django-powered sites, each with a separate time-zone setting.

Normally, Django sets the os.environ[’TZ’] variable to the time zone you specify in the TIME_ZONE setting.
Thus, all your views and models will automatically operate in the correct time zone. However, Django won’t set the
TZ environment variable under the following conditions:

• If you’re using the manual configuration option as described in manually configuring settings, or

• If you specify TIME_ZONE = None. This will cause Django to fall back to using the system timezone.

If Django doesn’t set the TZ environment variable, it’s up to you to ensure your processes are running in the correct
environment.

6.13. Settings 735

http://docs.python.org/library/datetime.html#strftime-strptime-behavior
http://www.postgresql.org/docs/8.1/static/datetime-keywords.html#DATETIME-TIMEZONE-SET-TABLE

Django Documentation, Release 1.2.7

Note: Django cannot reliably use alternate time zones in a Windows environment. If you’re running Django on
Windows, this variable must be set to match the system timezone.

URL_VALIDATOR_USER_AGENT

Default: Django/<version> (http://www.djangoproject.com/)

The string to use as the User-Agent header when checking to see if URLs exist (see the verify_exists option
on URLField).

USE_ETAGS

Default: False

A boolean that specifies whether to output the “Etag” header. This saves bandwidth but slows down performance. This
is only used if CommonMiddleware is installed (see Middleware).

USE_I18N

Default: True

A boolean that specifies whether Django’s internationalization system should be enabled. This provides an easy way
to turn it off, for performance. If this is set to False, Django will make some optimizations so as not to load the
internationalization machinery.

See also USE_L10N

USE_L10N

New in version 1.2: Please, see the release notes Default False

A boolean that specifies if data will be localized by default or not. If this is set to True, e.g. Django will display
numbers and dates using the format of the current locale.

See also USE_I18N and LANGUAGE_CODE

USE_THOUSAND_SEPARATOR

New in version 1.2: Please, see the release notes Default False

A boolean that specifies wheter to display numbers using a thousand separator. If this is set to True, Django will
use values from THOUSAND_SEPARATOR and NUMBER_GROUPING from current locale, to format the number.
USE_L10N must be set to True, in order to format numbers.

See also THOUSAND_SEPARATOR and NUMBER_GROUPING.

USE_X_FORWARDED_HOST

New in version 1.3.1: Please, see the release notes Default: False

A boolean that specifies whether to use the X-Forwarded-Host header in preference to the Host header. This should
only be enabled if a proxy which sets this header is in use.

736 Chapter 6. API Reference

Django Documentation, Release 1.2.7

YEAR_MONTH_FORMAT

Default: ’F Y’

The default formatting to use for date fields on Django admin change-list pages – and, possibly, by other parts of the
system – in cases when only the year and month are displayed.

For example, when a Django admin change-list page is being filtered by a date drilldown, the header for a given
month displays the month and the year. Different locales have different formats. For example, U.S. English would say
“January 2006,” whereas another locale might say “2006/January.”

See allowed date format strings. See also DATE_FORMAT, DATETIME_FORMAT, TIME_FORMAT and
MONTH_DAY_FORMAT.

6.13.2 Deprecated settings

DATABASE_ENGINE

Deprecated since version 1.2: This setting has been replaced by ENGINE in DATABASES.

DATABASE_HOST

Deprecated since version 1.2: This setting has been replaced by HOST in DATABASES.

DATABASE_NAME

Deprecated since version 1.2: This setting has been replaced by NAME in DATABASES.

DATABASE_OPTIONS

Deprecated since version 1.2: This setting has been replaced by OPTIONS in DATABASES.

DATABASE_PASSWORD

Deprecated since version 1.2: This setting has been replaced by PASSWORD in DATABASES.

DATABASE_PORT

Deprecated since version 1.2: This setting has been replaced by PORT in DATABASES.

DATABASE_USER

Deprecated since version 1.2: This setting has been replaced by USER in DATABASES.

TEST_DATABASE_CHARSET

Deprecated since version 1.2: This setting has been replaced by TEST_CHARSET in DATABASES.

6.13. Settings 737

Django Documentation, Release 1.2.7

TEST_DATABASE_COLLATION

Deprecated since version 1.2: This setting has been replaced by TEST_COLLATION in DATABASES.

TEST_DATABASE_NAME

Deprecated since version 1.2: This setting has been replaced by TEST_NAME in DATABASES.

6.14 Signals

A list of all the signals that Django sends.

See Also:

See the documentation on the signal dispatcher for information regarding how to register for and receive signals.

The comment framework sends a set of comment-related signals.

6.14.1 Model signals

The django.db.models.signals module defines a set of signals sent by the module system.

Warning: Many of these signals are sent by various model methods like __init__() or save() that you can
overwrite in your own code.
If you override these methods on your model, you must call the parent class’ methods for this signals to be sent.
Note also that Django stores signal handlers as weak references by default, so if your handler is a local function, it
may be garbage collected. To prevent this, pass weak=False when you call the signal’s connect().

pre_init

django.db.models.signals.pre_init

Whenever you instantiate a Django model„ this signal is sent at the beginning of the model’s __init__() method.

Arguments sent with this signal:

sender The model class that just had an instance created.

args A list of positional arguments passed to __init__():

kwargs A dictionary of keyword arguments passed to __init__():.

For example, the tutorial has this line:

p = Poll(question="What’s up?", pub_date=datetime.now())

The arguments sent to a pre_init handler would be:

Argument Value
sender Poll (the class itself)
args [] (an empty list because there were no positional arguments passed to __init__.)
kwargs {’question’: "What’s up?", ’pub_date’: datetime.now()}

738 Chapter 6. API Reference

Django Documentation, Release 1.2.7

post_init

django.db.models.signals.post_init

Like pre_init, but this one is sent when the __init__(): method finishes.

Arguments sent with this signal:

sender As above: the model class that just had an instance created.

instance The actual instance of the model that’s just been created.

pre_save

django.db.models.signals.pre_save

This is sent at the beginning of a model’s save() method.

Arguments sent with this signal:

sender The model class.

instance The actual instance being saved.

post_save

django.db.models.signals.post_save

Like pre_save, but sent at the end of the save() method.

Arguments sent with this signal:

sender The model class.

instance The actual instance being saved.

created A boolean; True if a new record was created.

pre_delete

django.db.models.signals.pre_delete

Sent at the beginning of a model’s delete() method.

Arguments sent with this signal:

sender The model class.

instance The actual instance being deleted.

post_delete

django.db.models.signals.post_delete

Like pre_delete, but sent at the end of the delete() method.

Arguments sent with this signal:

sender The model class.

6.14. Signals 739

Django Documentation, Release 1.2.7

instance The actual instance being deleted.

Note that the object will no longer be in the database, so be very careful what you do with this instance.

m2m_changed

django.db.models.signals.m2m_changed

New in version 1.2: Please, see the release notes Sent when a ManyToManyField is changed on a model instance.
Strictly speaking, this is not a model signal since it is sent by the ManyToManyField, but since it complements
the pre_save/post_save and pre_delete/post_delete when it comes to tracking changes to models, it is
included here.

Arguments sent with this signal:

sender The intermediate model class describing the ManyToManyField. This class is automatically created
when a many-to-many field is defined; you can access it using the through attribute on the many-to-many
field.

instance The instance whose many-to-many relation is updated. This can be an instance of the sender, or of the
class the ManyToManyField is related to.

action A string indicating the type of update that is done on the relation. This can be one of the following:

"pre_add" Sent before one or more objects are added to the relation

"post_add" Sent after one or more objects are added to the relation

"pre_remove" Sent after one or more objects are removed from the relation

"post_remove" Sent after one or more objects are removed from the relation

"pre_clear" Sent before the relation is cleared

"post_clear" Sent after the relation is cleared

reverse Indicates which side of the relation is updated (i.e., if it is the forward or reverse relation that is being
modified).

model The class of the objects that are added to, removed from or cleared from the relation.

pk_set For the pre_add, post_add, pre_remove and post_remove actions, this is a list of primary key
values that have been added to or removed from the relation.

For the pre_clear and post_clear actions, this is None.

For example, if a Pizza can have multiple Topping objects, modeled like this:

class Topping(models.Model):
...

class Pizza(models.Model):
...
toppings = models.ManyToManyField(Topping)

If we would do something like this:

>>> p = Pizza.object.create(...)
>>> t = Topping.objects.create(...)
>>> p.toppings.add(t)

the arguments sent to a m2m_changed handler would be:

740 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Argument Value
sender Pizza.toppings.through (the intermediate m2m class)
instance p (the Pizza instance being modified)
action "pre_add" (followed by a separate signal with "post_add")
reverse False (Pizza contains the ManyToManyField, so this call modifies the forward relation)
model Topping (the class of the objects added to the Pizza)
pk_set [t.id] (since only Topping t was added to the relation)

And if we would then do something like this:

>>> t.pizza_set.remove(p)

the arguments sent to a m2m_changed handler would be:

Argument Value
sender Pizza.toppings.through (the intermediate m2m class)
instance t (the Topping instance being modified)
action "pre_remove" (followed by a separate signal with "post_remove")
reverse True (Pizza contains the ManyToManyField, so this call modifies the reverse relation)
model Pizza (the class of the objects removed from the Topping)
pk_set [p.id] (since only Pizza p was removed from the relation)

class_prepared

django.db.models.signals.class_prepared

Sent whenever a model class has been “prepared” – that is, once model has been defined and registered with Django’s
model system. Django uses this signal internally; it’s not generally used in third-party applications.

Arguments that are sent with this signal:

sender The model class which was just prepared.

6.14.2 Management signals

Signals sent by django-admin.

post_syncdb

django.db.models.signals.post_syncdb

Sent by syncdb after it installs an application.

Any handlers that listen to this signal need to be written in a particular place: a management module in one of your
INSTALLED_APPS. If handlers are registered anywhere else they may not be loaded by syncdb.

Arguments sent with this signal:

sender The models module that was just installed. That is, if syncdb just installed an app called
"foo.bar.myapp", sender will be the foo.bar.myapp.models module.

app Same as sender.

created_models A list of the model classes from any app which syncdb has created so far.

verbosity Indicates how much information manage.py is printing on screen. See the --verbosity flag for
details.

6.14. Signals 741

Django Documentation, Release 1.2.7

Functions which listen for post_syncdb should adjust what they output to the screen based on the value of
this argument.

interactive If interactive is True, it’s safe to prompt the user to input things on the command line. If
interactive is False, functions which listen for this signal should not try to prompt for anything.

For example, the django.contrib.auth app only prompts to create a superuser when interactive is
True.

For example, yourapp/signals/__init__.py could be written like:

from django.db.models.signals import post_syncdb
import yourapp.models

def my_callback(sender, **kwargs):
Your specific logic here
pass

post_syncdb.connect(my_callback, sender=yourapp.models)

6.14.3 Request/response signals

Signals sent by the core framework when processing a request.

request_started

django.core.signals.request_started

Sent when Django begins processing an HTTP request.

Arguments sent with this signal:

sender The handler class – i.e. django.core.handlers.modpython.ModPythonHandler or
django.core.handlers.wsgi.WsgiHandler – that handled the request.

request_finished

django.core.signals.request_finished

Sent when Django finishes processing an HTTP request.

Arguments sent with this signal:

sender The handler class, as above.

got_request_exception

django.core.signals.got_request_exception

This signal is sent whenever Django encounters an exception while processing an incoming HTTP request.

Arguments sent with this signal:

sender The handler class, as above.

request The HttpRequest object.

742 Chapter 6. API Reference

Django Documentation, Release 1.2.7

6.14.4 Test signals

Signals only sent when running tests.

template_rendered

django.test.signals.template_rendered

Sent when the test system renders a template. This signal is not emitted during normal operation of a Django server –
it is only available during testing.

Arguments sent with this signal:

sender The Template object which was rendered.

template Same as sender

context The Context with which the template was rendered.

6.14.5 Database Wrappers

Signals sent by the database wrapper when a database connection is initiated.

connection_created

django.db.backends.signals.connection_created

New in version 1.1: Please, see the release notesChanged in version 1.2: The connection argument was added Sent
when the database wrapper makes the initial connection to the database. This is particularly useful if you’d like to
send any post connection commands to the SQL backend.

Arguments sent with this signal:

sender The database wrapper class – i.e. django.db.backends.postgresql_psycopg2.DatabaseWrapper
or django.db.backends.mysql.DatabaseWrapper, etc.

connection The database connection that was opened. This can be used in a multiple-database configuration to
differentiate connection signals from different databases.

6.15 Templates

Django’s template engine provides a powerful mini-language for defining the user-facing layer of your application,
encouraging a clean separation of application and presentation logic. Templates can be maintained by anyone with an
understanding of HTML; no knowledge of Python is required.

6.15.1 Built-in template tags and filters

This document describes Django’s built-in template tags and filters. It is recommended that you use the automatic
documentation, if available, as this will also include documentation for any custom tags or filters installed.

6.15. Templates 743

Django Documentation, Release 1.2.7

Built-in tag reference

autoescape

Control the current auto-escaping behavior. This tag takes either on or off as an argument and that determines
whether auto-escaping is in effect inside the block. The block is closed with an endautoescape ending tag.

When auto-escaping is in effect, all variable content has HTML escaping applied to it before placing the result into
the output (but after any filters have been applied). This is equivalent to manually applying the escape filter to each
variable.

The only exceptions are variables that are already marked as “safe” from escaping, either by the code that populated
the variable, or because it has had the safe or escape filters applied.

Sample usage:

{% autoescape on %}
{{ body }}

{% endautoescape %}

block

Define a block that can be overridden by child templates. See Template inheritance for more information.

comment

Ignore everything between {% comment %} and {% endcomment %}

csrf_token

New in version 1.1.2: Please, see the release notes In the Django 1.1.X series, this is a no-op tag that returns an empty
string for future compatibility purposes. In Django 1.2 and later, it is used for CSRF protection, as described in the
documentation for Cross Site Request Forgeries.

cycle

Cycle among the given strings or variables each time this tag is encountered.

Within a loop, cycles among the given strings each time through the loop:

{% for o in some_list %}
<tr class="{% cycle ’row1’ ’row2’ %}">

...
</tr>

{% endfor %}

You can use variables, too. For example, if you have two template variables, rowvalue1 and rowvalue2, you can
cycle between their values like this:

{% for o in some_list %}
<tr class="{% cycle rowvalue1 rowvalue2 %}">

...
</tr>

{% endfor %}

744 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Yes, you can mix variables and strings:

{% for o in some_list %}
<tr class="{% cycle ’row1’ rowvalue2 ’row3’ %}">

...
</tr>

{% endfor %}

In some cases you might want to refer to the next value of a cycle from outside of a loop. To do this, just give the {%
cycle %} tag a name, using “as”, like this:

{% cycle ’row1’ ’row2’ as rowcolors %}

From then on, you can insert the current value of the cycle wherever you’d like in your template:

<tr class="{% cycle rowcolors %}">...</tr>
<tr class="{% cycle rowcolors %}">...</tr>

You can use any number of values in a {% cycle %} tag, separated by spaces. Values enclosed in single (’) or
double quotes (") are treated as string literals, while values without quotes are treated as template variables.

Note that the variables included in the cycle will not be escaped. This is because template tags do not escape their
content. Any HTML or Javascript code contained in the printed variable will be rendered as-is, which could potentially
lead to security issues.

If you need to escape the variables in the cycle, you must do so explicitly:

{% filter force_escape %}
{% cycle var1 var2 var3 %}

{% endfilter %}

For backwards compatibility, the {% cycle %} tag supports the much inferior old syntax from previous Django
versions. You shouldn’t use this in any new projects, but for the sake of the people who are still using it, here’s what
it looks like:

{% cycle row1,row2,row3 %}

In this syntax, each value gets interpreted as a literal string, and there’s no way to specify variable values. Or literal
commas. Or spaces. Did we mention you shouldn’t use this syntax in any new projects?

debug

Output a whole load of debugging information, including the current context and imported modules.

extends

Signal that this template extends a parent template.

This tag can be used in two ways:

• {% extends "base.html" %} (with quotes) uses the literal value "base.html" as the name of the
parent template to extend.

• {% extends variable %} uses the value of variable. If the variable evaluates to a string, Django will
use that string as the name of the parent template. If the variable evaluates to a Template object, Django will
use that object as the parent template.

See Template inheritance for more information.

6.15. Templates 745

Django Documentation, Release 1.2.7

filter

Filter the contents of the variable through variable filters.

Filters can also be piped through each other, and they can have arguments – just like in variable syntax.

Sample usage:

{% filter force_escape|lower %}
This text will be HTML-escaped, and will appear in all lowercase.

{% endfilter %}

firstof

Outputs the first variable passed that is not False, without escaping.

Outputs nothing if all the passed variables are False.

Sample usage:

{% firstof var1 var2 var3 %}

This is equivalent to:

{% if var1 %}
{{ var1|safe }}

{% else %}{% if var2 %}
{{ var2|safe }}

{% else %}{% if var3 %}
{{ var3|safe }}

{% endif %}{% endif %}{% endif %}

You can also use a literal string as a fallback value in case all passed variables are False:

{% firstof var1 var2 var3 "fallback value" %}

Note that the variables included in the firstof tag will not be escaped. This is because template tags do not escape
their content. Any HTML or Javascript code contained in the printed variable will be rendered as-is, which could
potentially lead to security issues.

If you need to escape the variables in the firstof tag, you must do so explicitly:

{% filter force_escape %}
{% firstof var1 var2 var3 "fallback value" %}

{% endfilter %}

for

Loop over each item in an array. For example, to display a list of athletes provided in athlete_list:

{% for athlete in athlete_list %}

{{ athlete.name }}
{% endfor %}

You can loop over a list in reverse by using {% for obj in list reversed %}.

746 Chapter 6. API Reference

Django Documentation, Release 1.2.7

If you need to loop over a list of lists, you can unpack the values in each sub-list into individual variables. For example,
if your context contains a list of (x,y) coordinates called points, you could use the following to output the list of
points:

{% for x, y in points %}
There is a point at {{ x }},{{ y }}

{% endfor %}

This can also be useful if you need to access the items in a dictionary. For example, if your context contained a
dictionary data, the following would display the keys and values of the dictionary:

{% for key, value in data.items %}
{{ key }}: {{ value }}

{% endfor %}

The for loop sets a number of variables available within the loop:

Variable Description
forloop.counter The current iteration of the loop (1-indexed)
forloop.counter0 The current iteration of the loop (0-indexed)
forloop.revcounter The number of iterations from the end of the loop (1-indexed)
forloop.revcounter0 The number of iterations from the end of the loop (0-indexed)
forloop.first True if this is the first time through the loop
forloop.last True if this is the last time through the loop
forloop.parentloop For nested loops, this is the loop “above” the current one

for ... empty New in version 1.1: Please, see the release notes The for tag can take an optional {% empty %}
clause that will be displayed if the given array is empty or could not be found:

{% for athlete in athlete_list %}

{{ athlete.name }}
{% empty %}

Sorry, no athlete in this list!
{% endfor %}

The above is equivalent to – but shorter, cleaner, and possibly faster than – the following:

{% if athlete_list %}
{% for athlete in athlete_list %}
{{ athlete.name }}

{% endfor %}
{% else %}
Sorry, no athletes in this list.

{% endif %}

if

The {% if %} tag evaluates a variable, and if that variable is “true” (i.e. exists, is not empty, and is not a false
boolean value) the contents of the block are output:

{% if athlete_list %}
Number of athletes: {{ athlete_list|length }}

{% else %}

6.15. Templates 747

Django Documentation, Release 1.2.7

No athletes.
{% endif %}

In the above, if athlete_list is not empty, the number of athletes will be displayed by the {{
athlete_list|length }} variable.

As you can see, the if tag can take an optional {% else %} clause that will be displayed if the test fails.

Boolean operators if tags may use and, or or not to test a number of variables or to negate a given variable:

{% if athlete_list and coach_list %}
Both athletes and coaches are available.

{% endif %}

{% if not athlete_list %}
There are no athletes.

{% endif %}

{% if athlete_list or coach_list %}
There are some athletes or some coaches.

{% endif %}

{% if not athlete_list or coach_list %}
There are no athletes or there are some coaches (OK, so
writing English translations of boolean logic sounds
stupid; it’s not our fault).

{% endif %}

{% if athlete_list and not coach_list %}
There are some athletes and absolutely no coaches.

{% endif %}

Changed in version 1.2: Please, see the release notes Use of both and and or clauses within the same tag is allowed,
with and having higher precedence than or e.g.:

{% if athlete_list and coach_list or cheerleader_list %}

will be interpreted like:

if (athlete_list and coach_list) or cheerleader_list

Use of actual brackets in the if tag is invalid syntax. If you need them to indicate precedence, you should use nested
if tags. New in version 1.2: Please, see the release notes if tags may also use the operators ==, !=, <, >, <=, >=
and in which work as follows:

== operator Equality. Example:

{% if somevar == "x" %}
This appears if variable somevar equals the string "x"

{% endif %}

!= operator Inequality. Example:

{% if somevar != "x" %}
This appears if variable somevar does not equal the string "x",
or if somevar is not found in the context

{% endif %}

748 Chapter 6. API Reference

Django Documentation, Release 1.2.7

< operator Less than. Example:

{% if somevar < 100 %}
This appears if variable somevar is less than 100.

{% endif %}

> operator Greater than. Example:

{% if somevar > 0 %}
This appears if variable somevar is greater than 0.

{% endif %}

<= operator Less than or equal to. Example:

{% if somevar <= 100 %}
This appears if variable somevar is less than 100 or equal to 100.

{% endif %}

>= operator Greater than or equal to. Example:

{% if somevar >= 1 %}
This appears if variable somevar is greater than 1 or equal to 1.

{% endif %}

in operator Contained within. This operator is supported by many Python containers to test whether the given
value is in the container. The following are some examples of how x in y will be interpreted:

{% if "bc" in "abcdef" %}
This appears since "bc" is a substring of "abcdef"

{% endif %}

{% if "hello" in greetings %}
If greetings is a list or set, one element of which is the string
"hello", this will appear.

{% endif %}

{% if user in users %}
If users is a QuerySet, this will appear if user is an
instance that belongs to the QuerySet.

{% endif %}

not in operator

Not contained within. This is the negation of the in operator.

The comparison operators cannot be ‘chained’ like in Python or in mathematical notation. For example, instead of
using:

{% if a > b > c %} (WRONG)

you should use:

{% if a > b and b > c %}

6.15. Templates 749

Django Documentation, Release 1.2.7

Filters You can also use filters in the if expression. For example:

{% if messages|length >= 100 %}
You have lots of messages today!

{% endif %}

Complex expressions All of the above can be combined to form complex expressions. For such expressions, it can
be important to know how the operators are grouped when the expression is evaluated - that is, the precedence rules.
The precedence of the operators, from lowest to highest, is as follows:

• or

• and

• not

• in

• ==, !=, <, >,‘‘<=‘‘, >=

(This follows Python exactly). So, for example, the following complex if tag:

{% if a == b or c == d and e %}

...will be interpreted as:

(a == b) or ((c == d) and e)

If you need different precedence, you will need to use nested if tags. Sometimes that is better for clarity anyway, for
the sake of those who do not know the precedence rules.

ifchanged

Check if a value has changed from the last iteration of a loop.

The ‘ifchanged’ block tag is used within a loop. It has two possible uses.

1. Checks its own rendered contents against its previous state and only displays the content if it has changed. For
example, this displays a list of days, only displaying the month if it changes:

<h1>Archive for {{ year }}</h1>

{% for date in days %}
{% ifchanged %}<h3>{{ date|date:"F" }}</h3>{% endifchanged %}
{{ date|date:"j" }}

{% endfor %}

2. If given a variable, check whether that variable has changed. For example, the following shows the date every
time it changes, but only shows the hour if both the hour and the date has changed:

{% for date in days %}
{% ifchanged date.date %} {{ date.date }} {% endifchanged %}
{% ifchanged date.hour date.date %}

{{ date.hour }}
{% endifchanged %}

{% endfor %}

The ifchanged tag can also take an optional {% else %} clause that will be displayed if the value has not
changed:

750 Chapter 6. API Reference

Django Documentation, Release 1.2.7

{% for match in matches %}
<div style="background-color:

{% ifchanged match.ballot_id %}
{% cycle "red" "blue" %}

{% else %}
grey

{% endifchanged %}
">{{ match }}</div>

{% endfor %}

ifequal

Output the contents of the block if the two arguments equal each other.

Example:

{% ifequal user.id comment.user_id %}
...

{% endifequal %}

As in the {% if %} tag, an {% else %} clause is optional.

The arguments can be hard-coded strings, so the following is valid:

{% ifequal user.username "adrian" %}
...

{% endifequal %}

It is only possible to compare an argument to template variables or strings. You cannot check for equality with Python
objects such as True or False. If you need to test if something is true or false, use the if tag instead. New in
version 1.2: An alternative to the ifequal tag is to use the if tag and the == operator.

ifnotequal

Just like ifequal, except it tests that the two arguments are not equal. New in version 1.2: An alternative to the
ifnotequal tag is to use the if tag and the != operator.

include

Loads a template and renders it with the current context. This is a way of “including” other templates within a template.

The template name can either be a variable or a hard-coded (quoted) string, in either single or double quotes.

This example includes the contents of the template "foo/bar.html":

{% include "foo/bar.html" %}

This example includes the contents of the template whose name is contained in the variable template_name:

{% include template_name %}

An included template is rendered with the context of the template that’s including it. This example produces the output
"Hello, John":

• Context: variable person is set to "john".

• Template:

6.15. Templates 751

Django Documentation, Release 1.2.7

{% include "name_snippet.html" %}

• The name_snippet.html template:

Hello, {{ person }}

See also: {% ssi %}.

Note: The include tag should be considered as an implementation of “render this subtemplate and include the
HTML”, not as “parse this subtemplate and include its contents as if it were part of the parent”. This means that there
is no shared state between included templates – each include is a completely independent rendering process.

load

Load a custom template tag set.

See Custom tag and filter libraries for more information.

now

Display the current date and/or time, using a format according to the given string. Such string can contain format
specifiers characters as described in the date filter section.

Example:

It is {% now "jS F Y H:i" %}

Note that you can backslash-escape a format string if you want to use the “raw” value. In this example, “f” is backslash-
escaped, because otherwise “f” is a format string that displays the time. The “o” doesn’t need to be escaped, because
it’s not a format character:

It is the {% now "jS o\f F" %}

This would display as “It is the 4th of September”.

regroup

Regroup a list of alike objects by a common attribute.

This complex tag is best illustrated by use of an example: say that people is a list of people represented by dictio-
naries with first_name, last_name, and gender keys:

people = [
{’first_name’: ’George’, ’last_name’: ’Bush’, ’gender’: ’Male’},
{’first_name’: ’Bill’, ’last_name’: ’Clinton’, ’gender’: ’Male’},
{’first_name’: ’Margaret’, ’last_name’: ’Thatcher’, ’gender’: ’Female’},
{’first_name’: ’Condoleezza’, ’last_name’: ’Rice’, ’gender’: ’Female’},
{’first_name’: ’Pat’, ’last_name’: ’Smith’, ’gender’: ’Unknown’},

]

...and you’d like to display a hierarchical list that is ordered by gender, like this:

• Male:

– George Bush

752 Chapter 6. API Reference

Django Documentation, Release 1.2.7

– Bill Clinton

• Female:

– Margaret Thatcher

– Condoleezza Rice

• Unknown:

– Pat Smith

You can use the {% regroup %} tag to group the list of people by gender. The following snippet of template code
would accomplish this:

{% regroup people by gender as gender_list %}

{% for gender in gender_list %}

{{ gender.grouper }}

{% for item in gender.list %}
{{ item.first_name }} {{ item.last_name }}
{% endfor %}

{% endfor %}

Let’s walk through this example. {% regroup %} takes three arguments: the list you want to regroup, the attribute
to group by, and the name of the resulting list. Here, we’re regrouping the people list by the gender attribute and
calling the result gender_list.

{% regroup %} produces a list (in this case, gender_list) of group objects. Each group object has two
attributes:

• grouper – the item that was grouped by (e.g., the string “Male” or “Female”).

• list – a list of all items in this group (e.g., a list of all people with gender=’Male’).

Note that {% regroup %} does not order its input! Our example relies on the fact that the people list was ordered
by gender in the first place. If the people list did not order its members by gender, the regrouping would naively
display more than one group for a single gender. For example, say the people list was set to this (note that the males
are not grouped together):

people = [
{’first_name’: ’Bill’, ’last_name’: ’Clinton’, ’gender’: ’Male’},
{’first_name’: ’Pat’, ’last_name’: ’Smith’, ’gender’: ’Unknown’},
{’first_name’: ’Margaret’, ’last_name’: ’Thatcher’, ’gender’: ’Female’},
{’first_name’: ’George’, ’last_name’: ’Bush’, ’gender’: ’Male’},
{’first_name’: ’Condoleezza’, ’last_name’: ’Rice’, ’gender’: ’Female’},

]

With this input for people, the example {% regroup %} template code above would result in the following
output:

• Male:

– Bill Clinton

• Unknown:

– Pat Smith

6.15. Templates 753

Django Documentation, Release 1.2.7

• Female:

– Margaret Thatcher

• Male:

– George Bush

• Female:

– Condoleezza Rice

The easiest solution to this gotcha is to make sure in your view code that the data is ordered according to how you
want to display it.

Another solution is to sort the data in the template using the dictsort filter, if your data is in a list of dictionaries:

{% regroup people|dictsort:"gender" by gender as gender_list %}

Grouping on other properties Any valid template lookup is a legal grouping attribute for the regroup tag, including
methods, attributes, dictionary keys and list items. For example, if the “gender” field is a foreign key to a class with
an attribute “description,” you could use:

{% regroup people by gender.description as gender_list %}

Or, if gender is a field with choices, it will have a get_FOO_display() method available as an attribute,
allowing you to group on the display string rather than the choices key:

{% regroup people by get_gender_display as gender_list %}

{{ gender.grouper }} will now display the value fields from the choices set rather than the keys.

spaceless

Removes whitespace between HTML tags. This includes tab characters and newlines.

Example usage:

{% spaceless %}
<p>

Foo
</p>

{% endspaceless %}

This example would return this HTML:

<p>Foo</p>

Only space between tags is removed – not space between tags and text. In this example, the space around Hello
won’t be stripped:

{% spaceless %}

Hello

{% endspaceless %}

754 Chapter 6. API Reference

Django Documentation, Release 1.2.7

ssi

Output the contents of a given file into the page.

Like a simple “include” tag, {% ssi %} includes the contents of another file – which must be specified using an
absolute path – in the current page:

{% ssi /home/html/ljworld.com/includes/right_generic.html %}

If the optional “parsed” parameter is given, the contents of the included file are evaluated as template code, within the
current context:

{% ssi /home/html/ljworld.com/includes/right_generic.html parsed %}

Note that if you use {% ssi %}, you’ll need to define ALLOWED_INCLUDE_ROOTS in your Django settings, as a
security measure.

See also: {% include %}.

templatetag

Output one of the syntax characters used to compose template tags.

Since the template system has no concept of “escaping”, to display one of the bits used in template tags, you must use
the {% templatetag %} tag.

The argument tells which template bit to output:

Argument Outputs
openblock {%
closeblock %}
openvariable {{
closevariable }}
openbrace {
closebrace }
opencomment {#
closecomment #}

url

Returns an absolute path reference (a URL without the domain name) matching a given view function and optional
parameters. This is a way to output links without violating the DRY principle by having to hard-code URLs in your
templates:

{% url path.to.some_view v1 v2 %}

The first argument is a path to a view function in the format package.package.module.function. Additional
arguments are optional and should be space-separated values that will be used as arguments in the URL. The example
above shows passing positional arguments. Alternatively you may use keyword syntax:

{% url path.to.some_view arg1=v1 arg2=v2 %}

Do not mix both positional and keyword syntax in a single call. All arguments required by the URLconf should be
present.

For example, suppose you have a view, app_views.client, whose URLconf takes a client ID (here, client()
is a method inside the views file app_views.py). The URLconf line might look like this:

6.15. Templates 755

Django Documentation, Release 1.2.7

(’^client/(\d+)/$’, ’app_views.client’)

If this app’s URLconf is included into the project’s URLconf under a path such as this:

(’^clients/’, include(’project_name.app_name.urls’))

...then, in a template, you can create a link to this view like this:

{% url app_views.client client.id %}

The template tag will output the string /clients/client/123/.

If you’re using named URL patterns, you can refer to the name of the pattern in the url tag instead of using the path
to the view.

Note that if the URL you’re reversing doesn’t exist, you’ll get an NoReverseMatch exception raised, which will
cause your site to display an error page.

If you’d like to retrieve a URL without displaying it, you can use a slightly different call:

{% url path.to.view arg arg2 as the_url %}

I’m linking to {{ the_url }}

This {% url ... as var %} syntax will not cause an error if the view is missing. In practice you’ll use this to
link to views that are optional:

{% url path.to.view as the_url %}
{% if the_url %}

Link to optional stuff
{% endif %}

New in version 1.1: Please, see the release notes If you’d like to retrieve a namespaced URL, specify the fully qualified
name:

{% url myapp:view-name %}

This will follow the normal namespaced URL resolution strategy, including using any hints provided by the context
as to the current application. Changed in version 1.2: Please, see the release notes For backwards compatibility, the
{% url %} tag also supports the use of commas to separate arguments. You shouldn’t use this in any new projects,
but for the sake of the people who are still using it, here’s what it looks like:

{% url path.to.view arg,arg2 %}
{% url path.to.view arg, arg2 %}

This syntax doesn’t support the use of literal commas, or or equals signs. Did we mention you shouldn’t use this
syntax in any new projects?

widthratio

For creating bar charts and such, this tag calculates the ratio of a given value to a maximum value, and then applies
that ratio to a constant.

For example:

Above, if this_value is 175 and max_value is 200, the image in the above example will be 88 pixels wide
(because 175/200 = .875; .875 * 100 = 87.5 which is rounded up to 88).

756 Chapter 6. API Reference

Django Documentation, Release 1.2.7

with

Caches a complex variable under a simpler name. This is useful when accessing an “expensive” method (e.g., one that
hits the database) multiple times.

For example:

{% with business.employees.count as total %}
{{ total }} employee{{ total|pluralize }}

{% endwith %}

The populated variable (in the example above, total) is only available between the {% with %} and {%
endwith %} tags.

Built-in filter reference

add

Adds the argument to the value.

For example:

{{ value|add:"2" }}

If value is 4, then the output will be 6. Changed in version 1.2: The following behavior didn’t exist in previous
Django versions. This filter will first try to coerce both values to integers. If this fails, it’ll attempt to add the values
together anyway. This will work on some data types (strings, list, etc.) and fail on others. If it fails, the result will be
an empty string.

For example, if we have:

{{ first|add:second }}

and first is [1, 2, 3] and second is [4, 5, 6], then the output will be [1, 2, 3, 4, 5, 6].

Warning: Strings that can be coerced to integers will be summed, not concatenated, as in the first example
above.

addslashes

Adds slashes before quotes. Useful for escaping strings in CSV, for example.

For example:

{{ value|addslashes }}

If value is "I’m using Django", the output will be "I\’m using Django".

capfirst

Capitalizes the first character of the value.

For example:

6.15. Templates 757

Django Documentation, Release 1.2.7

{{ value|capfirst }}

If value is "django", the output will be "Django".

center

Centers the value in a field of a given width.

For example:

"{{ value|center:"15" }}"

If value is "Django", the output will be " Django ".

cut

Removes all values of arg from the given string.

For example:

{{ value|cut:" "}}

If value is "String with spaces", the output will be "Stringwithspaces".

date

Formats a date according to the given format.

Uses the same format as PHP’s date() function (http://php.net/date) with some custom extensions.

Available format strings:

Format character Description Example output
a ’a.m.’ or ’p.m.’ (Note that this is slightly different than PHP’s output, because this includes periods to match Associated Press style.) ’a.m.’
A ’AM’ or ’PM’. ’AM’
b Month, textual, 3 letters, lowercase. ’jan’
B Not implemented.
c ISO 8601 Format. 2008-01-02T10:30:00.000123
d Day of the month, 2 digits with leading zeros. ’01’ to ’31’
D Day of the week, textual, 3 letters. ’Fri’
f Time, in 12-hour hours and minutes, with minutes left off if they’re zero. Proprietary extension. ’1’, ’1:30’
F Month, textual, long. ’January’
g Hour, 12-hour format without leading zeros. ’1’ to ’12’
G Hour, 24-hour format without leading zeros. ’0’ to ’23’
h Hour, 12-hour format. ’01’ to ’12’
H Hour, 24-hour format. ’00’ to ’23’
i Minutes. ’00’ to ’59’
I Not implemented.
j Day of the month without leading zeros. ’1’ to ’31’
l Day of the week, textual, long. ’Friday’
L Boolean for whether it’s a leap year. True or False
m Month, 2 digits with leading zeros. ’01’ to ’12’

Continued on next page

758 Chapter 6. API Reference

http://php.net/date

Django Documentation, Release 1.2.7

Table 6.4 – continued from previous page
Format character Description Example output

M Month, textual, 3 letters. ’Jan’
n Month without leading zeros. ’1’ to ’12’
N Month abbreviation in Associated Press style. Proprietary extension. ’Jan.’, ’Feb.’, ’March’, ’May’
O Difference to Greenwich time in hours. ’+0200’
P Time, in 12-hour hours, minutes and ‘a.m.’/’p.m.’, with minutes left off if they’re zero and the special-case strings ‘midnight’ and ‘noon’ if appropriate. Proprietary extension. ’1 a.m.’, ’1:30 p.m.’, ’midnight’, ’noon’, ’12:30 p.m.’
r RFC 2822 formatted date. ’Thu, 21 Dec 2000 16:01:07 +0200’
s Seconds, 2 digits with leading zeros. ’00’ to ’59’
S English ordinal suffix for day of the month, 2 characters. ’st’, ’nd’, ’rd’ or ’th’
t Number of days in the given month. 28 to 31
T Time zone of this machine. ’EST’, ’MDT’
u Microseconds. 0 to 999999
U Seconds since the Unix Epoch (January 1 1970 00:00:00 UTC).
w Day of the week, digits without leading zeros. ’0’ (Sunday) to ’6’ (Saturday)
W ISO-8601 week number of year, with weeks starting on Monday. 1, 53
y Year, 2 digits. ’99’
Y Year, 4 digits. ’1999’
z Day of the year. 0 to 365
Z Time zone offset in seconds. The offset for timezones west of UTC is always negative, and for those east of UTC is always positive. -43200 to 43200

New in version 1.2: Please, see the release notes The c and u format specification characters were added in Django
1.2.

For example:

{{ value|date:"D d M Y" }}

If value is a datetime object (e.g., the result of datetime.datetime.now()), the output will be the string
’Wed 09 Jan 2008’.

The format passed can be one of the predefined ones DATE_FORMAT, DATETIME_FORMAT,
SHORT_DATE_FORMAT or SHORT_DATETIME_FORMAT, or a custom format that uses the format specifiers
shown in the table above. Note that predefined formats may vary depending on the current locale.

Assuming that USE_L10N is True and LANGUAGE_CODE is, for example, "es", then for:

{{ value|date:"SHORT_DATE_FORMAT" }}

the output would be the string "09/01/2008" (the "SHORT_DATE_FORMAT" format specifier for the es locale
as shipped with Django is "d/m/Y").

When used without a format string:

{{ value|date }}

...the formatting string defined in the DATE_FORMAT setting will be used, without applying any localization. Changed
in version 1.2: Predefined formats can now be influenced by the current locale.

default

If value evaluates to False, use given default. Otherwise, use the value.

For example:

6.15. Templates 759

Django Documentation, Release 1.2.7

{{ value|default:"nothing" }}

If value is "" (the empty string), the output will be nothing.

default_if_none

If (and only if) value is None, use given default. Otherwise, use the value.

Note that if an empty string is given, the default value will not be used. Use the default filter if you want to fallback
for empty strings.

For example:

{{ value|default_if_none:"nothing" }}

If value is None, the output will be the string "nothing".

dictsort

Takes a list of dictionaries and returns that list sorted by the key given in the argument.

For example:

{{ value|dictsort:"name" }}

If value is:

[
{’name’: ’zed’, ’age’: 19},
{’name’: ’amy’, ’age’: 22},
{’name’: ’joe’, ’age’: 31},

]

then the output would be:

[
{’name’: ’amy’, ’age’: 22},
{’name’: ’joe’, ’age’: 31},
{’name’: ’zed’, ’age’: 19},

]

dictsortreversed

Takes a list of dictionaries and returns that list sorted in reverse order by the key given in the argument. This works
exactly the same as the above filter, but the returned value will be in reverse order.

divisibleby

Returns True if the value is divisible by the argument.

For example:

{{ value|divisibleby:"3" }}

If value is 21, the output would be True.

760 Chapter 6. API Reference

Django Documentation, Release 1.2.7

escape

Escapes a string’s HTML. Specifically, it makes these replacements:

• < is converted to <

• > is converted to >

• ’ (single quote) is converted to '

• " (double quote) is converted to "

• & is converted to &

The escaping is only applied when the string is output, so it does not matter where in a chained sequence of filters you
put escape: it will always be applied as though it were the last filter. If you want escaping to be applied immediately,
use the force_escape filter.

Applying escape to a variable that would normally have auto-escaping applied to the result will only result in one
round of escaping being done. So it is safe to use this function even in auto-escaping environments. If you want
multiple escaping passes to be applied, use the force_escape filter.

escapejs

Escapes characters for use in JavaScript strings. This does not make the string safe for use in HTML, but does protect
you from syntax errors when using templates to generate JavaScript/JSON.

For example:

{{ value|escapejs }}

If value is "testing\r\njavascript \’string" escaping", the out-
put will be "testing\\u000D\\u000Ajavascript \\u0027string\\u0022
\\u003Cb\\u003Eescaping\\u003C/b\\u003E".

filesizeformat

Format the value like a ‘human-readable’ file size (i.e. ’13 KB’, ’4.1 MB’, ’102 bytes’, etc).

For example:

{{ value|filesizeformat }}

If value is 123456789, the output would be 117.7 MB.

first

Returns the first item in a list.

For example:

{{ value|first }}

If value is the list [’a’, ’b’, ’c’], the output will be ’a’.

6.15. Templates 761

Django Documentation, Release 1.2.7

fix_ampersands

..note:

This is rarely useful as ampersands are automatically escaped. See escape_ for more information.

Replaces ampersands with & entities.

For example:

{{ value|fix_ampersands }}

If value is Tom & Jerry, the output will be Tom & Jerry.

floatformat

When used without an argument, rounds a floating-point number to one decimal place – but only if there’s a decimal
part to be displayed. For example:

value Template Output
34.23234 {{ value|floatformat }} 34.2
34.00000 {{ value|floatformat }} 34
34.26000 {{ value|floatformat }} 34.3

If used with a numeric integer argument, floatformat rounds a number to that many decimal places. For example:

value Template Output
34.23234 {{ value|floatformat:3 }} 34.232
34.00000 {{ value|floatformat:3 }} 34.000
34.26000 {{ value|floatformat:3 }} 34.260

If the argument passed to floatformat is negative, it will round a number to that many decimal places – but only
if there’s a decimal part to be displayed. For example:

value Template Output
34.23234 {{ value|floatformat:"-3" }} 34.232
34.00000 {{ value|floatformat:"-3" }} 34
34.26000 {{ value|floatformat:"-3" }} 34.260

Using floatformat with no argument is equivalent to using floatformat with an argument of -1.

force_escape

Applies HTML escaping to a string (see the escape filter for details). This filter is applied immediately and returns
a new, escaped string. This is useful in the rare cases where you need multiple escaping or want to apply other filters
to the escaped results. Normally, you want to use the escape filter.

get_digit

Given a whole number, returns the requested digit, where 1 is the right-most digit, 2 is the second-right-most digit,
etc. Returns the original value for invalid input (if input or argument is not an integer, or if argument is less than 1).
Otherwise, output is always an integer.

For example:

762 Chapter 6. API Reference

Django Documentation, Release 1.2.7

{{ value|get_digit:"2" }}

If value is 123456789, the output will be 8.

iriencode

Converts an IRI (Internationalized Resource Identifier) to a string that is suitable for including in a URL. This is
necessary if you’re trying to use strings containing non-ASCII characters in a URL.

It’s safe to use this filter on a string that has already gone through the urlencode filter.

For example:

{{ value|iriencode }}

If value is "?test=1&me=2", the output will be "?test=1&me=2".

join

Joins a list with a string, like Python’s str.join(list)

For example:

{{ value|join:" // " }}

If value is the list [’a’, ’b’, ’c’], the output will be the string "a // b // c".

last

Returns the last item in a list.

For example:

{{ value|last }}

If value is the list [’a’, ’b’, ’c’, ’d’], the output will be the string "d".

length

Returns the length of the value. This works for both strings and lists.

For example:

{{ value|length }}

If value is [’a’, ’b’, ’c’, ’d’], the output will be 4.

length_is

Returns True if the value’s length is the argument, or False otherwise.

For example:

6.15. Templates 763

Django Documentation, Release 1.2.7

{{ value|length_is:"4" }}

If value is [’a’, ’b’, ’c’, ’d’], the output will be True.

linebreaks

Replaces line breaks in plain text with appropriate HTML; a single newline becomes an HTML line break (
)
and a new line followed by a blank line becomes a paragraph break (</p>).

For example:

{{ value|linebreaks }}

If value is Joel\nis a slug, the output will be <p>Joel
is a slug</p>.

linebreaksbr

Converts all newlines in a piece of plain text to HTML line breaks (
).

For example:

{{ value|linebreaksbr }}

If value is Joel\nis a slug, the output will be Joel
is a slug.

linenumbers

Displays text with line numbers.

For example:

{{ value|linenumbers }}

If value is:

one
two
three

the output will be:

1. one
2. two
3. three

ljust

Left-aligns the value in a field of a given width.

Argument: field size

For example:

"{{ value|ljust:"10" }}"

If value is Django, the output will be "Django ".

764 Chapter 6. API Reference

Django Documentation, Release 1.2.7

lower

Converts a string into all lowercase.

For example:

{{ value|lower }}

If value is Still MAD At Yoko, the output will be still mad at yoko.

make_list

Returns the value turned into a list. For an integer, it’s a list of digits. For a string, it’s a list of characters.

For example:

{{ value|make_list }}

If value is the string "Joel", the output would be the list [u’J’, u’o’, u’e’, u’l’]. If value is 123,
the output will be the list [1, 2, 3].

phone2numeric

Converts a phone number (possibly containing letters) to its numerical equivalent.

The input doesn’t have to be a valid phone number. This will happily convert any string.

For example:

{{ value|phone2numeric }}

If value is 800-COLLECT, the output will be 800-2655328.

pluralize

Returns a plural suffix if the value is not 1. By default, this suffix is ’s’.

Example:

You have {{ num_messages }} message{{ num_messages|pluralize }}.

If num_messages is 1, the output will be You have 1 message. If num_messages is 2 the output will be
You have 2 messages.

For words that require a suffix other than ’s’, you can provide an alternate suffix as a parameter to the filter.

Example:

You have {{ num_walruses }} walrus{{ num_walruses|pluralize:"es" }}.

For words that don’t pluralize by simple suffix, you can specify both a singular and plural suffix, separated by a
comma.

Example:

You have {{ num_cherries }} cherr{{ num_cherries|pluralize:"y,ies" }}.

6.15. Templates 765

Django Documentation, Release 1.2.7

pprint

A wrapper around pprint.pprint – for debugging, really.

random

Returns a random item from the given list.

For example:

{{ value|random }}

If value is the list [’a’, ’b’, ’c’, ’d’], the output could be "b".

removetags

Removes a space-separated list of [X]HTML tags from the output.

For example:

{{ value|removetags:"b span"|safe }}

If value is "Joel <button>is</button> a slug" the output will be "Joel
<button>is</button> a slug".

Note that this filter is case-sensitive.

If value is "Joel <button>is</button> a slug" the output will be
"Joel <button>is</button> a slug".

rjust

Right-aligns the value in a field of a given width.

Argument: field size

For example:

"{{ value|rjust:"10" }}"

If value is Django, the output will be " Django".

safe

Marks a string as not requiring further HTML escaping prior to output. When autoescaping is off, this filter has no
effect.

Note: If you are chaining filters, a filter applied after safe can make the contents unsafe again. For example, the
following code prints the variable as is, unescaped:

{{ var|safe|escape }}

766 Chapter 6. API Reference

http://docs.python.org/library/pprint.html

Django Documentation, Release 1.2.7

safeseq

Applies the safe filter to each element of a sequence. Useful in conjunction with other filters that operate on se-
quences, such as join. For example:

{{ some_list|safeseq|join:", " }}

You couldn’t use the safe filter directly in this case, as it would first convert the variable into a string, rather than
working with the individual elements of the sequence.

slice

Returns a slice of the list.

Uses the same syntax as Python’s list slicing. See http://diveintopython.org/native_data_types/lists.html#odbchelper.list.slice
for an introduction.

Example:

{{ some_list|slice:":2" }}

If some_list is [’a’, ’b’, ’c’], the output will be [’a’, ’b’].

slugify

Converts to lowercase, removes non-word characters (alphanumerics and underscores) and converts spaces to hyphens.
Also strips leading and trailing whitespace.

For example:

{{ value|slugify }}

If value is "Joel is a slug", the output will be "joel-is-a-slug".

stringformat

Formats the variable according to the argument, a string formatting specifier. This specifier uses Python string format-
ting syntax, with the exception that the leading “%” is dropped.

See http://docs.python.org/library/stdtypes.html#string-formatting-operations for documentation of Python string for-
matting

For example:

{{ value|stringformat:"s" }}

If value is "Joel is a slug", the output will be "Joel is a slug".

striptags

Strips all [X]HTML tags.

For example:

6.15. Templates 767

http://diveintopython.org/native_data_types/lists.html#odbchelper.list.slice
http://docs.python.org/library/stdtypes.html#string-formatting-operations

Django Documentation, Release 1.2.7

{{ value|striptags }}

If value is "Joel <button>is</button> a slug", the output will be
"Joel is a slug".

time

Formats a time according to the given format.

Given format can be the predefined one TIME_FORMAT, or a custom format, same as the date filter. Note that the
predefined format is locale- dependant.

The time filter will only accept parameters in the format string that relate to the time of day, not the date (for obvious
reasons). If you need to format a date, use the date filter.

For example:

{{ value|time:"H:i" }}

If value is equivalent to datetime.datetime.now(), the output will be the string "01:23".

Another example:

Assuming that USE_L10N is True and LANGUAGE_CODE is, for example, "de", then for:

{{ value|time:"TIME_FORMAT" }}

the output will be the string "01:23:00" (The "TIME_FORMAT" format specifier for the de locale as shipped with
Django is "H:i:s").

When used without a format string:

{{ value|time }}

...the formatting string defined in the TIME_FORMAT setting will be used, without applying any localization. Changed
in version 1.2: Predefined formats can now be influenced by the current locale.

timesince

Formats a date as the time since that date (e.g., “4 days, 6 hours”).

Takes an optional argument that is a variable containing the date to use as the comparison point (without
the argument, the comparison point is now). For example, if blog_date is a date instance represent-
ing midnight on 1 June 2006, and comment_date is a date instance for 08:00 on 1 June 2006, then {{
blog_date|timesince:comment_date }} would return “8 hours”.

Comparing offset-naive and offset-aware datetimes will return an empty string.

Minutes is the smallest unit used, and “0 minutes” will be returned for any date that is in the future relative to the
comparison point.

timeuntil

Similar to timesince, except that it measures the time from now until the given date or datetime. For ex-
ample, if today is 1 June 2006 and conference_date is a date instance holding 29 June 2006, then {{
conference_date|timeuntil }} will return “4 weeks”.

768 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Takes an optional argument that is a variable containing the date to use as the comparison point (instead of now). If
from_date contains 22 June 2006, then {{ conference_date|timeuntil:from_date }} will return “1
week”.

Comparing offset-naive and offset-aware datetimes will return an empty string.

Minutes is the smallest unit used, and “0 minutes” will be returned for any date that is in the past relative to the
comparison point.

title

Converts a string into titlecase.

For example:

{{ value|title }}

If value is "my first post", the output will be "My First Post".

truncatewords

Truncates a string after a certain number of words.

Argument: Number of words to truncate after

For example:

{{ value|truncatewords:2 }}

If value is "Joel is a slug", the output will be "Joel is ...".

Newlines within the string will be removed.

truncatewords_html

Similar to truncatewords, except that it is aware of HTML tags. Any tags that are opened in the string and not
closed before the truncation point, are closed immediately after the truncation.

This is less efficient than truncatewords, so should only be used when it is being passed HTML text.

For example:

{{ value|truncatewords_html:2 }}

If value is "<p>Joel is a slug</p>", the output will be "<p>Joel is ...</p>".

Newlines in the HTML content will be preserved.

unordered_list

Recursively takes a self-nested list and returns an HTML unordered list – WITHOUT opening and closing tags.

The list is assumed to be in the proper format. For example, if var contains [’States’, [’Kansas’,
[’Lawrence’, ’Topeka’], ’Illinois’]], then {{ var|unordered_list }} would return:

6.15. Templates 769

Django Documentation, Release 1.2.7

States

Kansas

Lawrence
Topeka

Illinois

Note: An older, more restrictive and verbose input format is also supported: [’States’, [[’Kansas’,
[[’Lawrence’, []], [’Topeka’, []]]], [’Illinois’, []]]],

upper

Converts a string into all uppercase.

For example:

{{ value|upper }}

If value is "Joel is a slug", the output will be "JOEL IS A SLUG".

urlencode

Escapes a value for use in a URL.

For example:

{{ value|urlencode }}

If value is "http://www.example.org/foo?a=b&c=d", the output will be
"http%3A//www.example.org/foo%3Fa%3Db%26c%3Dd".

urlize

Converts URLs in text into clickable links.

Works on links beginning with http://, https://, or www. and ending with .org, .net or .com. Links can
have trailing punctuation (periods, commas, close-parens) and leading punctuation (opening parens) and urlize will
still do the right thing.

Links generated by urlize have a rel="nofollow" attribute added to them.

For example:

{{ value|urlize }}

If value is "Check out www.djangoproject.com", the output will be "Check out www.djangoproject.com".

The urlize filter also takes an optional parameter autoescape. If autoescape is True, the link text and URLs
will be escaped using Django’s built-in escape filter. The default value for autoescape is True.

770 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Note: If urlize is applied to text that already contains HTML markup, things won’t work as expected. Apply this
filter only to plain text.

urlizetrunc

Converts URLs into clickable links just like urlize, but truncates URLs longer than the given character limit.

Argument: Number of characters that link text should be truncated to, including the ellipsis that’s added if truncation
is necessary.

For example:

{{ value|urlizetrunc:15 }}

If value is "Check out www.djangoproject.com", the output would be ’Check out www.djangopr...’.

As with urlize, this filter should only be applied to plain text.

wordcount

Returns the number of words.

For example:

{{ value|wordcount }}

If value is "Joel is a slug", the output will be 4.

wordwrap

Wraps words at specified line length.

Argument: number of characters at which to wrap the text

For example:

{{ value|wordwrap:5 }}

If value is Joel is a slug, the output would be:

Joel
is a
slug

yesno

Given a string mapping values for true, false and (optionally) None, returns one of those strings according to the value:

For example:

{{ value|yesno:"yeah,no,maybe" }}

6.15. Templates 771

Django Documentation, Release 1.2.7

Value Argument Outputs
True "yeah,no,maybe" yeah
False "yeah,no,maybe" no
None "yeah,no,maybe" maybe
None "yeah,no" "no" (converts None to False if no mapping for None is given)

Other tags and filter libraries

Django comes with a couple of other template-tag libraries that you have to enable explicitly in your
INSTALLED_APPS setting and enable in your template with the {% load %} tag.

django.contrib.humanize

A set of Django template filters useful for adding a “human touch” to data. See django.contrib.humanize.

django.contrib.markup

A collection of template filters that implement these common markup languages:

• Textile

• Markdown

• reST (reStructuredText)

See the markup documentation.

django.contrib.webdesign

A collection of template tags that can be useful while designing a Web site, such as a generator of Lorem Ipsum text.
See django.contrib.webdesign.

i18n

Provides a couple of templatetags that allow specifying translatable text in Django templates. It is slightly different
from the libraries described above because you don’t need to add any application to the INSTALLED_APPS setting
but rather set USE_I18N to True, then loading it with {% load i18n %}. See Specifying translation strings: In
template code.

6.15.2 The Django template language: For Python programmers

This document explains the Django template system from a technical perspective – how it works and how to extend it.
If you’re just looking for reference on the language syntax, see The Django template language.

If you’re looking to use the Django template system as part of another application – i.e., without the rest of the
framework – make sure to read the configuration section later in this document.

772 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Basics

A template is a text document, or a normal Python string, that is marked-up using the Django template language. A
template can contain block tags or variables.

A block tag is a symbol within a template that does something.

This definition is deliberately vague. For example, a block tag can output content, serve as a control structure (an “if”
statement or “for” loop), grab content from a database or enable access to other template tags.

Block tags are surrounded by "{%" and "%}".

Example template with block tags:

{% if is_logged_in %}Thanks for logging in!{% else %}Please log in.{% endif %}

A variable is a symbol within a template that outputs a value.

Variable tags are surrounded by "{{" and "}}".

Example template with variables:

My first name is {{ first_name }}. My last name is {{ last_name }}.

A context is a “variable name” -> “variable value” mapping that is passed to a template.

A template renders a context by replacing the variable “holes” with values from the context and executing all block
tags.

Using the template system

class django.template.Template

Using the template system in Python is a two-step process:

• First, you compile the raw template code into a Template object.

• Then, you call the render() method of the Template object with a given context.

Compiling a string

The easiest way to create a Template object is by instantiating it directly. The class lives at
django.template.Template. The constructor takes one argument – the raw template code:

>>> from django.template import Template
>>> t = Template("My name is {{ my_name }}.")
>>> print t
<django.template.Template instance>

Behind the scenes

The system only parses your raw template code once – when you create the Template object. From then on, it’s
stored internally as a “node” structure for performance.

Even the parsing itself is quite fast. Most of the parsing happens via a single call to a single, short, regular expression.

6.15. Templates 773

Django Documentation, Release 1.2.7

Rendering a context

render(context)

Once you have a compiled Template object, you can render a context – or multiple contexts – with it. The Context
class lives at django.template.Context, and the constructor takes two (optional) arguments:

• A dictionary mapping variable names to variable values.

• The name of the current application. This application name is used to help resolve namespaced URLs. If you’re
not using namespaced URLs, you can ignore this argument.

Call the Template object’s render() method with the context to “fill” the template:

>>> from django.template import Context, Template
>>> t = Template("My name is {{ my_name }}.")

>>> c = Context({"my_name": "Adrian"})
>>> t.render(c)
"My name is Adrian."

>>> c = Context({"my_name": "Dolores"})
>>> t.render(c)
"My name is Dolores."

Variable names must consist of any letter (A-Z), any digit (0-9), an underscore or a dot.

Dots have a special meaning in template rendering. A dot in a variable name signifies lookup. Specifically, when the
template system encounters a dot in a variable name, it tries the following lookups, in this order:

• Dictionary lookup. Example: foo["bar"]

• Attribute lookup. Example: foo.bar

• Method call. Example: foo.bar()

• List-index lookup. Example: foo[bar]

The template system uses the first lookup type that works. It’s short-circuit logic.

Here are a few examples:

>>> from django.template import Context, Template
>>> t = Template("My name is {{ person.first_name }}.")
>>> d = {"person": {"first_name": "Joe", "last_name": "Johnson"}}
>>> t.render(Context(d))
"My name is Joe."

>>> class PersonClass: pass
>>> p = PersonClass()
>>> p.first_name = "Ron"
>>> p.last_name = "Nasty"
>>> t.render(Context({"person": p}))
"My name is Ron."

>>> class PersonClass2:
... def first_name(self):
... return "Samantha"
>>> p = PersonClass2()
>>> t.render(Context({"person": p}))
"My name is Samantha."

774 Chapter 6. API Reference

Django Documentation, Release 1.2.7

>>> t = Template("The first stooge in the list is {{ stooges.0 }}.")
>>> c = Context({"stooges": ["Larry", "Curly", "Moe"]})
>>> t.render(c)
"The first stooge in the list is Larry."

Method lookups are slightly more complex than the other lookup types. Here are some things to keep in mind:

• If, during the method lookup, a method raises an exception, the exception will be propagated, unless the ex-
ception has an attribute silent_variable_failure whose value is True. If the exception does have a
silent_variable_failure attribute, the variable will render as an empty string. Example:

>>> t = Template("My name is {{ person.first_name }}.")
>>> class PersonClass3:
... def first_name(self):
... raise AssertionError, "foo"
>>> p = PersonClass3()
>>> t.render(Context({"person": p}))
Traceback (most recent call last):
...
AssertionError: foo

>>> class SilentAssertionError(Exception):
... silent_variable_failure = True
>>> class PersonClass4:
... def first_name(self):
... raise SilentAssertionError
>>> p = PersonClass4()
>>> t.render(Context({"person": p}))
"My name is ."

Note that django.core.exceptions.ObjectDoesNotExist, which is the base class for all Django
database API DoesNotExist exceptions, has silent_variable_failure = True. So if you’re us-
ing Django templates with Django model objects, any DoesNotExist exception will fail silently.

• A method call will only work if the method has no required arguments. Otherwise, the system will move to the
next lookup type (list-index lookup).

• Obviously, some methods have side effects, and it’d be either foolish or a security hole to allow the template
system to access them.

A good example is the delete() method on each Django model object. The template system shouldn’t be
allowed to do something like this:

I will now delete this valuable data. {{ data.delete }}

To prevent this, set a function attribute alters_data on the method. The template system won’t execute a
method if the method has alters_data=True set. The dynamically-generated delete() and save()
methods on Django model objects get alters_data=True automatically. Example:

def sensitive_function(self):
self.database_record.delete()

sensitive_function.alters_data = True

How invalid variables are handled Generally, if a variable doesn’t exist, the template system inserts the value of
the TEMPLATE_STRING_IF_INVALID setting, which is set to ” (the empty string) by default.

Filters that are applied to an invalid variable will only be applied if TEMPLATE_STRING_IF_INVALID is set to ”
(the empty string). If TEMPLATE_STRING_IF_INVALID is set to any other value, variable filters will be ignored.

6.15. Templates 775

Django Documentation, Release 1.2.7

This behavior is slightly different for the if, for and regroup template tags. If an invalid variable is provided to
one of these template tags, the variable will be interpreted as None. Filters are always applied to invalid variables
within these template tags.

If TEMPLATE_STRING_IF_INVALID contains a ’%s’, the format marker will be replaced with the name of the
invalid variable.

For debug purposes only!

While TEMPLATE_STRING_IF_INVALID can be a useful debugging tool, it is a bad idea to turn it on as a ‘devel-
opment default’.

Many templates, including those in the Admin site, rely upon the silence of the template system when a non-existent
variable is encountered. If you assign a value other than ” to TEMPLATE_STRING_IF_INVALID, you will experi-
ence rendering problems with these templates and sites.

Generally, TEMPLATE_STRING_IF_INVALID should only be enabled in order to debug a specific template prob-
lem, then cleared once debugging is complete.

Playing with Context objects

class django.template.Context

Most of the time, you’ll instantiate Context objects by passing in a fully-populated dictionary to Context(). But
you can add and delete items from a Context object once it’s been instantiated, too, using standard dictionary syntax:

>>> c = Context({"foo": "bar"})
>>> c[’foo’]
’bar’
>>> del c[’foo’]
>>> c[’foo’]
’’
>>> c[’newvariable’] = ’hello’
>>> c[’newvariable’]
’hello’

pop()

push()

exception django.template.ContextPopException

A Context object is a stack. That is, you can push() and pop() it. If you pop() too much, it’ll raise
django.template.ContextPopException:

>>> c = Context()
>>> c[’foo’] = ’first level’
>>> c.push()
>>> c[’foo’] = ’second level’
>>> c[’foo’]
’second level’
>>> c.pop()
>>> c[’foo’]
’first level’
>>> c[’foo’] = ’overwritten’
>>> c[’foo’]
’overwritten’
>>> c.pop()
Traceback (most recent call last):

776 Chapter 6. API Reference

Django Documentation, Release 1.2.7

...
django.template.ContextPopException

update(other_dict)

In addition to push() and pop(), the Context object also defines an update() method. This works like
push() but takes a dictionary as an argument and pushes that dictionary onto the stack instead of an empty one.

>>> c = Context()
>>> c[’foo’] = ’first level’
>>> c.update({’foo’: ’updated’})
{’foo’: ’updated’}
>>> c[’foo’]
’updated’
>>> c.pop()
{’foo’: ’updated’}
>>> c[’foo’]
’first level’

Using a Context as a stack comes in handy in some custom template tags, as you’ll see below.

Subclassing Context: RequestContext

Django comes with a special Context class, django.template.RequestContext, that acts slightly differ-
ently than the normal django.template.Context. The first difference is that it takes an HttpRequest as its
first argument. For example:

c = RequestContext(request, {
’foo’: ’bar’,

})

The second difference is that it automatically populates the context with a few variables, according to your
TEMPLATE_CONTEXT_PROCESSORS setting.

The TEMPLATE_CONTEXT_PROCESSORS setting is a tuple of callables – called context processors – that take
a request object as their argument and return a dictionary of items to be merged into the context. By default,
TEMPLATE_CONTEXT_PROCESSORS is set to:

("django.contrib.auth.context_processors.auth",
"django.core.context_processors.debug",
"django.core.context_processors.i18n",
"django.core.context_processors.media",
"django.contrib.messages.context_processors.messages")

New in version 1.2: In addition to these, RequestContext always uses
django.core.context_processors.csrf. This is a security related context processor required by the
admin and other contrib apps, and, in case of accidental misconfiguration, it is deliberately hardcoded in and cannot
be turned off by the TEMPLATE_CONTEXT_PROCESSORS setting.New in version 1.2: The ’messages’ context
processor was added. For more information, see the messages documentation.Changed in version 1.2: The auth
context processor was moved in this release from its old location django.core.context_processors.auth
to django.contrib.auth.context_processors.auth. Each processor is applied in order. That means,
if one processor adds a variable to the context and a second processor adds a variable with the same name, the second
will override the first. The default processors are explained below.

When context processors are applied

When you use RequestContext, the variables you supply directly are added first, followed any variables supplied
by context processors. This means that a context processor may overwrite a variable you’ve supplied, so take care to

6.15. Templates 777

Django Documentation, Release 1.2.7

avoid variable names which overlap with those supplied by your context processors.

Also, you can give RequestContext a list of additional processors, using the optional, third positional argument,
processors. In this example, the RequestContext instance gets a ip_address variable:

def ip_address_processor(request):
return {’ip_address’: request.META[’REMOTE_ADDR’]}

def some_view(request):
...
c = RequestContext(request, {

’foo’: ’bar’,
}, [ip_address_processor])
return HttpResponse(t.render(c))

Note: If you’re using Django’s render_to_response() shortcut to populate a template with the contents of
a dictionary, your template will be passed a Context instance by default (not a RequestContext). To use a
RequestContext in your template rendering, pass an optional third argument to render_to_response(): a
RequestContext instance. Your code might look like this:

def some_view(request):
...
return render_to_response(’my_template.html’,

my_data_dictionary,
context_instance=RequestContext(request))

Here’s what each of the default processors does:

django.contrib.auth.context_processors.auth If TEMPLATE_CONTEXT_PROCESSORS contains this processor,
every RequestContext will contain these three variables:

• user – An auth.User instance representing the currently logged-in user (or an AnonymousUser instance,
if the client isn’t logged in).

• messages – A list of messages (as strings) that have been set via the messages framework.

• perms – An instance of django.core.context_processors.PermWrapper, representing the per-
missions that the currently logged-in user has.

Changed in version 1.2: This context processor was moved in this release from
django.core.context_processors.auth to its current location.Changed in version 1.2: Prior to
version 1.2, the messages variable was a lazy accessor for user.get_and_delete_messages(). It has been
changed to include any messages added via the messages framework.

django.core.context_processors.debug If TEMPLATE_CONTEXT_PROCESSORS contains this processor, every
RequestContext will contain these two variables – but only if your DEBUG setting is set to True and the request’s
IP address (request.META[’REMOTE_ADDR’]) is in the INTERNAL_IPS setting:

• debug – True. You can use this in templates to test whether you’re in DEBUG mode.

• sql_queries – A list of {’sql’: ..., ’time’: ...} dictionaries, representing every SQL query
that has happened so far during the request and how long it took. The list is in order by query.

django.core.context_processors.i18n If TEMPLATE_CONTEXT_PROCESSORS contains this processor, every
RequestContext will contain these two variables:

778 Chapter 6. API Reference

Django Documentation, Release 1.2.7

• LANGUAGES – The value of the LANGUAGES setting.

• LANGUAGE_CODE – request.LANGUAGE_CODE, if it exists. Otherwise, the value of the
LANGUAGE_CODE setting.

See Internationalization and localization for more.

django.core.context_processors.media If TEMPLATE_CONTEXT_PROCESSORS contains this processor, every
RequestContext will contain a variable MEDIA_URL, providing the value of the MEDIA_URL setting.

django.core.context_processors.csrf New in version 1.2: Please, see the release notes This processor adds a token
that is needed by the csrf_token template tag for protection against Cross Site Request Forgeries.

django.core.context_processors.request If TEMPLATE_CONTEXT_PROCESSORS contains this processor, every
RequestContext will contain a variable request, which is the current HttpRequest. Note that this processor
is not enabled by default; you’ll have to activate it.

django.contrib.messages.context_processors.messages If TEMPLATE_CONTEXT_PROCESSORS contains this
processor, every RequestContext will contain a single additional variable:

• messages – A list of messages (as strings) that have been set via the user model (using
user.message_set.create) or through the messages framework.

New in version 1.2: This template context variable was previously supplied by the ’auth’ context processor. For
backwards compatibility the ’auth’ context processor will continue to supply the messages variable until Django
1.4. If you use the messages variable, your project will work with either (or both) context processors, but it is
recommended to add django.contrib.messages.context_processors.messages so your project will
be prepared for the future upgrade.

Writing your own context processors A context processor has a very simple interface: It’s just a Python function
that takes one argument, an HttpRequest object, and returns a dictionary that gets added to the template context.
Each context processor must return a dictionary.

Custom context processors can live anywhere in your code base. All Django cares about is that your custom context
processors are pointed-to by your TEMPLATE_CONTEXT_PROCESSORS setting.

Loading templates

Generally, you’ll store templates in files on your filesystem rather than using the low-level Template API yourself.
Save templates in a directory specified as a template directory.

Django searches for template directories in a number of places, depending on your template-loader settings (see
“Loader types” below), but the most basic way of specifying template directories is by using the TEMPLATE_DIRS
setting.

The TEMPLATE_DIRS setting Tell Django what your template directories are by using the TEMPLATE_DIRS
setting in your settings file. This should be set to a list or tuple of strings that contain full paths to your template
directory(ies). Example:

TEMPLATE_DIRS = (
"/home/html/templates/lawrence.com",
"/home/html/templates/default",

)

6.15. Templates 779

Django Documentation, Release 1.2.7

Your templates can go anywhere you want, as long as the directories and templates are readable by the Web server.
They can have any extension you want, such as .html or .txt, or they can have no extension at all.

Note that these paths should use Unix-style forward slashes, even on Windows.

The Python API Django has two ways to load templates from files:

django.template.loader.get_template(template_name)
get_template returns the compiled template (a Template object) for the template with the given name. If
the template doesn’t exist, it raises django.template.TemplateDoesNotExist.

django.template.loader.select_template(template_name_list)
select_template is just like get_template, except it takes a list of template names. Of the list, it
returns the first template that exists.

For example, if you call get_template(’story_detail.html’) and have the above TEMPLATE_DIRS
setting, here are the files Django will look for, in order:

• /home/html/templates/lawrence.com/story_detail.html

• /home/html/templates/default/story_detail.html

If you call select_template([’story_253_detail.html’, ’story_detail.html’]), here’s what
Django will look for:

• /home/html/templates/lawrence.com/story_253_detail.html

• /home/html/templates/default/story_253_detail.html

• /home/html/templates/lawrence.com/story_detail.html

• /home/html/templates/default/story_detail.html

When Django finds a template that exists, it stops looking.

Tip

You can use select_template() for super-flexible “templatability.” For example, if you’ve
written a news story and want some stories to have custom templates, use something like
select_template([’story_%s_detail.html’ % story.id, ’story_detail.html’]).
That’ll allow you to use a custom template for an individual story, with a fallback template for stories that don’t have
custom templates.

Using subdirectories It’s possible – and preferable – to organize templates in subdirectories of the template direc-
tory. The convention is to make a subdirectory for each Django app, with subdirectories within those subdirectories as
needed.

Do this for your own sanity. Storing all templates in the root level of a single directory gets messy.

To load a template that’s within a subdirectory, just use a slash, like so:

get_template(’news/story_detail.html’)

Using the same TEMPLATE_DIRS setting from above, this example get_template() call will attempt to load the
following templates:

• /home/html/templates/lawrence.com/news/story_detail.html

• /home/html/templates/default/news/story_detail.html

780 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Loader types By default, Django uses a filesystem-based template loader, but Django comes with a few other
template loaders, which know how to load templates from other sources.

Some of these other loaders are disabled by default, but you can activate them by editing your TEMPLATE_LOADERS
setting. TEMPLATE_LOADERS should be a tuple of strings, where each string represents a template loader class. Here
are the template loaders that come with Django: Changed in version 1.2: Template loaders were based on callables
(usually functions) before Django 1.2, starting with the 1.2 release there is a new class-based API, all the loaders
described below implement this new API.

django.template.loaders.filesystem.Loader Loads templates from the filesystem, according to
TEMPLATE_DIRS. This loader is enabled by default.

django.template.loaders.app_directories.Loader Loads templates from Django apps on the
filesystem. For each app in INSTALLED_APPS, the loader looks for a templates subdirectory. If the
directory exists, Django looks for templates in there.

This means you can store templates with your individual apps. This also makes it easy to distribute Django apps
with default templates.

For example, for this setting:

INSTALLED_APPS = (’myproject.polls’, ’myproject.music’)

...then get_template(’foo.html’) will look for templates in these directories, in this order:

• /path/to/myproject/polls/templates/foo.html

• /path/to/myproject/music/templates/foo.html

Note that the loader performs an optimization when it is first imported: It caches a list of which
INSTALLED_APPS packages have a templates subdirectory.

This loader is enabled by default.

django.template.loaders.eggs.Loader Just like app_directories above, but it loads templates
from Python eggs rather than from the filesystem.

This loader is disabled by default.

django.template.loaders.cached.Loader By default, the templating system will read and compile your
templates every time they need to be rendered. While the Django templating system is quite fast, the overhead
from reading and compiling templates can add up.

The cached template loader is a class-based loader that you configure with a list of other loaders that it should
wrap. The wrapped loaders are used to locate unknown templates when they are first encountered. The cached
loader then stores the compiled Template in memory. The cached Template instance is returned for subse-
quent requests to load the same template.

For example, to enable template caching with the filesystem and app_directories template loaders
you might use the following settings:

TEMPLATE_LOADERS = (
(’django.template.loaders.cached.Loader’, (

’django.template.loaders.filesystem.Loader’,
’django.template.loaders.app_directories.Loader’,

)),
)

Note: All of the built-in Django template tags are safe to use with the cached loader, but if you’re using custom
template tags that come from third party packages, or that you wrote yourself, you should ensure that the Node
implementation for each tag is thread-safe. For more information, see template tag thread safety considerations.

6.15. Templates 781

Django Documentation, Release 1.2.7

This loader is disabled by default.

Django uses the template loaders in order according to the TEMPLATE_LOADERS setting. It uses each loader until a
loader finds a match.

The render_to_string shortcut

django.template.loader.render_to_string(template_name, dictionary=None, con-
text_instance=None)

To cut down on the repetitive nature of loading and rendering templates, Django provides a shortcut function which
largely automates the process: render_to_string() in django.template.loader, which loads a tem-
plate, renders it and returns the resulting string:

from django.template.loader import render_to_string
rendered = render_to_string(’my_template.html’, { ’foo’: ’bar’ })

The render_to_string shortcut takes one required argument – template_name, which should be the name of
the template to load and render (or a list of template names, in which case Django will use the first template in the list
that exists) – and two optional arguments:

dictionary A dictionary to be used as variables and values for the template’s context. This can also be passed as the
second positional argument.

context_instance An instance of Context or a subclass (e.g., an instance of RequestContext) to use as the
template’s context. This can also be passed as the third positional argument.

See also the render_to_response() shortcut, which calls render_to_string and feeds the result into an
HttpResponse suitable for returning directly from a view.

Configuring the template system in standalone mode

Note: This section is only of interest to people trying to use the template system as an output component in another
application. If you’re using the template system as part of a Django application, nothing here applies to you.

Normally, Django will load all the configuration information it needs from its own default configuration file, combined
with the settings in the module given in the DJANGO_SETTINGS_MODULE environment variable. But if you’re using
the template system independently of the rest of Django, the environment variable approach isn’t very convenient,
because you probably want to configure the template system in line with the rest of your application rather than
dealing with settings files and pointing to them via environment variables.

To solve this problem, you need to use the manual configuration option described in Using settings without setting
DJANGO_SETTINGS_MODULE. Simply import the appropriate pieces of the templating system and then, before
you call any of the templating functions, call django.conf.settings.configure() with any settings you
wish to specify. You might want to consider setting at least TEMPLATE_DIRS (if you’re going to use template load-
ers), DEFAULT_CHARSET (although the default of utf-8 is probably fine) and TEMPLATE_DEBUG. All available
settings are described in the settings documentation, and any setting starting with TEMPLATE_ is of obvious interest.

Using an alternative template language

New in version 1.2: Please, see the release notes The Django Template and Loader classes implement a
simple API for loading and rendering templates. By providing some simple wrapper classes that implement this
API we can use third party template systems like Jinja2 or Cheetah. This allows us to use third-party tem-
plate libraries without giving up useful Django features like the Django Context object and handy shortcuts like
render_to_response().

782 Chapter 6. API Reference

http://jinja.pocoo.org/2/
http://www.cheetahtemplate.org/

Django Documentation, Release 1.2.7

The core component of the Django templating system is the Template class. This class has a very simple interface:
it has a constructor that takes a single positional argument specifying the template string, and a render() method
that takes a Context object and returns a string containing the rendered response.

Suppose we’re using a template language that defines a Template object with a render() method that takes a
dictionary rather than a Context object. We can write a simple wrapper that implements the Django Template
interface:

import some_template_language
class Template(some_template_language.Template):

def render(self, context):
flatten the Django Context into a single dictionary.
context_dict = {}
for d in context.dicts:

context_dict.update(d)
return super(Template, self).render(context_dict)

That’s all that’s required to make our fictional Template class compatible with the Django loading and rendering
system!

The next step is to write a Loader class that returns instances of our custom template class instead of the default
Template. Custom Loader classes should inherit from django.template.loader.BaseLoader and over-
ride the load_template_source() method, which takes a template_name argument, loads the template
from disk (or elsewhere), and returns a tuple: (template_string, template_origin).

The load_template() method of the Loader class retrieves the template string by calling
load_template_source(), instantiates a Template from the template source, and returns a tu-
ple: (template, template_origin). Since this is the method that actually instantiates the
Template, we’ll need to override it to use our custom template class instead. We can inherit from
the builtin django.template.loaders.app_directories.Loader to take advantage of the
load_template_source() method implemented there:

from django.template.loaders import app_directories
class Loader(app_directories.Loader):

is_usable = True

def load_template(self, template_name, template_dirs=None):
source, origin = self.load_template_source(template_name, template_dirs)
template = Template(source)
return template, origin

Finally, we need to modify our project settings, telling Django to use our custom loader. Now we can write all of our
templates in our alternative template language while continuing to use the rest of the Django templating system.

See Also:

For information on writing your own custom tags and filters, see Custom template tags and filters.

6.16 Unicode data

Django natively supports Unicode data everywhere. Providing your database can somehow store the data, you can
safely pass around Unicode strings to templates, models and the database.

This document tells you what you need to know if you’re writing applications that use data or templates that are
encoded in something other than ASCII.

6.16. Unicode data 783

Django Documentation, Release 1.2.7

6.16.1 Creating the database

Make sure your database is configured to be able to store arbitrary string data. Normally, this means giving it an
encoding of UTF-8 or UTF-16. If you use a more restrictive encoding – for example, latin1 (iso8859-1) – you won’t
be able to store certain characters in the database, and information will be lost.

• MySQL users, refer to the MySQL manual (section 9.1.3.2 for MySQL 5.1) for details on how to set or alter the
database character set encoding.

• PostgreSQL users, refer to the PostgreSQL manual (section 21.2.2 in PostgreSQL 8) for details on creating
databases with the correct encoding.

• SQLite users, there is nothing you need to do. SQLite always uses UTF-8 for internal encoding.

All of Django’s database backends automatically convert Unicode strings into the appropriate encoding for talking to
the database. They also automatically convert strings retrieved from the database into Python Unicode strings. You
don’t even need to tell Django what encoding your database uses: that is handled transparently.

For more, see the section “The database API” below.

6.16.2 General string handling

Whenever you use strings with Django – e.g., in database lookups, template rendering or anywhere else – you have
two choices for encoding those strings. You can use Unicode strings, or you can use normal strings (sometimes called
“bytestrings”) that are encoded using UTF-8.

Warning

A bytestring does not carry any information with it about its encoding. For that reason, we have to make an assumption,
and Django assumes that all bytestrings are in UTF-8.

If you pass a string to Django that has been encoded in some other format, things will go wrong in interesting ways.
Usually, Django will raise a UnicodeDecodeError at some point.

If your code only uses ASCII data, it’s safe to use your normal strings, passing them around at will, because ASCII is
a subset of UTF-8.

Don’t be fooled into thinking that if your DEFAULT_CHARSET setting is set to something other than ’utf-8’ you
can use that other encoding in your bytestrings! DEFAULT_CHARSET only applies to the strings generated as the
result of template rendering (and e-mail). Django will always assume UTF-8 encoding for internal bytestrings. The
reason for this is that the DEFAULT_CHARSET setting is not actually under your control (if you are the application
developer). It’s under the control of the person installing and using your application – and if that person chooses a
different setting, your code must still continue to work. Ergo, it cannot rely on that setting.

In most cases when Django is dealing with strings, it will convert them to Unicode strings before doing anything else.
So, as a general rule, if you pass in a bytestring, be prepared to receive a Unicode string back in the result.

Translated strings

Aside from Unicode strings and bytestrings, there’s a third type of string-like object you may encounter when using
Django. The framework’s internationalization features introduce the concept of a “lazy translation” – a string that has
been marked as translated but whose actual translation result isn’t determined until the object is used in a string. This
feature is useful in cases where the translation locale is unknown until the string is used, even though the string might
have originally been created when the code was first imported.

784 Chapter 6. API Reference

http://dev.mysql.com/doc/refman/5.1/en/charset-database.html
http://www.postgresql.org/docs/8.2/static/multibyte.html#AEN24104

Django Documentation, Release 1.2.7

Normally, you won’t have to worry about lazy translations. Just be aware that if you examine an object and it claims
to be a django.utils.functional.__proxy__ object, it is a lazy translation. Calling unicode() with the
lazy translation as the argument will generate a Unicode string in the current locale.

For more details about lazy translation objects, refer to the internationalization documentation.

Useful utility functions

Because some string operations come up again and again, Django ships with a few useful functions that should make
working with Unicode and bytestring objects a bit easier.

Conversion functions

The django.utils.encoding module contains a few functions that are handy for converting back and forth
between Unicode and bytestrings.

• smart_unicode(s, encoding=’utf-8’, strings_only=False, errors=’strict’)
converts its input to a Unicode string. The encoding parameter specifies the input encoding. (For example,
Django uses this internally when processing form input data, which might not be UTF-8 encoded.) The
strings_only parameter, if set to True, will result in Python numbers, booleans and None not being
converted to a string (they keep their original types). The errors parameter takes any of the values that are
accepted by Python’s unicode() function for its error handling.

If you pass smart_unicode() an object that has a __unicode__ method, it will use that method to do the
conversion.

• force_unicode(s, encoding=’utf-8’, strings_only=False, errors=’strict’)
is identical to smart_unicode() in almost all cases. The difference is when the first argument is a
lazy translation instance. While smart_unicode() preserves lazy translations, force_unicode()
forces those objects to a Unicode string (causing the translation to occur). Normally, you’ll want to use
smart_unicode(). However, force_unicode() is useful in template tags and filters that absolutely
must have a string to work with, not just something that can be converted to a string.

• smart_str(s, encoding=’utf-8’, strings_only=False, errors=’strict’) is essen-
tially the opposite of smart_unicode(). It forces the first argument to a bytestring. The strings_only
parameter has the same behavior as for smart_unicode() and force_unicode(). This is slightly dif-
ferent semantics from Python’s builtin str() function, but the difference is needed in a few places within
Django’s internals.

Normally, you’ll only need to use smart_unicode(). Call it as early as possible on any input data that might be
either Unicode or a bytestring, and from then on, you can treat the result as always being Unicode.

URI and IRI handling

Web frameworks have to deal with URLs (which are a type of IRI). One requirement of URLs is that they are encoded
using only ASCII characters. However, in an international environment, you might need to construct a URL from an
IRI – very loosely speaking, a URI that can contain Unicode characters. Quoting and converting an IRI to URI can be
a little tricky, so Django provides some assistance.

• The function django.utils.encoding.iri_to_uri() implements the conversion from IRI to URI as
required by the specification (RFC 3987).

• The functions django.utils.http.urlquote() and django.utils.http.urlquote_plus()
are versions of Python’s standard urllib.quote() and urllib.quote_plus() that work with non-
ASCII characters. (The data is converted to UTF-8 prior to encoding.)

6.16. Unicode data 785

http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt

Django Documentation, Release 1.2.7

These two groups of functions have slightly different purposes, and it’s important to keep them straight. Normally,
you would use urlquote() on the individual portions of the IRI or URI path so that any reserved characters such
as ‘&’ or ‘%’ are correctly encoded. Then, you apply iri_to_uri() to the full IRI and it converts any non-ASCII
characters to the correct encoded values.

Note: Technically, it isn’t correct to say that iri_to_uri() implements the full algorithm in the IRI specification.
It doesn’t (yet) perform the international domain name encoding portion of the algorithm.

The iri_to_uri() function will not change ASCII characters that are otherwise permitted in a URL. So, for
example, the character ‘%’ is not further encoded when passed to iri_to_uri(). This means you can pass a full
URL to this function and it will not mess up the query string or anything like that.

An example might clarify things here:

>>> urlquote(u’Paris & Orléans’)
u’Paris%20%26%20Orl%C3%A9ans’
>>> iri_to_uri(u’/favorites/François/%s’ % urlquote(u’Paris & Orléans’))
’/favorites/Fran%C3%A7ois/Paris%20%26%20Orl%C3%A9ans’

If you look carefully, you can see that the portion that was generated by urlquote() in the second example was not
double-quoted when passed to iri_to_uri(). This is a very important and useful feature. It means that you can
construct your IRI without worrying about whether it contains non-ASCII characters and then, right at the end, call
iri_to_uri() on the result.

The iri_to_uri() function is also idempotent, which means the following is always true:

iri_to_uri(iri_to_uri(some_string)) = iri_to_uri(some_string)

So you can safely call it multiple times on the same IRI without risking double-quoting problems.

6.16.3 Models

Because all strings are returned from the database as Unicode strings, model fields that are character based (CharField,
TextField, URLField, etc) will contain Unicode values when Django retrieves data from the database. This is always
the case, even if the data could fit into an ASCII bytestring.

You can pass in bytestrings when creating a model or populating a field, and Django will convert it to Unicode when
it needs to.

Choosing between __str__() and __unicode__()

One consequence of using Unicode by default is that you have to take some care when printing data from the model.

In particular, rather than giving your model a __str__() method, we recommended you implement a
__unicode__() method. In the __unicode__() method, you can quite safely return the values of all your
fields without having to worry about whether they fit into a bytestring or not. (The way Python works, the result of
__str__() is always a bytestring, even if you accidentally try to return a Unicode object).

You can still create a __str__() method on your models if you want, of course, but you shouldn’t need to do this
unless you have a good reason. Django’s Model base class automatically provides a __str__() implementation
that calls __unicode__() and encodes the result into UTF-8. This means you’ll normally only need to implement
a __unicode__() method and let Django handle the coercion to a bytestring when required.

786 Chapter 6. API Reference

Django Documentation, Release 1.2.7

Taking care in get_absolute_url()

URLs can only contain ASCII characters. If you’re constructing a URL from pieces of data that might be non-ASCII,
be careful to encode the results in a way that is suitable for a URL. The django.db.models.permalink()
decorator handles this for you automatically.

If you’re constructing a URL manually (i.e., not using the permalink() decorator), you’ll need to take care of the
encoding yourself. In this case, use the iri_to_uri() and urlquote() functions that were documented above.
For example:

from django.utils.encoding import iri_to_uri
from django.utils.http import urlquote

def get_absolute_url(self):
url = u’/person/%s/?x=0&y=0’ % urlquote(self.location)
return iri_to_uri(url)

This function returns a correctly encoded URL even if self.location is something like “Jack visited Paris &
Orléans”. (In fact, the iri_to_uri() call isn’t strictly necessary in the above example, because all the non-ASCII
characters would have been removed in quoting in the first line.)

6.16.4 The database API

You can pass either Unicode strings or UTF-8 bytestrings as arguments to filter() methods and the like in the
database API. The following two querysets are identical:

qs = People.objects.filter(name__contains=u’Å’)
qs = People.objects.filter(name__contains=’\xc3\x85’) # UTF-8 encoding of Å

6.16.5 Templates

You can use either Unicode or bytestrings when creating templates manually:

from django.template import Template
t1 = Template(’This is a bytestring template.’)
t2 = Template(u’This is a Unicode template.’)

But the common case is to read templates from the filesystem, and this creates a slight complication: not all filesys-
tems store their data encoded as UTF-8. If your template files are not stored with a UTF-8 encoding, set the
FILE_CHARSET setting to the encoding of the files on disk. When Django reads in a template file, it will convert the
data from this encoding to Unicode. (FILE_CHARSET is set to ’utf-8’ by default.)

The DEFAULT_CHARSET setting controls the encoding of rendered templates. This is set to UTF-8 by default.

Template tags and filters

A couple of tips to remember when writing your own template tags and filters:

• Always return Unicode strings from a template tag’s render() method and from template filters.

• Use force_unicode() in preference to smart_unicode() in these places. Tag rendering and filter calls
occur as the template is being rendered, so there is no advantage to postponing the conversion of lazy translation
objects into strings. It’s easier to work solely with Unicode strings at that point.

6.16. Unicode data 787

Django Documentation, Release 1.2.7

6.16.6 E-mail

Django’s e-mail framework (in django.core.mail) supports Unicode transparently. You can use Unicode data
in the message bodies and any headers. However, you’re still obligated to respect the requirements of the e-mail
specifications, so, for example, e-mail addresses should use only ASCII characters.

The following code example demonstrates that everything except e-mail addresses can be non-ASCII:

from django.core.mail import EmailMessage

subject = u’My visit to Sør-Trøndelag’
sender = u’Arnbjörg Ráðormsdóttir <arnbjorg@example.com>’
recipients = [’Fred <fred@example.com’]
body = u’...’
EmailMessage(subject, body, sender, recipients).send()

6.16.7 Form submission

HTML form submission is a tricky area. There’s no guarantee that the submission will include encoding information,
which means the framework might have to guess at the encoding of submitted data.

Django adopts a “lazy” approach to decoding form data. The data in an HttpRequest object is only de-
coded when you access it. In fact, most of the data is not decoded at all. Only the HttpRequest.GET and
HttpRequest.POST data structures have any decoding applied to them. Those two fields will return their members
as Unicode data. All other attributes and methods of HttpRequest return data exactly as it was submitted by the
client.

By default, the DEFAULT_CHARSET setting is used as the assumed encoding for form data. If you need to change
this for a particular form, you can set the encoding attribute on an HttpRequest instance. For example:

def some_view(request):
We know that the data must be encoded as KOI8-R (for some reason).
request.encoding = ’koi8-r’
...

You can even change the encoding after having accessed request.GET or request.POST, and all subsequent
accesses will use the new encoding.

Most developers won’t need to worry about changing form encoding, but this is a useful feature for applications that
talk to legacy systems whose encoding you cannot control.

Django does not decode the data of file uploads, because that data is normally treated as collections of bytes, rather
than strings. Any automatic decoding there would alter the meaning of the stream of bytes.

6.17 Django Utils

This document covers all stable modules in django.utils. Most of the modules in django.utils are designed
for internal use and only the following parts can be considered stable and thus backwards compatible as per the internal
release deprecation policy.

6.17.1 django.utils.cache

This module contains helper functions for controlling caching. It does so by managing the Vary header of responses.
It includes functions to patch the header of response objects directly and decorators that change functions to do that
header-patching themselves.

788 Chapter 6. API Reference

Django Documentation, Release 1.2.7

For information on the Vary header, see RFC 2616 section 14.44.

Essentially, the Vary HTTP header defines which headers a cache should take into account when building its cache
key. Requests with the same path but different header content for headers named in Vary need to get different cache
keys to prevent delivery of wrong content.

For example, internationalization middleware would need to distinguish caches by the Accept-language header.

patch_cache_control(response, **kwargs)

This function patches the Cache-Control header by adding all keyword arguments to it. The transformation is as
follows:

• All keyword parameter names are turned to lowercase, and underscores are converted to hyphens.

• If the value of a parameter is True (exactly True, not just a true value), only the parameter name is added to
the header.

• All other parameters are added with their value, after applying str() to it.

get_max_age(response)

Returns the max-age from the response Cache-Control header as an integer (or None if it wasn’t found or wasn’t an
integer).

patch_response_headers(response, cache_timeout=None)

Adds some useful headers to the given HttpResponse object:

• ETag

• Last-Modified

• Expires

• Cache-Control

Each header is only added if it isn’t already set.

cache_timeout is in seconds. The CACHE_MIDDLEWARE_SECONDS setting is used by default.

add_never_cache_headers(response)

Adds headers to a response to indicate that a page should never be cached.

patch_vary_headers(response, newheaders)

Adds (or updates) the Vary header in the given HttpResponse object. newheaders is a list of header names
that should be in Vary. Existing headers in Vary aren’t removed.

get_cache_key(request, key_prefix=None)

Returns a cache key based on the request path. It can be used in the request phase because it pulls the list of headers
to take into account from the global path registry and uses those to build a cache key to check against.

If there is no headerlist stored, the page needs to be rebuilt, so this function returns None.

learn_cache_key(request, response, cache_timeout=None, key_prefix=None)

Learns what headers to take into account for some request path from the response object. It stores those headers in a
global path registry so that later access to that path will know what headers to take into account without building the
response object itself. The headers are named in the Vary header of the response, but we want to prevent response
generation.

The list of headers to use for cache key generation is stored in the same cache as the pages themselves. If the cache
ages some data out of the cache, this just means that we have to build the response once to get at the Vary header and
so at the list of headers to use for the cache key.

6.17. Django Utils 789

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44

Django Documentation, Release 1.2.7

6.17.2 SortedDict

class django.utils.datastructures.SortedDict

Methods

Extra methods that SortedDict adds to the standard Python dict class.

insert(index, key, value)

Inserts the key, value pair before the item with the given index.

value_for_index(index)

Returns the value of the item at the given zero-based index.

Creating new SortedDict

Creating a new SortedDict must be done in a way where ordering is guaranteed. For example:

SortedDict({’b’: 1, ’a’: 2, ’c’: 3})

will not work. Passing in a basic Python dict could produce unreliable results. Instead do:

SortedDict([(’b’, 1), (’a’, 2), (’c’, 3)])

6.17.3 django.utils.encoding

class StrAndUnicode

A class whose __str__ returns its __unicode__ as a UTF-8 bytestring. Useful as a mix-in.

smart_unicode(s, encoding=’utf-8’, strings_only=False, errors=’strict’)

Returns a unicode object representing s. Treats bytestrings using the ‘encoding’ codec.

If strings_only is True, don’t convert (some) non-string-like objects.

is_protected_type(obj)

Determine if the object instance is of a protected type.

Objects of protected types are preserved as-is when passed to force_unicode(strings_only=True).

force_unicode(s, encoding=’utf-8’, strings_only=False, errors=’strict’)

Similar to smart_unicode, except that lazy instances are resolved to strings, rather than kept as lazy objects.

If strings_only is True, don’t convert (some) non-string-like objects.

smart_str(s, encoding=’utf-8’, strings_only=False, errors=’strict’)

Returns a bytestring version of s, encoded as specified in encoding.

If strings_only is True, don’t convert (some) non-string-like objects.

iri_to_uri(iri)

Convert an Internationalized Resource Identifier (IRI) portion to a URI portion that is suitable for inclusion in a URL.

This is the algorithm from section 3.1 of RFC 3987. However, since we are assuming input is either UTF-8 or unicode
already, we can simplify things a little from the full method.

790 Chapter 6. API Reference

http://www.ietf.org/rfc/rfc3987.txt

Django Documentation, Release 1.2.7

Returns an ASCII string containing the encoded result.

6.17.4 django.utils.feedgenerator

Sample usage:

>>> from django.utils import feedgenerator
>>> feed = feedgenerator.Rss201rev2Feed(
... title=u"Poynter E-Media Tidbits",
... link=u"http://www.poynter.org/column.asp?id=31",
... description=u"A group Weblog by the sharpest minds in online media/journalism/publishing.",
... language=u"en",
...)
>>> feed.add_item(
... title="Hello",
... link=u"http://www.holovaty.com/test/",
... description="Testing."
...)
>>> fp = open(’test.rss’, ’w’)
>>> feed.write(fp, ’utf-8’)
>>> fp.close()

For simplifying the selection of a generator use feedgenerator.DefaultFeed which is currently
Rss201rev2Feed

For definitions of the different versions of RSS, see: http://diveintomark.org/archives/2004/02/04/incompatible-rss

get_tag_uri(url, date)

Creates a TagURI.

See http://diveintomark.org/archives/2004/05/28/howto-atom-id

SyndicationFeed

class SyndicationFeed
Base class for all syndication feeds. Subclasses should provide write().

__init__(title, link, description[, language=None, author_email=None, author_name=None, au-
thor_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None,
feed_guid=None, ttl=None, **kwargs])

Initialize the feed with the given dictionary of metadata, which applies to the entire feed.

Any extra keyword arguments you pass to __init__ will be stored in self.feed.

All parameters should be Unicode objects, except categories, which should be a sequence of Unicode
objects.

add_item(title, link, description[, author_email=None, author_name=None, author_link=None,
pubdate=None, comments=None, unique_id=None, enclosure=None, categories=(),
item_copyright=None, ttl=None, **kwargs])

Adds an item to the feed. All args are expected to be Python unicode objects except pubdate, which
is a datetime.datetime object, and enclosure, which is an instance of the Enclosure class.

num_items()

root_attributes()
Return extra attributes to place on the root (i.e. feed/channel) element. Called from write().

6.17. Django Utils 791

http://diveintomark.org/archives/2004/02/04/incompatible-rss
http://diveintomark.org/archives/2004/05/28/howto-atom-id

Django Documentation, Release 1.2.7

add_root_elements(handler)
Add elements in the root (i.e. feed/channel) element. Called from write().

item_attributes(item)
Return extra attributes to place on each item (i.e. item/entry) element.

add_item_elements(handler, item)
Add elements on each item (i.e. item/entry) element.

write(outfile, encoding)
Outputs the feed in the given encoding to outfile, which is a file-like object. Subclasses should override
this.

writeString(encoding)
Returns the feed in the given encoding as a string.

latest_post_date()
Returns the latest item’s pubdate. If none of them have a pubdate, this returns the current date/time.

Enclosure

class Enclosure

Represents an RSS enclosure

RssFeed

class RssFeed(SyndicationFeed)

Rss201rev2Feed

class Rss201rev2Feed(RssFeed)

Spec: http://blogs.law.harvard.edu/tech/rss

RssUserland091Feed

class RssUserland091Feed(RssFeed)
Spec: http://backend.userland.com/rss091

Atom1Feed

class Atom1Feed(SyndicationFeed)

Spec: http://atompub.org/2005/07/11/draft-ietf-atompub-format-10.html

6.17.5 django.utils.http

urlquote(url, safe=’/’)

A version of Python’s urllib.quote() function that can operate on unicode strings. The url is first UTF-8 encoded
before quoting. The returned string can safely be used as part of an argument to a subsequent iri_to_uri() call
without double-quoting occurring. Employs lazy execution.

urlquote_plus(url, safe=’‘)

792 Chapter 6. API Reference

http://blogs.law.harvard.edu/tech/rss
http://backend.userland.com/rss091
http://atompub.org/2005/07/11/draft-ietf-atompub-format-10.html

Django Documentation, Release 1.2.7

A version of Python’s urllib.quote_plus() function that can operate on unicode strings. The url is first UTF-8 encoded
before quoting. The returned string can safely be used as part of an argument to a subsequent iri_to_uri() call without
double-quoting occurring. Employs lazy execution.

urlencode(query, doseq=0)

A version of Python’s urllib.urlencode() function that can operate on unicode strings. The parameters are first case to
UTF-8 encoded strings and then encoded as per normal.

cookie_date(epoch_seconds=None)

Formats the time to ensure compatibility with Netscape’s cookie standard.

Accepts a floating point number expressed in seconds since the epoch, in UTC - such as that outputted by
time.time(). If set to None, defaults to the current time.

Outputs a string in the format Wdy, DD-Mon-YYYY HH:MM:SS GMT.

http_date(epoch_seconds=None)

Formats the time to match the RFC 1123 date format as specified by HTTP RFC 2616 section 3.3.1.

Accepts a floating point number expressed in seconds since the epoch, in UTC - such as that outputted by
time.time(). If set to None, defaults to the current time.

Outputs a string in the format Wdy, DD Mon YYYY HH:MM:SS GMT.

base36_to_int(s)

Converted a base 36 string to an integer

int_to_base36(i)

Converts an integer to a base36 string

6.17.6 django.utils.safestring

Functions and classes for working with “safe strings”: strings that can be displayed safely without further escaping in
HTML. Marking something as a “safe string” means that the producer of the string has already turned characters that
should not be interpreted by the HTML engine (e.g. ‘<’) into the appropriate entities.

class SafeString

A string subclass that has been specifically marked as “safe” (requires no further escaping) for HTML output purposes.

class SafeUnicode

A unicode subclass that has been specifically marked as “safe” for HTML output purposes.

mark_safe(s)

Explicitly mark a string as safe for (HTML) output purposes. The returned object can be used everywhere a string or
unicode object is appropriate.

Can be called multiple times on a single string.

mark_for_escaping(s)

Explicitly mark a string as requiring HTML escaping upon output. Has no effect on SafeData subclasses.

Can be called multiple times on a single string (the resulting escaping is only applied once).

6.17. Django Utils 793

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

Django Documentation, Release 1.2.7

6.17.7 django.utils.translation

For a complete discussion on the usage of the following see the Internationalization documentation.

gettext(message)

Translates message and returns it in a UTF-8 bytestring

ugettext(message)

Translates message and returns it in a unicode string

gettext_lazy(message)

ugettext_lazy(message)

Same as the non-lazy versions above, but using lazy execution.

See lazy translations documentation.

gettext_noop(message)

Marks strings for translation but doesn’t translate them now. This can be used to store strings in global variables that
should stay in the base language (because they might be used externally) and will be translated later.

ngettext(singular, plural, number)

Translates singular and plural and returns the appropriate string based on number in a UTF-8 bytestring

ungettext(singular, plural, number)

Translates singular and plural and returns the appropriate string based on number in a unicode string

ngettext_lazy(singular, plural, number)

ungettext_lazy(singular, plural, number)

Same as the non-lazy versions above, but using lazy execution.

See lazy translations documentation.

string_concat(*strings)

Lazy variant of string concatenation, needed for translations that are constructed from multiple parts.

activate(language)

Fetches the translation object for a given tuple of application name and language and installs it as the current translation
object for the current thread.

deactivate()

De-installs the currently active translation object so that further _ calls will resolve against the default translation
object, again.

deactivate_all()

Makes the active translation object a NullTranslations() instance. This is useful when we want delayed translations to
appear as the original string for some reason.

get_language()

Returns the currently selected language code.

get_language_bidi()

Returns selected language’s BiDi layout:

• False = left-to-right layout

794 Chapter 6. API Reference

Django Documentation, Release 1.2.7

• True = right-to-left layout

get_date_formats()

Checks whether translation files provide a translation for some technical message ID to store date and time formats. If
it doesn’t contain one, the formats provided in the settings will be used.

get_language_from_request(request)

Analyzes the request to find what language the user wants the system to show. Only languages listed in set-
tings.LANGUAGES are taken into account. If the user requests a sublanguage where we have a main language,
we send out the main language.

to_locale(language)

Turns a language name (en-us) into a locale name (en_US).

templatize(src)

Turns a Django template into something that is understood by xgettext. It does so by translating the Django translation
tags into standard gettext function invocations.

6.17.8 django.utils.tzinfo

class FixedOffset

Fixed offset in minutes east from UTC.

class LocalTimezone

Proxy timezone information from time module.

6.18 Validators

New in version 1.2: Please, see the release notes

6.18.1 Writing validators

A validator is a callable that takes a value and raises a ValidationError if it doesn’t meet some criteria. Validators
can be useful for re-using validation logic between different types of fields.

For example, here’s a validator that only allows even numbers:

from django.core.exceptions import ValidationError

def validate_even(value):
if value % 2 != 0:

raise ValidationError(u’%s is not an even number’ % value)

You can add this to a model field via the field’s validators argument:

from django.db import models

class MyModel(models.Model):
even_field = models.IntegerField(validators=[validate_even])

Because values are converted to Python before validators are run, you can even use the same validator with forms:

6.18. Validators 795

Django Documentation, Release 1.2.7

from django import forms

class MyForm(forms.Form):
even_field = forms.IntegerField(validators=[validate_even])

6.18.2 How validators are run

See the form validation for more information on how validators are run in forms, and Validating objects for how
they’re run in models. Note that validators will not be run automatically when you save a model, but if you are
using a ModelForm, it will run your validators on any fields that are included in your form. See the ModelForm
documentation for information on how model validation interacts with forms.

6.18.3 Built-in validators

The django.core.validators module contains a collection of callable validators for use with model and form
fields. They’re used internally but are available for use with your own fields, too. They can be used in addition to, or
in lieu of custom field.clean() methods.

RegexValidator

class RegexValidator(regex[, message=None, code=None])

regex
The regular expression pattern to search for the provided value, or a pre-compiled regular expression.
Raises a ValidationError with message and code if no match is found.

message
The error message used by ValidationError if validation fails. If no message is specified, a generic
"Enter a valid value" message is used. Default value: None.

code
The error code used by ValidationError if validation fails. If code is not specified, "invalid" is
used. Default value: None.

URLValidator

class URLValidator([verify_exists=False, validator_user_agent=URL_VALIDATOR_USER_AGENT])
A RegexValidator that ensures a value looks like a URL and optionally verifies that the URL actually exists
(i.e., doesn’t return a 404 status code). Raises an error code of ’invalid’ if it doesn’t look like a URL, and
a code of ’invalid_link’ if it doesn’t exist.

verify_exists
Default value: False. If set to True, this validator checks that the URL actually exists.

validator_user_agent
If verify_exists is True, Django uses the value of validator_user_agent as the “User-agent”
for the request. This defaults to settings.URL_VALIDATOR_USER_AGENT.

796 Chapter 6. API Reference

Django Documentation, Release 1.2.7

validate_email

validate_email
A RegexValidator instance that ensures a value looks like an e-mail address.

validate_slug

validate_slug
A RegexValidator instance that ensures a value consists of only letters, numbers, underscores or hyphens.

validate_ipv4_address

validate_ipv4_address
A RegexValidator instance that ensures a value looks like an IPv4 address.

validate_comma_separated_integer_list

validate_comma_separated_integer_list
A RegexValidator instance that ensures a value is a comma-separated list of integers.

MaxValueValidator

class MaxValueValidator(max_value)
Raises a ValidationError with a code of ’max_value’ if value is greater than max_value.

MinValueValidator

class MinValueValidator(min_value)
Raises a ValidationError with a code of ’min_value’ if value is less than min_value.

MaxLengthValidator

class MaxLengthValidator(max_length)
Raises a ValidationError with a code of ’max_length’ if the length of value is greater than
max_length.

MinLengthValidator

class MinLengthValidator(min_length)
Raises a ValidationError with a code of ’min_length’ if the length of value is less than
min_length.

6.18. Validators 797

Django Documentation, Release 1.2.7

798 Chapter 6. API Reference

CHAPTER

SEVEN

META-DOCUMENTATION AND
MISCELLANY

Documentation that we can’t find a more organized place for. Like that drawer in your kitchen with the scissors,
batteries, duct tape, and other junk.

7.1 API stability

The release of Django 1.0 comes with a promise of API stability and forwards-compatibility. In a nutshell, this means
that code you develop against Django 1.0 will continue to work against 1.1 unchanged, and you should need to make
only minor changes for any 1.X release.

7.1.1 What “stable” means

In this context, stable means:

• All the public APIs – everything documented in the linked documents below, and all methods that don’t begin
with an underscore – will not be moved or renamed without providing backwards-compatible aliases.

• If new features are added to these APIs – which is quite possible – they will not break or change the meaning of
existing methods. In other words, “stable” does not (necessarily) mean “complete.”

• If, for some reason, an API declared stable must be removed or replaced, it will be declared deprecated but will
remain in the API for at least two minor version releases. Warnings will be issued when the deprecated method
is called.

See Official releases for more details on how Django’s version numbering scheme works, and how features will
be deprecated.

• We’ll only break backwards compatibility of these APIs if a bug or security hole makes it completely unavoid-
able.

7.1.2 Stable APIs

In general, everything covered in the documentation – with the exception of anything in the internals area is considered
stable as of 1.0. This includes these APIs:

• Authorization

• Caching.

799

Django Documentation, Release 1.2.7

• Model definition, managers, querying and transactions

• Sending e-mail.

• File handling and storage

• Forms

• HTTP request/response handling, including file uploads, middleware, sessions, URL resolution, view, and short-
cut APIs.

• Generic views.

• Internationalization.

• Pagination

• Serialization

• Signals

• Templates, including the language, Python-level template APIs, and custom template tags and libraries. We may
add new template tags in the future and the names may inadvertently clash with external template tags. Before
adding any such tags, we’ll ensure that Django raises an error if it tries to load tags with duplicate names.

• Testing

• django-admin utility.

• Built-in middleware

• Request/response objects.

• Settings. Note, though that while the list of built-in settings can be considered complete we may – and probably
will – add new settings in future versions. This is one of those places where “‘stable’ does not mean ‘complete.”’

• Built-in signals. Like settings, we’ll probably add new signals in the future, but the existing ones won’t break.

• Unicode handling.

• Everything covered by the HOWTO guides.

django.utils

Most of the modules in django.utils are designed for internal use. Only the following parts of django.utils can
be considered stable:

• django.utils.cache

• django.utils.datastructures.SortedDict – only this single class; the rest of the module is for
internal use.

• django.utils.encoding

• django.utils.feedgenerator

• django.utils.http

• django.utils.safestring

• django.utils.translation

• django.utils.tzinfo

800 Chapter 7. Meta-documentation and miscellany

Django Documentation, Release 1.2.7

7.1.3 Exceptions

There are a few exceptions to this stability and backwards-compatibility promise.

Security fixes

If we become aware of a security problem – hopefully by someone following our security reporting policy – we’ll do
everything necessary to fix it. This might mean breaking backwards compatibility; security trumps the compatibility
guarantee.

Contributed applications (django.contrib)

While we’ll make every effort to keep these APIs stable – and have no plans to break any contrib apps – this is an area
that will have more flux between releases. As the Web evolves, Django must evolve with it.

However, any changes to contrib apps will come with an important guarantee: we’ll make sure it’s always possible
to use an older version of a contrib app if we need to make changes. Thus, if Django 1.5 ships with a backwards-
incompatible django.contrib.flatpages, we’ll make sure you can still use the Django 1.4 version alongside
Django 1.5. This will continue to allow for easy upgrades.

Historically, apps in django.contrib have been more stable than the core, so in practice we probably won’t have
to ever make this exception. However, it’s worth noting if you’re building apps that depend on django.contrib.

APIs marked as internal

Certain APIs are explicitly marked as “internal” in a couple of ways:

• Some documentation refers to internals and mentions them as such. If the documentation says that something is
internal, we reserve the right to change it.

• Functions, methods, and other objects prefixed by a leading underscore (_). This is the standard Python way of
indicating that something is private; if any method starts with a single _, it’s an internal API.

7.2 Design philosophies

This document explains some of the fundamental philosophies Django’s developers have used in creating the frame-
work. Its goal is to explain the past and guide the future.

7.2.1 Overall

Loose coupling

A fundamental goal of Django’s stack is loose coupling and tight cohesion. The various layers of the framework
shouldn’t “know” about each other unless absolutely necessary.

For example, the template system knows nothing about Web requests, the database layer knows nothing about data
display and the view system doesn’t care which template system a programmer uses.

Although Django comes with a full stack for convenience, the pieces of the stack are independent of another wherever
possible.

7.2. Design philosophies 801

http://c2.com/cgi/wiki?CouplingAndCohesion

Django Documentation, Release 1.2.7

Less code

Django apps should use as little code as possible; they should lack boilerplate. Django should take full advantage of
Python’s dynamic capabilities, such as introspection.

Quick development

The point of a Web framework in the 21st century is to make the tedious aspects of Web development fast. Django
should allow for incredibly quick Web development.

Don’t repeat yourself (DRY)

Every distinct concept and/or piece of data should live in one, and only one, place. Redundancy is bad. Normalization
is good.

The framework, within reason, should deduce as much as possible from as little as possible.

See Also:

The discussion of DRY on the Portland Pattern Repository

Explicit is better than implicit

This, a core Python principle, means Django shouldn’t do too much “magic.” Magic shouldn’t happen unless there’s
a really good reason for it. Magic is worth using only if it creates a huge convenience unattainable in other ways, and
it isn’t implemented in a way that confuses developers who are trying to learn how to use the feature.

Consistency

The framework should be consistent at all levels. Consistency applies to everything from low-level (the Python coding
style used) to high-level (the “experience” of using Django).

7.2.2 Models

Explicit is better than implicit

Fields shouldn’t assume certain behaviors based solely on the name of the field. This requires too much knowledge of
the system and is prone to errors. Instead, behaviors should be based on keyword arguments and, in some cases, on
the type of the field.

Include all relevant domain logic

Models should encapsulate every aspect of an “object,” following Martin Fowler’s Active Record design pattern.

This is why both the data represented by a model and information about it (its human-readable name, options like
default ordering, etc.) are defined in the model class; all the information needed to understand a given model should
be stored in the model.

7.2.3 Database API

The core goals of the database API are:

802 Chapter 7. Meta-documentation and miscellany

http://c2.com/cgi/wiki?DontRepeatYourself
http://www.python.org/dev/peps/pep-0020/
http://www.martinfowler.com/eaaCatalog/activeRecord.html

Django Documentation, Release 1.2.7

SQL efficiency

It should execute SQL statements as few times as possible, and it should optimize statements internally.

This is why developers need to call save() explicitly, rather than the framework saving things behind the scenes
silently.

This is also why the select_related() QuerySet method exists. It’s an optional performance booster for the
common case of selecting “every related object.”

Terse, powerful syntax

The database API should allow rich, expressive statements in as little syntax as possible. It should not rely on importing
other modules or helper objects.

Joins should be performed automatically, behind the scenes, when necessary.

Every object should be able to access every related object, systemwide. This access should work both ways.

Option to drop into raw SQL easily, when needed

The database API should realize it’s a shortcut but not necessarily an end-all-be-all. The framework should make it
easy to write custom SQL – entire statements, or just custom WHERE clauses as custom parameters to API calls.

7.2.4 URL design

Loose coupling

URLs in a Django app should not be coupled to the underlying Python code. Tying URLs to Python function names
is a Bad And Ugly Thing.

Along these lines, the Django URL system should allow URLs for the same app to be different in different contexts.
For example, one site may put stories at /stories/, while another may use /news/.

Infinite flexibility

URLs should be as flexible as possible. Any conceivable URL design should be allowed.

Encourage best practices

The framework should make it just as easy (or even easier) for a developer to design pretty URLs than ugly ones.

File extensions in Web-page URLs should be avoided.

Vignette-style commas in URLs deserve severe punishment.

Definitive URLs

Technically, foo.com/bar and foo.com/bar/ are two different URLs, and search-engine robots (and some Web
traffic-analyzing tools) would treat them as separate pages. Django should make an effort to “normalize” URLs so that
search-engine robots don’t get confused.

This is the reasoning behind the APPEND_SLASH setting.

7.2. Design philosophies 803

Django Documentation, Release 1.2.7

7.2.5 Template system

Separate logic from presentation

We see a template system as a tool that controls presentation and presentation-related logic – and that’s it. The template
system shouldn’t support functionality that goes beyond this basic goal.

If we wanted to put everything in templates, we’d be using PHP. Been there, done that, wised up.

Discourage redundancy

The majority of dynamic Web sites use some sort of common sitewide design – a common header, footer, navigation
bar, etc. The Django template system should make it easy to store those elements in a single place, eliminating
duplicate code.

This is the philosophy behind template inheritance.

Be decoupled from HTML

The template system shouldn’t be designed so that it only outputs HTML. It should be equally good at generating
other text-based formats, or just plain text.

XML should not be used for template languages

Using an XML engine to parse templates introduces a whole new world of human error in editing templates – and
incurs an unacceptable level of overhead in template processing.

Assume designer competence

The template system shouldn’t be designed so that templates necessarily are displayed nicely in WYSIWYG editors
such as Dreamweaver. That is too severe of a limitation and wouldn’t allow the syntax to be as nice as it is. Django
expects template authors are comfortable editing HTML directly.

Treat whitespace obviously

The template system shouldn’t do magic things with whitespace. If a template includes whitespace, the system should
treat the whitespace as it treats text – just display it. Any whitespace that’s not in a template tag should be displayed.

Don’t invent a programming language

The template system intentionally doesn’t allow the following:

• Assignment to variables

• Advanced logic

The goal is not to invent a programming language. The goal is to offer just enough programming-esque functionality,
such as branching and looping, that is essential for making presentation-related decisions.

The Django template system recognizes that templates are most often written by designers, not programmers, and
therefore should not assume Python knowledge.

804 Chapter 7. Meta-documentation and miscellany

Django Documentation, Release 1.2.7

Safety and security

The template system, out of the box, should forbid the inclusion of malicious code – such as commands that delete
database records.

This is another reason the template system doesn’t allow arbitrary Python code.

Extensibility

The template system should recognize that advanced template authors may want to extend its technology.

This is the philosophy behind custom template tags and filters.

7.2.6 Views

Simplicity

Writing a view should be as simple as writing a Python function. Developers shouldn’t have to instantiate a class when
a function will do.

Use request objects

Views should have access to a request object – an object that stores metadata about the current request. The object
should be passed directly to a view function, rather than the view function having to access the request data from a
global variable. This makes it light, clean and easy to test views by passing in “fake” request objects.

Loose coupling

A view shouldn’t care about which template system the developer uses – or even whether a template system is used at
all.

Differentiate between GET and POST

GET and POST are distinct; developers should explicitly use one or the other. The framework should make it easy to
distinguish between GET and POST data.

7.3 Third-party distributions of Django

Many third-party distributors are now providing versions of Django integrated with their package-management sys-
tems. These can make installation and upgrading much easier for users of Django since the integration includes the
ability to automatically install dependencies (like database adapters) that Django requires.

Typically, these packages are based on the latest stable release of Django, so if you want to use the development
version of Django you’ll need to follow the instructions for installing the development version from our Subversion
repository.

If you’re using Linux or a Unix installation, such as OpenSolaris, check with your distributor to see if they already
package Django. If you’re using a Linux distro and don’t know how to find out if a package is available, then now is a
good time to learn. The Django Wiki contains a list of Third Party Distributions to help you out.

7.3. Third-party distributions of Django 805

http://code.djangoproject.com/wiki/Distributions

Django Documentation, Release 1.2.7

7.3.1 For distributors

If you’d like to package Django for distribution, we’d be happy to help out! Please join the django-developers mailing
list and introduce yourself.

We also encourage all distributors to subscribe to the django-announce mailing list, which is a (very) low-traffic list
for announcing new releases of Django and important bugfixes.

806 Chapter 7. Meta-documentation and miscellany

http://groups.google.com/group/django-developers/
http://groups.google.com/group/django-developers/
http://groups.google.com/group/django-announce/

CHAPTER

EIGHT

GLOSSARY

field An attribute on a model; a given field usually maps directly to a single database column.

See Models.

generic view A higher-order view function that provides an abstract/generic implementation of a common idiom or
pattern found in view development.

See Generic views.

model Models store your application’s data.

See Models.

MTV See mtv.

MVC Model-view-controller; a software pattern. Django follows MVC to some extent.

project A Python package – i.e. a directory of code – that contains all the settings for an instance of Django. This
would include database configuration, Django-specific options and application-specific settings.

property Also known as “managed attributes”, and a feature of Python since version 2.2. From the property docu-
mentation:

Properties are a neat way to implement attributes whose usage resembles attribute access, but whose
implementation uses method calls. [...] You could only do this by overriding __getattr__ and
__setattr__; but overriding __setattr__ slows down all attribute assignments considerably,
and overriding __getattr__ is always a bit tricky to get right. Properties let you do this painlessly,
without having to override __getattr__ or __setattr__.

queryset An object representing some set of rows to be fetched from the database.

See Making queries.

slug A short label for something, containing only letters, numbers, underscores or hyphens. They’re generally used
in URLs. For example, in a typical blog entry URL:

http://www.djangoproject.com/weblog/2008/apr/12/spring/

the last bit (spring) is the slug.

template A chunk of text that acts as formatting for representing data. A template helps to abstract the presentation
of data from the data itself.

See The Django template language.

view A function responsible for rending a page.

807

http://en.wikipedia.org/wiki/Model-view-controller
http://www.python.org/download/releases/2.2/descrintro/#property
http://www.python.org/download/releases/2.2/descrintro/#property
http://www.djangoproject.com/weblog/2008/apr/12/

Django Documentation, Release 1.2.7

808 Chapter 8. Glossary

CHAPTER

NINE

RELEASE NOTES

Release notes for the official Django releases. Each release note will tell you what’s new in each version, and will also
describe any backwards-incompatible changes made in that version.

For those upgrading to a new version of Django, you will need to check all the backwards-incompatible changes and
deprecated features for each ‘final’ release from the one after your current Django version, up to and including the
new version.

9.1 Final releases

9.1.1 1.2 release

Django 1.2.5 release notes

Welcome to Django 1.2.5!

This is the fifth “bugfix” release in the Django 1.2 series, improving the stability and performance of the Django 1.2
codebase.

With four exceptions, Django 1.2.5 maintains backwards compatibility with Django 1.2.4. It also contains a number of
fixes and other improvements. Django 1.2.5 is a recommended upgrade for any development or deployment currently
using or targeting Django 1.2.

For full details on the new features, backwards incompatibilities, and deprecated features in the 1.2 branch, see the
Django 1.2 release notes.

Backwards incompatible changes

CSRF exception for AJAX requests Django includes a CSRF-protection mechanism, which makes use of a token
inserted into outgoing forms. Middleware then checks for the token’s presence on form submission, and validates it.

Prior to Django 1.2.5, our CSRF protection made an exception for AJAX requests, on the following basis:

• Many AJAX toolkits add an X-Requested-With header when using XMLHttpRequest.

• Browsers have strict same-origin policies regarding XMLHttpRequest.

• In the context of a browser, the only way that a custom header of this nature can be added is with XMLHttpRe-
quest.

Therefore, for ease of use, we did not apply CSRF checks to requests that appeared to be AJAX on the basis of the
X-Requested-With header. The Ruby on Rails web framework had a similar exemption.

809

Django Documentation, Release 1.2.7

Recently, engineers at Google made members of the Ruby on Rails development team aware of a combination of
browser plugins and redirects which can allow an attacker to provide custom HTTP headers on a request to any
website. This can allow a forged request to appear to be an AJAX request, thereby defeating CSRF protection which
trusts the same-origin nature of AJAX requests.

Michael Koziarski of the Rails team brought this to our attention, and we were able to produce a proof-of-concept
demonstrating the same vulnerability in Django’s CSRF handling.

To remedy this, Django will now apply full CSRF validation to all requests, regardless of apparent AJAX origin. This
is technically backwards-incompatible, but the security risks have been judged to outweigh the compatibility concerns
in this case.

Additionally, Django will now accept the CSRF token in the custom HTTP header X-CSRFTOKEN, as well as in the
form submission itself, for ease of use with popular JavaScript toolkits which allow insertion of custom headers into
all AJAX requests.

Please see the CSRF docs for example jQuery code that demonstrates this technique, ensuring that you are looking
at the documentation for your version of Django, as the exact code necessary is different for some older versions of
Django.

FileField no longer deletes files In earlier Django versions, when a model instance containing a FileField
was deleted, FileField took it upon itself to also delete the file from the backend storage. This opened the door
to several potentially serious data-loss scenarios, including rolled-back transactions and fields on different models
referencing the same file. In Django 1.2.5, FileField will never delete files from the backend storage. If you need
cleanup of orphaned files, you’ll need to handle it yourself (for instance, with a custom management command that
can be run manually or scheduled to run periodically via e.g. cron).

Use of custom SQL to load initial data in tests Django provides a custom SQL hooks as a way to inject hand-
crafted SQL into the database synchronization process. One of the possible uses for this custom SQL is to insert data
into your database. If your custom SQL contains INSERT statements, those insertions will be performed every time
your database is synchronized. This includes the synchronization of any test databases that are created when you run
a test suite.

However, in the process of testing the Django 1.3, it was discovered that this feature has never completely worked as
advertised. When using database backends that don’t support transactions, or when using a TransactionTestCase, data
that has been inserted using custom SQL will not be visible during the testing process.

Unfortunately, there was no way to rectify this problem without introducing a backwards incompatibility. Rather than
leave SQL-inserted initial data in an uncertain state, Django now enforces the policy that data inserted by custom SQL
will not be visible during testing.

This change only affects the testing process. You can still use custom SQL to load data into your production database
as part of the syncdb process. If you require data to exist during test conditions, you should either insert it using test
fixtures, or using the setUp() method of your test case.

ModelAdmin.lookup_allowed signature changed Django 1.2.4 introduced a method lookup_allowed on
ModelAdmin, to cope with a security issue (changeset [15033]). Although this method was never documented,
it seems some people have overridden lookup_allowed, especially to cope with regressions introduced by that
changeset. While the method is still undocumented and not marked as stable, it may be helpful to know that the
signature of this function has changed.

Django 1.2.4 release notes

Welcome to Django 1.2.4!

810 Chapter 9. Release notes

http://code.djangoproject.com/changeset/15033

Django Documentation, Release 1.2.7

This is the fourth “bugfix” release in the Django 1.2 series, improving the stability and performance of the Django 1.2
codebase.

With one exception, Django 1.2.4 maintains backwards compatibility with Django 1.2.3. It also contains a number of
fixes and other improvements. Django 1.2.4 is a recommended upgrade for any development or deployment currently
using or targeting Django 1.2.

For full details on the new features, backwards incompatibilities, and deprecated features in the 1.2 branch, see the
Django 1.2 release notes.

Backwards incompatible changes

Restricted filters in admin interface The Django administrative interface, django.contrib.admin, supports filtering
of displayed lists of objects by fields on the corresponding models, including across database-level relationships. This
is implemented by passing lookup arguments in the querystring portion of the URL, and options on the ModelAdmin
class allow developers to specify particular fields or relationships which will generate automatic links for filtering.

One historically-undocumented and -unofficially-supported feature has been the ability for a user with sufficient
knowledge of a model’s structure and the format of these lookup arguments to invent useful new filters on the fly
by manipulating the querystring.

However, it has been demonstrated that this can be abused to gain access to information outside of an admin user’s
permissions; for example, an attacker with access to the admin and sufficient knowledge of model structure and
relations could construct query strings which – with repeated use of regular-expression lookups supported by the
Django database API – expose sensitive information such as users’ password hashes.

To remedy this, django.contrib.admin will now validate that querystring lookup arguments either specify only fields
on the model being viewed, or cross relations which have been explicitly whitelisted by the application developer
using the pre-existing mechanism mentioned above. This is backwards-incompatible for any users relying on the prior
ability to insert arbitrary lookups.

One new feature

Ordinarily, a point release would not include new features, but in the case of Django 1.2.4, we have made an exception
to this rule.

One of the bugs fixed in Django 1.2.4 involves a set of circumstances whereby a running a test suite on a multiple
database configuration could cause the original source database (i.e., the actual production database) to be dropped,
causing catastrophic loss of data. In order to provide a fix for this problem, it was necessary to introduce a new setting
– TEST_DEPENDENCIES – that allows you to define any creation order dependencies in your database configuration.

Most users – even users with multiple-database configurations – need not be concerned about the data loss bug, or the
manual configuration of TEST_DEPENDENCIES. See the original problem report documentation on controlling the
creation order of test databases for details.

GeoDjango

The function-based TEST_RUNNER previously used to execute the GeoDjango test suite,
django.contrib.gis.tests.run_gis_tests(), was finally deprecated in favor of a class-based
test runner, django.contrib.gis.tests.GeoDjangoTestSuiteRunner, added in this release.

In addition, the GeoDjango test suite is now included when running the Django test suite with runtests.py and
using spatial database backends.

9.1. Final releases 811

http://code.djangoproject.com/ticket/14415

Django Documentation, Release 1.2.7

Django 1.2.2 release notes

Welcome to Django 1.2.2!

This is the second “bugfix” release in the Django 1.2 series, improving the stability and performance of the Django
1.2 codebase.

Django 1.2.2 maintains backwards compatibility with Django 1.2.1, but contain a number of fixes and other improve-
ments. Django 1.2.2 is a recommended upgrade for any development or deployment currently using or targeting
Django 1.2.

For full details on the new features, backwards incompatibilities, and deprecated features in the 1.2 branch, see the
Django 1.2 release notes.

One new feature

Ordinarily, a point release would not include new features, but in the case of Django 1.2.2, we have made an exception
to this rule.

In order to test a bug fix that forms part of the 1.2.2 release, it was necessary to add a feature – the
enforce_csrf_checks flag – to the test client. This flag forces the test client to perform full CSRF checks
on forms. The default behavior of the test client hasn’t changed, but if you want to do CSRF checks with the test
client, it is now possible to do so.

Django 1.2 release notes

May 17, 2010.

Welcome to Django 1.2!

Nearly a year in the making, Django 1.2 packs an impressive list of new features and lots of bug fixes. These release
notes cover the new features, as well as important changes you’ll want to be aware of when upgrading from Django
1.1 or older versions.

Overview

Django 1.2 introduces several large, important new features, including:

• Support for multiple database connections in a single Django instance.

• Model validation inspired by Django’s form validation.

• Vastly improved protection against Cross-Site Request Forgery (CSRF).

• A new user “messages” framework with support for cookie- and session-based message for both anonymous
and authenticated users.

• Hooks for object-level permissions, permissions for anonymous users, and more flexible username requirements.

• Customization of e-mail sending via e-mail backends.

• New “smart” if template tag which supports comparison operators.

These are just the highlights; full details and a complete list of features may be found below.

See Also:

Django Advent covered the release of Django 1.2 with a series of articles and tutorials that cover some of the new
features in depth.

812 Chapter 9. Release notes

http://djangoadvent.com/

Django Documentation, Release 1.2.7

Wherever possible these features have been introduced in a backwards-compatible manner per our API stability policy
policy.

However, a handful of features have changed in ways that, for some users, will be backwards-incompatible. The big
changes are:

• Support for Python 2.3 has been dropped. See the full notes below.

• The new CSRF protection framework is not backwards-compatible with the old system. Users of the old system
will not be affected until the old system is removed in Django 1.4.

However, upgrading to the new CSRF protection framework requires a few important backwards-incompatible
changes, detailed in CSRF Protection, below.

• Authors of custom Field subclasses should be aware that a number of methods have had a change in prototype,
detailed under get_db_prep_*() methods on Field, below.

• The internals of template tags have changed somewhat; authors of custom template tags that need to store state
(e.g. custom control flow tags) should ensure that their code follows the new rules for stateful template tags

• The user_passes_test(), login_required(), and permission_required(), decorators from
django.contrib.auth only apply to functions and no longer work on methods. There’s a simple one-line
fix detailed below.

Again, these are just the big features that will affect the most users. Users upgrading from previous versions of Django
are heavily encouraged to consult the complete list of backwards-incompatible changes and the list of deprecated
features.

Python compatibility

While not a new feature, it’s important to note that Django 1.2 introduces the first shift in our Python compatibility
policy since Django’s initial public debut. Previous Django releases were tested and supported on 2.x Python versions
from 2.3 up; Django 1.2, however, drops official support for Python 2.3. As such, the minimum Python version
required for Django is now 2.4, and Django is tested and supported on Python 2.4, 2.5 and 2.6, and will be supported
on the as-yet-unreleased Python 2.7.

This change should affect only a small number of Django users, as most operating-system vendors today are shipping
Python 2.4 or newer as their default version. If you’re still using Python 2.3, however, you’ll need to stick to Django
1.1 until you can upgrade; per our support policy, Django 1.1 will continue to receive security support until the release
of Django 1.3.

A roadmap for Django’s overall 2.x Python support, and eventual transition to Python 3.x, is currently being developed,
and will be announced prior to the release of Django 1.3.

What’s new in Django 1.2

Support for multiple databases Django 1.2 adds the ability to use more than one database in your Django project.
Queries can be issued at a specific database with the using() method on QuerySet objects. Individual objects can be
saved to a specific database by providing a using argument when you call save().

Model validation Model instances now have support for validating their own data, and both model and form fields
now accept configurable lists of validators specifying reusable, encapsulated validation behavior. Note, however, that
validation must still be performed explicitly. Simply invoking a model instance’s save() method will not perform
any validation of the instance’s data.

9.1. Final releases 813

Django Documentation, Release 1.2.7

Improved CSRF protection Django now has much improved protection against Cross-Site Request Forgery (CSRF)
attacks. This type of attack occurs when a malicious Web site contains a link, a form button or some JavaScript that is
intended to perform some action on your Web site, using the credentials of a logged-in user who visits the malicious
site in their browser. A related type of attack, “login CSRF,” where an attacking site tricks a user’s browser into logging
into a site with someone else’s credentials, is also covered.

Messages framework Django now includes a robust and configurable messages framework with built-in support
for cookie- and session-based messaging, for both anonymous and authenticated clients. The messages framework
replaces the deprecated user message API and allows you to temporarily store messages in one request and retrieve
them for display in a subsequent request (usually the next one).

Object-level permissions A foundation for specifying permissions at the per-object level has been added. Although
there is no implementation of this in core, a custom authentication backend can provide this implementation and it will
be used by django.contrib.auth.models.User. See the authentication docs for more information.

Permissions for anonymous users If you provide a custom auth backend with supports_anonymous_user
set to True, AnonymousUser will check the backend for permissions, just like User already did. This is useful for
centralizing permission handling - apps can always delegate the question of whether something is allowed or not to
the authorization/authentication backend. See the authentication docs for more details.

Relaxed requirements for usernames The built-in User model’s username field now allows a wider range of
characters, including @, +, . and - characters.

E-mail backends You can now configure the way that Django sends e-mail. Instead of using SMTP to send all e-
mail, you can now choose a configurable e-mail backend to send messages. If your hosting provider uses a sandbox or
some other non-SMTP technique for sending mail, you can now construct an e-mail backend that will allow Django’s
standard mail sending methods to use those facilities.

This also makes it easier to debug mail sending. Django ships with backend implementations that allow you to send
e-mail to a file, to the console, or to memory. You can even configure all e-mail to be thrown away.

“Smart” if tag The if tag has been upgraded to be much more powerful. First, we’ve added support for compari-
son operators. No longer will you have to type:

{% ifnotequal a b %}
...

{% endifnotequal %}

You can now do this:

{% if a != b %}
...

{% endif %}

There’s really no reason to use {% ifequal %} or {% ifnotequal %} anymore, unless you’re the nostalgic
type.

The operators supported are ==, !=, <, >, <=, >=, in and not in, all of which work like the Python operators, in
addition to and, or and not, which were already supported.

Also, filters may now be used in the if expression. For example:

814 Chapter 9. Release notes

Django Documentation, Release 1.2.7

<div
{% if user.email|lower == message.recipient|lower %}
class="highlight"

{% endif %}
>{{ message }}</div>

Template caching In previous versions of Django, every time you rendered a template, it would be reloaded from
disk. In Django 1.2, you can use a cached template loader to load templates once, then cache the result for every
subsequent render. This can lead to a significant performance improvement if your templates are broken into lots of
smaller subtemplates (using the {% extends %} or {% include %} tags).

As a side effect, it is now much easier to support non-Django template languages. For more details, see the notes on
supporting non-Django template languages.

Class-based template loaders As part of the changes made to introduce Template caching and following a general
trend in Django, the template loaders API has been modified to use template loading mechanisms that are encapsulated
in Python classes as opposed to functions, the only method available until Django 1.1.

All the template loaders shipped with Django have been ported to the new API but they still implement the function-
based API and the template core machinery still accepts function-based loaders (builtin or third party) so there is no
immediate need to modify your TEMPLATE_LOADERS setting in existing projects, things will keep working if you
leave it untouched up to and including the Django 1.3 release.

If you have developed your own custom template loaders we suggest to consider porting them to a class-based imple-
mentation because the code for backwards compatibility with function-based loaders starts its deprecation process in
Django 1.2 and will be removed in Django 1.4. There is a description of the API these loader classes must implement
here and you can also examine the source code of the loaders shipped with Django.

Natural keys in fixtures Fixtures can now refer to remote objects using Natural keys. This lookup scheme is
an alternative to the normal primary-key based object references in a fixture, improving readability and resolving
problems referring to objects whose primary key value may not be predictable or known.

Fast failure for tests Both the test subcommand of django-admin.py and the runtests.py script used to
run Django’s own test suite now support a --failfast option. When specified, this option causes the test runner to
exit after encountering a failure instead of continuing with the test run. In addition, the handling of Ctrl-C during
a test run has been improved to trigger a graceful exit from the test run that reports details of the tests that were run
before the interruption.

BigIntegerField Models can now use a 64-bit BigIntegerField type.

Improved localization Django’s internationalization framework has been expanded with locale-aware formatting
and form processing. That means, if enabled, dates and numbers on templates will be displayed using the format
specified for the current locale. Django will also use localized formats when parsing data in forms. See Format
localization for more details.

readonly_fields in ModelAdmin django.contrib.admin.ModelAdmin.readonly_fields has
been added to enable non-editable fields in add/change pages for models and inlines. Field and calculated values can
be displayed alongside editable fields.

9.1. Final releases 815

Django Documentation, Release 1.2.7

Customizable syntax highlighting You can now use a DJANGO_COLORS environment variable to modify or dis-
able the colors used by django-admin.py to provide syntax highlighting.

Syndication feeds as views Syndication feeds can now be used directly as views in your URLconf . This means that
you can maintain complete control over the URL structure of your feeds. Like any other view, feeds views are passed
a request object, so you can do anything you would normally do with a view, like user based access control, or
making a feed a named URL.

GeoDjango The most significant new feature for GeoDjango in 1.2 is support for multiple spatial databases. As a
result, the following spatial database backends are now included:

• django.contrib.gis.db.backends.postgis

• django.contrib.gis.db.backends.mysql

• django.contrib.gis.db.backends.oracle

• django.contrib.gis.db.backends.spatialite

GeoDjango now supports the rich capabilities added in the PostGIS 1.5 release. New features include suppport for the
geography type and enabling of distance queries with non-point geometries on geographic coordinate systems.

Support for 3D geometry fields was added, and may be enabled by setting the dim keyword to 3 in your
GeometryField. The Extent3D aggregate and extent3d() GeoQuerySet method were added as a part
of this feature.

The following GeoQuerySet methods are new in 1.2:

• force_rhr()

• reverse_geom()

• geohash()

The GEOS interface was updated to use thread-safe C library functions when available on the platform.

The GDAL interface now allows the user to set a spatial_filter on the features returned when iterating over a
Layer.

Finally, GeoDjango’s documentation is now included with Django’s and is no longer hosted separately at geod-
jango.org.

JavaScript-assisted handling of inline related objects in the admin If a user has JavaScript enabled in their
browser, the interface for inline objects in the admin now allows inline objects to be dynamically added and removed.
Users without JavaScript-enabled browsers will see no change in the behavior of inline objects.

New now template tag format specifier characters: c and u The argument to the now has gained two new format
characters: c to specify that a datetime value should be formatted in ISO 8601 format, and u that allows output of the
microseconds part of a datetime or time value.

These are also available in others parts like the date and time template filters, the humanize template tag library
and the new format localization framework.

Backwards-incompatible changes in 1.2

Wherever possible the new features above have been introduced in a backwards-compatible manner per our API
stability policy policy. This means that practically all existing code which worked with Django 1.1 will continue to
work with Django 1.2; such code will, however, begin issuing warnings (see below for details).

816 Chapter 9. Release notes

http://postgis.refractions.net/documentation/manual-1.5/
http://geodjango.org/
http://geodjango.org/

Django Documentation, Release 1.2.7

However, a handful of features have changed in ways that, for some users, will be immediately backwards-
incompatible. Those changes are detailed below.

CSRF Protection We’ve made large changes to the way CSRF protection works, detailed in the CSRF documenta-
ton. Here are the major changes you should be aware of:

• CsrfResponseMiddleware and CsrfMiddleware have been deprecated and will be removed com-
pletely in Django 1.4, in favor of a template tag that should be inserted into forms.

• All contrib apps use a csrf_protect decorator to protect the view. This requires the use of the
csrf_token template tag in the template. If you have used custom templates for contrib views, you MUST
READ THE UPGRADE INSTRUCTIONS to fix those templates.

• CsrfViewMiddleware is included in MIDDLEWARE_CLASSES by default. This turns on CSRF protection
by default, so views that accept POST requests need to be written to work with the middleware. Instructions on
how to do this are found in the CSRF docs.

• All of the CSRF has moved from contrib to core (with backwards compatible imports in the old locations, which
are deprecated and will cease to be supported in Django 1.4).

get_db_prep_*() methods on Field Prior to Django 1.2, a custom Field had the option of defining sev-
eral functions to support conversion of Python values into database-compatible values. A custom field might look
something like:

class CustomModelField(models.Field):
...
def db_type(self):

...

def get_db_prep_save(self, value):
...

def get_db_prep_value(self, value):
...

def get_db_prep_lookup(self, lookup_type, value):
...

In 1.2, these three methods have undergone a change in prototype, and two extra methods have been introduced:

class CustomModelField(models.Field):
...

def db_type(self, connection):
...

def get_prep_value(self, value):
...

def get_prep_lookup(self, lookup_type, value):
...

def get_db_prep_save(self, value, connection):
...

def get_db_prep_value(self, value, connection, prepared=False):
...

9.1. Final releases 817

Django Documentation, Release 1.2.7

def get_db_prep_lookup(self, lookup_type, value, connection, prepared=False):
...

These changes are required to support multiple databases – db_type and get_db_prep_* can no longer make
any assumptions regarding the database for which it is preparing. The connection argument now provides the
preparation methods with the specific connection for which the value is being prepared.

The two new methods exist to differentiate general data-preparation requirements from requirements that are database-
specific. The prepared argument is used to indicate to the database-preparation methods whether generic
value preparation has been performed. If an unprepared (i.e., prepared=False) value is provided to the
get_db_prep_*() calls, they should invoke the corresponding get_prep_*() calls to perform generic data
preparation.

We’ve provided conversion functions that will transparently convert functions adhering to the old prototype into func-
tions compatible with the new prototype. However, these conversion functions will be removed in Django 1.4, so you
should upgrade your Field definitions to use the new prototype as soon as possible.

If your get_db_prep_*() methods made no use of the database connection, you should be able to up-
grade by renaming get_db_prep_value() to get_prep_value() and get_db_prep_lookup() to
get_prep_lookup(). If you require database specific conversions, then you will need to provide an implementa-
tion get_db_prep_* that uses the connection argument to resolve database-specific values.

Stateful template tags Template tags that store rendering state on their Node subclass have always been vulnerable
to thread-safety and other issues; as of Django 1.2, however, they may also cause problems when used with the new
cached template loader.

All of the built-in Django template tags are safe to use with the cached loader, but if you’re using custom template
tags that come from third party packages, or from your own code, you should ensure that the Node implementation
for each tag is thread-safe. For more information, see template tag thread safety considerations.

You may also need to update your templates if you were relying on the implementation of Django’s template tags not
being thread safe. The cycle tag is the most likely to be affected in this way, especially when used in conjunction
with the include tag. Consider the following template fragment:

{% for object in object_list %}
{% include "subtemplate.html" %}

{% endfor %}

with a subtemplate.html that reads:

{% cycle ’even’ ’odd’ %}

Using the non-thread-safe, pre-Django 1.2 renderer, this would output:

even odd even odd ...

Using the thread-safe Django 1.2 renderer, you will instead get:

even even even even ...

This is because each rendering of the include tag is an independent rendering. When the cycle tag was not thread
safe, the state of the cycle tag would leak between multiple renderings of the same include. Now that the cycle
tag is thread safe, this leakage no longer occurs.

user_passes_test, login_required and permission_required
django.contrib.auth.decorators provides the decorators login_required,
permission_required and user_passes_test. Previously it was possible to use these decorators
both on functions (where the first argument is ‘request’) and on methods (where the first argument is ‘self’, and the

818 Chapter 9. Release notes

Django Documentation, Release 1.2.7

second argument is ‘request’). Unfortunately, flaws were discovered in the code supporting this: it only works in
limited circumstances, and produces errors that are very difficult to debug when it does not work.

For this reason, the ‘auto adapt’ behavior has been removed, and if you are using these decorators on methods, you
will need to manually apply django.utils.decorators.method_decorator() to convert the decorator
to one that works with methods. For example, you would change code from this:

class MyClass(object):

@login_required
def my_view(self, request):

pass

to this:

from django.utils.decorators import method_decorator

class MyClass(object):

@method_decorator(login_required)
def my_view(self, request):

pass

or:

from django.utils.decorators import method_decorator

login_required_m = method_decorator(login_required)

class MyClass(object):

@login_required_m
def my_view(self, request):

pass

For those of you who’ve been following the development trunk, this change also applies to other dec-
orators introduced since 1.1, including csrf_protect, cache_control and anything created using
decorator_from_middleware.

if tag changes Due to new features in the if template tag, it no longer accepts ‘and’, ‘or’ and ‘not’ as valid variable
names. Previously, these strings could be used as variable names. Now, the keyword status is always enforced, and
template code such as {% if not %} or {% if and %} will throw a TemplateSyntaxError. Also, in is
a new keyword and so is not a valid variable name in this tag.

LazyObject LazyObject is an undocumented-but-often-used utility class used for lazily wrapping other objects
of unknown type.

In Django 1.1 and earlier, it handled introspection in a non-standard way, depending on wrapped objects implementing
a public method named get_all_members(). Since this could easily lead to name clashes, it has been changed to
use the standard Python introspection method, involving __members__ and __dir__().

If you used LazyObject in your own code and implemented the get_all_members() method for wrapped
objects, you’ll need to make a couple of changes:

First, if your class does not have special requirements for introspection (i.e., you have not implemented
__getattr__() or other methods that allow for attributes not discoverable by normal mechanisms), you can simply
remove the get_all_members() method. The default implementation on LazyObject will do the right thing.

9.1. Final releases 819

Django Documentation, Release 1.2.7

If you have more complex requirements for introspection, first rename the get_all_members() method to
__dir__(). This is the standard introspection method for Python 2.6 and above. If you require support for Python
versions earlier than 2.6, add the following code to the class:

__members__ = property(lambda self: self.__dir__())

__dict__ on model instances Historically, the __dict__ attribute of a model instance has only contained at-
tributes corresponding to the fields on a model.

In order to support multiple database configurations, Django 1.2 has added a _state attribute to object instances.
This attribute will appear in __dict__ for a model instance. If your code relies on iterating over __dict__ to
obtain a list of fields, you must now be prepared to handle or filter out the _state attribute.

Test runner exit status code The exit status code of the test runners (tests/runtests.py and python
manage.py test) no longer represents the number of failed tests, because a failure of 256 or more tests resulted
in a wrong exit status code. The exit status code for the test runner is now 0 for success (no failing tests) and 1 for any
number of test failures. If needed, the number of test failures can be found at the end of the test runner’s output.

Cookie encoding To fix bugs with cookies in Internet Explorer, Safari, and possibly other browsers, our encoding
of cookie values was changed so that the comma and semicolon are treated as non-safe characters, and are therefore
encoded as \054 and \073 respectively. This could produce backwards incompatibilities, especially if you are storing
comma or semi-colon in cookies and have javascript code that parses and manipulates cookie values client-side.

ModelForm.is_valid() and ModelForm.errors Much of the validation work for ModelForms has
been moved down to the model level. As a result, the first time you call ModelForm.is_valid(), access
ModelForm.errors or otherwise trigger form validation, your model will be cleaned in-place. This conversion
used to happen when the model was saved. If you need an unmodified instance of your model, you should pass a copy
to the ModelForm constructor.

BooleanField on MySQL In previous versions of Django, a model’s BooleanField under MySQL would
return its value as either 1 or 0, instead of True or False; for most people this wasn’t a problem because bool is a
subclass of int in Python. In Django 1.2, however, BooleanField on MySQL correctly returns a real bool. The
only time this should ever be an issue is if you were expecting the repr of a BooleanField to print 1 or 0.

Changes to the interpretation of max_num in FormSets As part of enhancements made to the handling of Form-
Sets, the default value and interpretation of the max_num parameter to the django.forms.formsets.formset_factory()
and django.forms.models.modelformset_factory() functions has changed slightly. This change also affects the way the
max_num argument is used for inline admin objects

Previously, the default value for max_num was 0 (zero). FormSets then used the boolean value of max_num to
determine if a limit was to be imposed on the number of generated forms. The default value of 0 meant that there was
no default limit on the number of forms in a FormSet.

Starting with 1.2, the default value for max_num has been changed to None, and FormSets will differentiate between
a value of None and a value of 0. A value of None indicates that no limit on the number of forms is to be imposed; a
value of 0 indicates that a maximum of 0 forms should be imposed. This doesn’t necessarily mean that no forms will
be displayed – see the ModelFormSet documentation for more details.

If you were manually specifying a value of 0 for max_num, you will need to update your FormSet and/or admin
definitions.

See Also:

820 Chapter 9. Release notes

Django Documentation, Release 1.2.7

JavaScript-assisted handling of inline related objects in the admin

email_re An undocumented regular expression for validating email addresses has been moved from
django.form.fields to django.core.validators. You will need to update your imports if you are using
it.

Features deprecated in 1.2

Finally, Django 1.2 deprecates some features from earlier releases. These features are still supported, but will be
gradually phased out over the next few release cycles.

Code taking advantage of any of the features below will raise a PendingDeprecationWarning in Django 1.2.
This warning will be silent by default, but may be turned on using Python’s warnings module, or by running Python
with a -Wd or -Wall flag.

In Django 1.3, these warnings will become a DeprecationWarning, which is not silent. In Django 1.4 support
for these features will be removed entirely.

See Also:

For more details, see the documentation Django’s release process and our deprecation timeline.‘

Specifying databases Prior to Django 1.2, Django used a number of settings to control access to a single database.
Django 1.2 introduces support for multiple databases, and as a result the way you define database settings has changed.

Any existing Django settings file will continue to work as expected until Django 1.4. Until then, old-style database
settings will be automatically translated to the new-style format.

In the old-style (pre 1.2) format, you had a number of DATABASE_ settings in your settings file. For example:

DATABASE_NAME = ’test_db’
DATABASE_ENGINE = ’postgresql_psycopg2’
DATABASE_USER = ’myusername’
DATABASE_PASSWORD = ’s3krit’

These settings are now in a dictionary named DATABASES. Each item in the dictionary corresponds to a single
database connection, with the name ’default’ describing the default database connection. The setting names have
also been shortened. The previous sample settings would now look like this:

DATABASES = {
’default’: {

’NAME’: ’test_db’,
’ENGINE’: ’django.db.backends.postgresql_psycopg2’,
’USER’: ’myusername’,
’PASSWORD’: ’s3krit’,

}
}

This affects the following settings:

9.1. Final releases 821

http://docs.python.org/library/warnings.html

Django Documentation, Release 1.2.7

Old setting New Setting
DATABASE_ENGINE ENGINE
DATABASE_HOST HOST
DATABASE_NAME NAME
DATABASE_OPTIONS OPTIONS
DATABASE_PASSWORD PASSWORD
DATABASE_PORT PORT
DATABASE_USER USER
TEST_DATABASE_CHARSET TEST_CHARSET
TEST_DATABASE_COLLATION TEST_COLLATION
TEST_DATABASE_NAME TEST_NAME

These changes are also required if you have manually created a database connection using DatabaseWrapper()
from your database backend of choice.

In addition to the change in structure, Django 1.2 removes the special handling for the built-in database
backends. All database backends must now be specified by a fully qualified module name (i.e.,
django.db.backends.postgresql_psycopg2, rather than just postgresql_psycopg2).

postgresql database backend The psycopg1 library has not been updated since October 2005. As a result,
the postgresql database backend, which uses this library, has been deprecated.

If you are currently using the postgresql backend, you should migrate to using the postgresql_psycopg2
backend. To update your code, install the psycopg2 library and change the DATABASE_ENGINE setting to use
django.db.backends.postgresql_psycopg2.

CSRF response-rewriting middleware CsrfResponseMiddleware, the middleware that automatically in-
serted CSRF tokens into POST forms in outgoing pages, has been deprecated in favor of a template tag method
(see above), and will be removed completely in Django 1.4. CsrfMiddleware, which includes the functionality of
CsrfResponseMiddleware and CsrfViewMiddleware, has likewise been deprecated.

Also, the CSRF module has moved from contrib to core, and the old imports are deprecated, as described in the
upgrading notes.

SMTPConnection The SMTPConnection class has been deprecated in favor of a generic e-mail backend API.
Old code that explicitly instantiated an instance of an SMTPConnection:

from django.core.mail import SMTPConnection
connection = SMTPConnection()
messages = get_notification_email()
connection.send_messages(messages)

...should now call get_connection() to instantiate a generic e-mail connection:

from django.core.mail import get_connection
connection = get_connection()
messages = get_notification_email()
connection.send_messages(messages)

Depending on the value of the EMAIL_BACKEND setting, this may not return an SMTP connection. If you explicitly
require an SMTP connection with which to send e-mail, you can explicitly request an SMTP connection:

from django.core.mail import get_connection
connection = get_connection(’django.core.mail.backends.smtp.EmailBackend’)
messages = get_notification_email()
connection.send_messages(messages)

822 Chapter 9. Release notes

Django Documentation, Release 1.2.7

If your call to construct an instance of SMTPConnection required additional arguments, those arguments can be
passed to the get_connection() call:

connection = get_connection(’django.core.mail.backends.smtp.EmailBackend’, hostname=’localhost’, port=1234)

User Messages API The API for storing messages in the user Message model (via
user.message_set.create) is now deprecated and will be removed in Django 1.4 according to the
standard release process.

To upgrade your code, you need to replace any instances of this:

user.message_set.create(’a message’)

...with the following:

from django.contrib import messages
messages.add_message(request, messages.INFO, ’a message’)

Additionally, if you make use of the method, you need to replace the following:

for message in user.get_and_delete_messages():
...

...with:

from django.contrib import messages
for message in messages.get_messages(request):

...

For more information, see the full messages documentation. You should begin to update your code to use the new API
immediately.

Date format helper functions django.utils.translation.get_date_formats() and
django.utils.translation.get_partial_date_formats() have been deprecated in favor of
the appropriate calls to django.utils.formats.get_format(), which is locale-aware when USE_L10N is
set to True, and falls back to default settings if set to False.

To get the different date formats, instead of writing this:

from django.utils.translation import get_date_formats
date_format, datetime_format, time_format = get_date_formats()

...use:

from django.utils import formats
date_format = formats.get_format(’DATE_FORMAT’)
datetime_format = formats.get_format(’DATETIME_FORMAT’)
time_format = formats.get_format(’TIME_FORMAT’)

Or, when directly formatting a date value:

from django.utils import formats
value_formatted = formats.date_format(value, ’DATETIME_FORMAT’)

The same applies to the globals found in django.forms.fields:

• DEFAULT_DATE_INPUT_FORMATS

• DEFAULT_TIME_INPUT_FORMATS

9.1. Final releases 823

Django Documentation, Release 1.2.7

• DEFAULT_DATETIME_INPUT_FORMATS

Use django.utils.formats.get_format() to get the appropriate formats.

Function-based test runners Django 1.2 changes the test runner tools to use a class-based approach. Old style
function-based test runners will still work, but should be updated to use the new class-based runners.

Feed in django.contrib.syndication.feeds The django.contrib.syndication.feeds.Feed
class has been replaced by the django.contrib.syndication.views.Feed class. The old feeds.Feed
class is deprecated, and will be removed in Django 1.4.

The new class has an almost identical API, but allows instances to be used as views. For example, consider the use of
the old framework in the following URLconf :

from django.conf.urls.defaults import *
from myproject.feeds import LatestEntries, LatestEntriesByCategory

feeds = {
’latest’: LatestEntries,
’categories’: LatestEntriesByCategory,

}

urlpatterns = patterns(’’,
...
(r’^feeds/(?P<url>.*)/$’, ’django.contrib.syndication.views.feed’,

{’feed_dict’: feeds}),
...

)

Using the new Feed class, these feeds can be deployed directly as views:

from django.conf.urls.defaults import *
from myproject.feeds import LatestEntries, LatestEntriesByCategory

urlpatterns = patterns(’’,
...
(r’^feeds/latest/$’, LatestEntries()),
(r’^feeds/categories/(?P<category_id>\d+)/$’, LatestEntriesByCategory()),
...

)

If you currently use the feed() view, the LatestEntries class would often not need to be modified apart from
subclassing the new Feed class. The exception is if Django was automatically working out the name of the tem-
plate to use to render the feed’s description and title elements (if you were not specifying the title_template
and description_template attributes). You should ensure that you always specify title_template and
description_template attributes, or provide item_title() and item_description() methods.

However, LatestEntriesByCategory uses the get_object() method with the bits argument to specify a
specific category to show. In the new Feed class, get_object() method takes a request and arguments from
the URL, so it would look like this:

from django.contrib.syndication.views import Feed
from django.shortcuts import get_object_or_404
from myproject.models import Category

class LatestEntriesByCategory(Feed):
def get_object(self, request, category_id):

return get_object_or_404(Category, id=category_id)

824 Chapter 9. Release notes

Django Documentation, Release 1.2.7

...

Additionally, the get_feed() method on Feed classes now take different arguments, which may impact you if you
use the Feed classes directly. Instead of just taking an optional url argument, it now takes two arguments: the object
returned by its own get_object() method, and the current request object.

To take into account Feed classes not being initialized for each request, the __init__() method now takes no
arguments by default. Previously it would have taken the slug from the URL and the request object.

In accordance with RSS best practices, RSS feeds will now include an atom:link element. You may need to update
your tests to take this into account.

For more information, see the full syndication framework documentation.

Technical message IDs Up to version 1.1 Django used technical message IDs to provide localizers the possibility to
translate date and time formats. They were translatable translation strings that could be recognized because they were
all upper case (for example DATETIME_FORMAT, DATE_FORMAT, TIME_FORMAT). They have been deprecated in
favor of the new Format localization infrastructure that allows localizers to specify that information in a formats.py
file in the corresponding django/conf/locale/<locale name>/ directory.

GeoDjango To allow support for multiple databases, the GeoDjango database internals were changed substantially.
The largest backwards-incompatible change is that the module django.contrib.gis.db.backend was re-
named to django.contrib.gis.db.backends, where the full-fledged spatial database backends now exist.
The following sections provide information on the most-popular APIs that were affected by these changes.

SpatialBackend Prior to the creation of the separate spatial backends, the
django.contrib.gis.db.backend.SpatialBackend object was provided as an abstraction to in-
trospect on the capabilities of the spatial database. All of the attributes and routines provided by SpatialBackend
are now a part of the ops attribute of the database backend.

The old module django.contrib.gis.db.backend is still provided for backwards-compatibility access to a
SpatialBackend object, which is just an alias to the ops module of the default spatial database connection.

Users that were relying on undocumented modules and objects within django.contrib.gis.db.backend,
rather the abstractions provided by SpatialBackend, are required to modify their code. For example, the following
import which would work in 1.1 and below:

from django.contrib.gis.db.backend.postgis import PostGISAdaptor

Would need to be changed:

from django.db import connection
PostGISAdaptor = connection.ops.Adapter

SpatialRefSys and GeometryColumns models In previous versions of GeoDjango,
django.contrib.gis.db.models had SpatialRefSys and GeometryColumns models for query-
ing the OGC spatial metadata tables spatial_ref_sys and geometry_columns, respectively.

While these aliases are still provided, they are only for the default database connection and exist only if the default
connection is using a supported spatial database backend.

Note: Because the table structure of the OGC spatial metadata tables differs across spatial databases, the
SpatialRefSys and GeometryColumns models can no longer be associated with the gis application name.
Thus, no models will be returned when using the get_models method in the following example:

9.1. Final releases 825

http://www.rssboard.org/rss-profile

Django Documentation, Release 1.2.7

>>> from django.db.models import get_app, get_models
>>> get_models(get_app(’gis’))
[]

To get the correct SpatialRefSys and GeometryColumns for your spatial database use the methods provided
by the spatial backend:

>>> from django.db import connections
>>> SpatialRefSys = connections[’my_spatialite’].ops.spatial_ref_sys()
>>> GeometryColumns = connections[’my_postgis’].ops.geometry_columns()

Note: When using the models returned from the spatial_ref_sys() and geometry_columns() method,
you’ll still need to use the correct database alias when querying on the non-default connection. In other words, to
ensure that the models in the example above use the correct database:

sr_qs = SpatialRefSys.objects.using(’my_spatialite’).filter(...)
gc_qs = GeometryColumns.objects.using(’my_postgis’).filter(...)

Language code no The currently used language code for Norwegian Bokmål no is being replaced by the more
common language code nb.

Function-based template loaders Django 1.2 changes the template loading mechanism to use a class-based ap-
proach. Old style function-based template loaders will still work, but should be updated to use the new class-based
template loaders.

9.1.2 1.1 release

Django 1.1.4 release notes

Welcome to Django 1.1.4!

This is the fourth “bugfix” release in the Django 1.1 series, improving the stability and performance of the Django 1.1
codebase.

With one exception, Django 1.1.4 maintains backwards compatibility with Django 1.1.3. It also contains a number of
fixes and other improvements. Django 1.1.4 is a recommended upgrade for any development or deployment currently
using or targeting Django 1.1.

For full details on the new features, backwards incompatibilities, and deprecated features in the 1.1 branch, see the
Django 1.1 release notes.

Backwards incompatible changes

CSRF exception for AJAX requests Django includes a CSRF-protection mechanism, which makes use of a token
inserted into outgoing forms. Middleware then checks for the token’s presence on form submission, and validates it.

Prior to Django 1.2.5, our CSRF protection made an exception for AJAX requests, on the following basis:

• Many AJAX toolkits add an X-Requested-With header when using XMLHttpRequest.

• Browsers have strict same-origin policies regarding XMLHttpRequest.

826 Chapter 9. Release notes

Django Documentation, Release 1.2.7

• In the context of a browser, the only way that a custom header of this nature can be added is with XMLHttpRe-
quest.

Therefore, for ease of use, we did not apply CSRF checks to requests that appeared to be AJAX on the basis of the
X-Requested-With header. The Ruby on Rails web framework had a similar exemption.

Recently, engineers at Google made members of the Ruby on Rails development team aware of a combination of
browser plugins and redirects which can allow an attacker to provide custom HTTP headers on a request to any
website. This can allow a forged request to appear to be an AJAX request, thereby defeating CSRF protection which
trusts the same-origin nature of AJAX requests.

Michael Koziarski of the Rails team brought this to our attention, and we were able to produce a proof-of-concept
demonstrating the same vulnerability in Django’s CSRF handling.

To remedy this, Django will now apply full CSRF validation to all requests, regardless of apparent AJAX origin. This
is technically backwards-incompatible, but the security risks have been judged to outweigh the compatibility concerns
in this case.

Additionally, Django will now accept the CSRF token in the custom HTTP header X-CSRFTOKEN, as well as in the
form submission itself, for ease of use with popular JavaScript toolkits which allow insertion of custom headers into
all AJAX requests.

Please see the CSRF docs for example jQuery code that demonstrates this technique, ensuring that you are looking
at the documentation for your version of Django, as the exact code necessary is different for some older versions of
Django.

Django 1.1.3 release notes

Welcome to Django 1.1.3!

This is the third “bugfix” release in the Django 1.1 series, improving the stability and performance of the Django 1.1
codebase.

With one exception, Django 1.1.3 maintains backwards compatibility with Django 1.1.2. It also contains a number of
fixes and other improvements. Django 1.1.2 is a recommended upgrade for any development or deployment currently
using or targeting Django 1.1.

For full details on the new features, backwards incompatibilities, and deprecated features in the 1.1 branch, see the
Django 1.1 release notes.

Backwards incompatible changes

Restricted filters in admin interface The Django administrative interface, django.contrib.admin, supports filtering
of displayed lists of objects by fields on the corresponding models, including across database-level relationships. This
is implemented by passing lookup arguments in the querystring portion of the URL, and options on the ModelAdmin
class allow developers to specify particular fields or relationships which will generate automatic links for filtering.

One historically-undocumented and -unofficially-supported feature has been the ability for a user with sufficient
knowledge of a model’s structure and the format of these lookup arguments to invent useful new filters on the fly
by manipulating the querystring.

However, it has been demonstrated that this can be abused to gain access to information outside of an admin user’s
permissions; for example, an attacker with access to the admin and sufficient knowledge of model structure and
relations could construct query strings which – with repeated use of regular-expression lookups supported by the
Django database API – expose sensitive information such as users’ password hashes.

To remedy this, django.contrib.admin will now validate that querystring lookup arguments either specify only fields
on the model being viewed, or cross relations which have been explicitly whitelisted by the application developer

9.1. Final releases 827

Django Documentation, Release 1.2.7

using the pre-existing mechanism mentioned above. This is backwards-incompatible for any users relying on the prior
ability to insert arbitrary lookups.

Django 1.1.2 release notes

Welcome to Django 1.1.2!

This is the second “bugfix” release in the Django 1.1 series, improving the stability and performance of the Django
1.1 codebase.

Django 1.1.2 maintains backwards compatibility with Django 1.1.0, but contain a number of fixes and other improve-
ments. Django 1.1.2 is a recommended upgrade for any development or deployment currently using or targeting
Django 1.1.

For full details on the new features, backwards incompatibilities, and deprecated features in the 1.1 branch, see the
Django 1.1 release notes.

Backwards-incompatible changes in 1.1.2

Test runner exit status code The exit status code of the test runners (tests/runtests.py and python
manage.py test) no longer represents the number of failed tests, since a failure of 256 or more tests resulted
in a wrong exit status code. The exit status code for the test runner is now 0 for success (no failing tests) and 1 for any
number of test failures. If needed, the number of test failures can be found at the end of the test runner’s output.

Cookie encoding To fix bugs with cookies in Internet Explorer, Safari, and possibly other browsers, our encoding
of cookie values was changed so that the characters comma and semi-colon are treated as non-safe characters, and
are therefore encoded as \054 and \073 respectively. This could produce backwards incompatibilities, especially if
you are storing comma or semi-colon in cookies and have javascript code that parses and manipulates cookie values
client-side.

One new feature

Ordinarily, a point release would not include new features, but in the case of Django 1.1.2, we have made an exception
to this rule. Django 1.2 (the next major release of Django) will contain a feature that will improve protection against
Cross-Site Request Forgery (CSRF) attacks. This feature requires the use of a new csrf_token template tag in all
forms that Django renders.

To make it easier to support both 1.1.X and 1.2.X versions of Django with the same templates, we have decided to
introduce the csrf_token template tag to the 1.1.X branch. In the 1.1.X branch, csrf_token does nothing - it
has no effect on templates or form processing. However, it means that the same template will work with Django 1.2.

Django 1.1 release notes

July 29, 2009

Welcome to Django 1.1!

Django 1.1 includes a number of nifty new features, lots of bug fixes, and an easy upgrade path from Django 1.0.

828 Chapter 9. Release notes

Django Documentation, Release 1.2.7

Backwards-incompatible changes in 1.1

Django has a policy of API stability. This means that, in general, code you develop against Django 1.0 should continue
to work against 1.1 unchanged. However, we do sometimes make backwards-incompatible changes if they’re necessary
to resolve bugs, and there are a handful of such (minor) changes between Django 1.0 and Django 1.1.

Before upgrading to Django 1.1 you should double-check that the following changes don’t impact you, and upgrade
your code if they do.

Changes to constraint names Django 1.1 modifies the method used to generate database constraint names so that
names are consistent regardless of machine word size. This change is backwards incompatible for some users.

If you are using a 32-bit platform, you’re off the hook; you’ll observe no differences as a result of this change.

However, users on 64-bit platforms may experience some problems using the resetmanagement command. Prior
to this change, 64-bit platforms would generate a 64-bit, 16 character digest in the constraint name; for example:

ALTER TABLE myapp_sometable ADD CONSTRAINT object_id_refs_id_5e8f10c132091d1e FOREIGN KEY ...

Following this change, all platforms, regardless of word size, will generate a 32-bit, 8 character digest in the constraint
name; for example:

ALTER TABLE myapp_sometable ADD CONSTRAINT object_id_refs_id_32091d1e FOREIGN KEY ...

As a result of this change, you will not be able to use the reset management command on any table made by a 64-bit
machine. This is because the the new generated name will not match the historically generated name; as a result, the
SQL constructed by the reset command will be invalid.

If you need to reset an application that was created with 64-bit constraints, you will need to manually drop the old
constraint prior to invoking reset.

Test cases are now run in a transaction Django 1.1 runs tests inside a transaction, allowing better test performance
(see test performance improvements for details).

This change is slightly backwards incompatible if existing tests need to test transactional behavior, if they rely on
invalid assumptions about the test environment, or if they require a specific test case ordering.

For these cases, TransactionTestCase can be used instead. This is a just a quick fix to get around test case
errors revealed by the new rollback approach; in the long-term tests should be rewritten to correct the test case.

Removed SetRemoteAddrFromForwardedFor middleware For convenience, Django 1.0 included an op-
tional middleware class – django.middleware.http.SetRemoteAddrFromForwardedFor – which up-
dated the value of REMOTE_ADDR based on the HTTP X-Forwarded-For header commonly set by some proxy
configurations.

It has been demonstrated that this mechanism cannot be made reliable enough for general-purpose use, and that
(despite documentation to the contrary) its inclusion in Django may lead application developers to assume that the
value of REMOTE_ADDR is “safe” or in some way reliable as a source of authentication.

While not directly a security issue, we’ve decided to remove this middleware with the Django 1.1 release. It has been
replaced with a class that does nothing other than raise a DeprecationWarning.

If you’ve been relying on this middleware, the easiest upgrade path is:

• Examine the code as it existed before it was removed.

• Verify that it works correctly with your upstream proxy, modifying it to support your particular proxy (if neces-
sary).

9.1. Final releases 829

http://code.djangoproject.com/browser/django/trunk/django/middleware/http.py?rev=11000#L33

Django Documentation, Release 1.2.7

• Introduce your modified version of SetRemoteAddrFromForwardedFor as a piece of middleware in your
own project.

Names of uploaded files are available later In Django 1.0, files uploaded and stored in a model’s FileField
were saved to disk before the model was saved to the database. This meant that the actual file name assigned to the
file was available before saving. For example, it was available in a model’s pre-save signal handler.

In Django 1.1 the file is saved as part of saving the model in the database, so the actual file name used on disk cannot
be relied on until after the model has been saved.

Changes to how model formsets are saved In Django 1.1, BaseModelFormSet now calls
ModelForm.save().

This is backwards-incompatible if you were modifying self.initial in a model formset’s __init__, or if
you relied on the internal _total_form_count or _initial_form_count attributes of BaseFormSet. Those
attributes are now public methods.

Fixed the join filter’s escaping behavior The join filter no longer escapes the literal value that is passed in for
the connector.

This is backwards incompatible for the special situation of the literal string containing one of the five special HTML
characters. Thus, if you were writing {{ foo|join:"&" }}, you now have to write {{ foo|join:"&"
}}.

The previous behavior was a bug and contrary to what was documented and expected.

Permanent redirects and the redirect_to() generic view Django 1.1 adds a permanent argument to the
django.views.generic.simple.redirect_to() view. This is technically backwards-incompatible if you
were using the redirect_to view with a format-string key called ‘permanent’, which is highly unlikely.

Features deprecated in 1.1

One feature has been marked as deprecated in Django 1.1:

• You should no longer use AdminSite.root() to register that admin views. That is, if your URLconf con-
tains the line:

(r’^admin/(.*)’, admin.site.root),

You should change it to read:

(r’^admin/’, include(admin.site.urls)),

You should begin to remove use of this feature from your code immediately.

AdminSite.root will raise a PendingDeprecationWarning if used in Django 1.1. This warning is hidden
by default. In Django 1.2, this warning will be upgraded to a DeprecationWarning, which will be displayed
loudly. Django 1.3 will remove AdminSite.root() entirely.

For more details on our deprecation policies and strategy, see Django’s release process.

830 Chapter 9. Release notes

Django Documentation, Release 1.2.7

What’s new in Django 1.1

Quite a bit: since Django 1.0, we’ve made 1,290 code commits, fixed 1,206 bugs, and added roughly 10,000 lines of
documentation.

The major new features in Django 1.1 are:

ORM improvements Two major enhancements have been added to Django’s object-relational mapper (ORM): ag-
gregate support, and query expressions.

Aggregate support It’s now possible to run SQL aggregate queries (i.e. COUNT(), MAX(), MIN(), etc.) from
within Django’s ORM. You can choose to either return the results of the aggregate directly, or else annotate the objects
in a QuerySet with the results of the aggregate query.

This feature is available as new QuerySet.aggregate()‘() and QuerySet.annotate()‘() methods, and
is covered in detail in the ORM aggregation documentation.

Query expressions Queries can now refer to a another field on the query and can traverse relationships to refer to
fields on related models. This is implemented in the new F object; for full details, including examples, consult the
documentation for F expressions.

Model improvements A number of features have been added to Django’s model layer:

“Unmanaged” models You can now control whether or not Django manages the life-cycle of the database tables for
a model using the managed model option. This defaults to True, meaning that Django will create the appropriate
database tables in syncdb and remove them as part of the reset command. That is, Django manages the database
table’s lifecycle.

If you set this to False, however, no database table creating or deletion will be automatically performed for this
model. This is useful if the model represents an existing table or a database view that has been created by some other
means.

For more details, see the documentation for the managed option.

Proxy models You can now create proxy models: subclasses of existing models that only add Python-level (rather
than database-level) behavior and aren’t represented by a new table. That is, the new model is a proxy for some
underlying model, which stores all the real data.

All the details can be found in the proxy models documentation. This feature is similar on the surface to unmanaged
models, so the documentation has an explanation of how proxy models differ from unmanaged models.

Deferred fields In some complex situations, your models might contain fields which could contain a lot of data (for
example, large text fields), or require expensive processing to convert them to Python objects. If you know you don’t
need those particular fields, you can now tell Django not to retrieve them from the database.

You’ll do this with the new queryset methods defer() and only().

Testing improvements A few notable improvements have been made to the testing framework.

9.1. Final releases 831

Django Documentation, Release 1.2.7

Test performance improvements Tests written using Django’s testing framework now run dramatically faster (as
much as 10 times faster in many cases).

This was accomplished through the introduction of transaction-based tests: when using django.test.TestCase,
your tests will now be run in a transaction which is rolled back when finished, instead of by flushing and re-populating
the database. This results in an immense speedup for most types of unit tests. See the documentation for TestCase
and TransactionTestCase for a full description, and some important notes on database support.

Test client improvements A couple of small – but highly useful – improvements have been made to the test client:

• The test Client now can automatically follow redirects with the follow argument to Client.get() and
Client.post(). This makes testing views that issue redirects simpler.

• It’s now easier to get at the template context in the response returned the test client: you’ll simply access the
context as request.context[key]. The old way, which treats request.context as a list of contexts,
one for each rendered template in the inheritance chain, is still available if you need it.

New admin features Django 1.1 adds a couple of nifty new features to Django’s admin interface:

Editable fields on the change list You can now make fields editable on the admin list views via the new list_editable
admin option. These fields will show up as form widgets on the list pages, and can be edited and saved in bulk.

Admin “actions” You can now define admin actions that can perform some action to a group of models in bulk.
Users will be able to select objects on the change list page and then apply these bulk actions to all selected objects.

Django ships with one pre-defined admin action to delete a group of objects in one fell swoop.

Conditional view processing Django now has much better support for conditional view processing using the stan-
dard ETag and Last-Modified HTTP headers. This means you can now easily short-circuit view processing by
testing less-expensive conditions. For many views this can lead to a serious improvement in speed and reduction in
bandwidth.

URL namespaces Django 1.1 improves named URL patterns with the introduction of URL “namespaces.”

In short, this feature allows the same group of URLs, from the same application, to be included in a Django URLConf
multiple times, with varying (and potentially nested) named prefixes which will be used when performing reverse
resolution. In other words, reusable applications like Django’s admin interface may be registered multiple times
without URL conflicts.

For full details, see the documentation on defining URL namespaces.

GeoDjango In Django 1.1, GeoDjango (i.e. django.contrib.gis) has several new features:

• Support for SpatiaLite – a spatial database for SQLite – as a spatial backend.

• Geographic aggregates (Collect, Extent, MakeLine, Union) and F expressions.

• New GeoQuerySet methods: collect, geojson, and snap_to_grid.

• A new list interface methods for GEOSGeometry objects.

For more details, see the GeoDjango documentation.

832 Chapter 9. Release notes

http://geodjango.org/
http://www.gaia-gis.it/spatialite/
http://geodjango.org/docs/

Django Documentation, Release 1.2.7

Other improvements Other new features and changes introduced since Django 1.0 include:

• The CSRF protection middleware has been split into two classes – CsrfViewMiddleware checks
incoming requests, and CsrfResponseMiddleware processes outgoing responses. The combined
CsrfMiddleware class (which does both) remains for backwards-compatibility, but using the split classes is
now recommended in order to allow fine-grained control of when and where the CSRF processing takes place.

• reverse() and code which uses it (e.g., the {% url %} template tag) now works with URLs in Django’s
administrative site, provided that the admin URLs are set up via include(admin.site.urls) (sending
admin requests to the admin.site.root view still works, but URLs in the admin will not be “reversible”
when configured this way).

• The include() function in Django URLconf modules can now accept sequences of URL patterns (generated
by patterns()) in addition to module names.

• Instances of Django forms (see the forms overview) now have two additional methods, hidden_fields()
and visible_fields(), which return the list of hidden – i.e., <input type="hidden"> – and visible
fields on the form, respectively.

• The redirect_to generic view (see the generic views documentation) now accepts an additional keyword
argument permanent. If permanent is True, the view will emit an HTTP permanent redirect (status code
301). If False, the view will emit an HTTP temporary redirect (status code 302).

• A new database lookup type – week_day – has been added for DateField and DateTimeField. This
type of lookup accepts a number between 1 (Sunday) and 7 (Saturday), and returns objects where the field value
matches that day of the week. See the full list of lookup types for details.

• The {% for %} tag in Django’s template language now accepts an optional {% empty %} clause, to be
displayed when {% for %} is asked to loop over an empty sequence. See the list of built-in template tags for
examples of this.

• The dumpdata management command now accepts individual model names as arguments, allowing you to
export the data just from particular models.

• There’s a new safeseq template filter which works just like safe for lists, marking each item in the list as
safe.

• Cache backends now support incr() and decr() commands to increment and decrement the value of a cache
key. On cache backends that support atomic increment/decrement – most notably, the memcached backend –
these operations will be atomic, and quite fast.

• Django now can easily delegate authentication to the Web server via a new authentication backend that supports
the standard REMOTE_USER environment variable used for this purpose.

• There’s a new django.shortcuts.redirect() function that makes it easier to issue redirects given an
object, a view name, or a URL.

• The postgresql_psycopg2 backend now supports native PostgreSQL autocommit. This is an advanced,
PostgreSQL-specific feature, that can make certain read-heavy applications a good deal faster.

What’s next?

We’ll take a short break, and then work on Django 1.2 will begin – no rest for the weary! If you’d like to help, dis-
cussion of Django development, including progress toward the 1.2 release, takes place daily on the django-developers
mailing list:

• http://groups.google.com/group/django-developers

... and in the #django-dev IRC channel on irc.freenode.net. Feel free to join the discussions!

Django’s online documentation also includes pointers on how to contribute to Django:

9.1. Final releases 833

http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

• How to contribute to Django

Contributions on any level – developing code, writing documentation or simply triaging tickets and helping to test
proposed bugfixes – are always welcome and appreciated.

And that’s the way it is.

9.1.3 1.0 release

Django 1.0.2 release notes

Welcome to Django 1.0.2!

This is the second “bugfix” release in the Django 1.0 series, improving the stability and performance of the Django
1.0 codebase. As such, Django 1.0.2 contains no new features (and, pursuant to our compatibility policy, maintains
backwards compatibility with Django 1.0.0), but does contain a number of fixes and other improvements. Django
1.0.2 is a recommended upgrade for any development or deployment currently using or targeting Django 1.0.

Fixes and improvements in Django 1.0.2

The primary reason behind this release is to remedy an issue in the recently-released Django 1.0.1; the packaging
scripts used for Django 1.0.1 omitted some directories from the final release package, including one directory required
by django.contrib.gis and part of Django’s unit-test suite.

Django 1.0.2 contains updated packaging scripts, and the release package contains the directories omitted from Django
1.0.1. As such, this release contains all of the fixes and improvements from Django 1.0.1; see the Django 1.0.1 release
notes for details.

Additionally, in the period since Django 1.0.1 was released:

• Updated Hebrew and Danish translations have been added.

• The default __repr__ method of Django models has been made more robust in the face of bad Unicode
data coming from the __unicode__ method; rather than raise an exception in such cases, repr() will now
contain the string “[Bad Unicode data]” in place of the invalid Unicode.

• A bug involving the interaction of Django’s SafeUnicode class and the MySQL adapter has been resolved;
SafeUnicode instances (generated, for example, by template rendering) can now be assigned to model at-
tributes and saved to MySQL without requiring an explicit intermediate cast to unicode.

• A bug affecting filtering on a nullable DateField in SQLite has been resolved.

• Several updates and improvements have been made to Django’s documentation.

Django 1.0.1 release notes

Welcome to Django 1.0.1!

This is the first “bugfix” release in the Django 1.0 series, improving the stability and performance of the Django
1.0 codebase. As such, Django 1.0.1 contains no new features (and, pursuant to our compatibility policy, maintains
backwards compatibility with Django 1.0), but does contain a number of fixes and other improvements. Django 1.0.1
is a recommended upgrade for any development or deployment currently using or targeting Django 1.0.

834 Chapter 9. Release notes

http://docs.djangoproject.com/en/dev/misc/api-stability/

Django Documentation, Release 1.2.7

Fixes and improvements in Django 1.0.1

Django 1.0.1 contains over two hundred fixes to the original Django 1.0 codebase; full details of every fix are available
in the Subversion log of the 1.0.X branch, but here are some of the highlights:

• Several fixes in django.contrib.comments, pertaining to RSS feeds of comments, default ordering of
comments and the XHTML and internationalization of the default templates for comments.

• Multiple fixes for Django’s support of Oracle databases, including pagination support for GIS QuerySets, more
efficient slicing of results and improved introspection of existing databases.

• Several fixes for query support in the Django object-relational mapper, including repeated setting and resetting
of ordering and fixes for working with INSERT-only queries.

• Multiple fixes for inline forms in formsets.

• Multiple fixes for unique and unique_together model constraints in automatically-generated forms.

• Fixed support for custom callable upload_to declarations when handling file uploads through automatically-
generated forms.

• Fixed support for sorting an admin change list based on a callable attributes in list_display.

• A fix to the application of autoescaping for literal strings passed to the join template filter. Previously, literal
strings passed to join were automatically escaped, contrary to the documented behavior for autoescaping and
literal strings. Literal strings passed to join are no longer automatically escaped, meaning you must now
manually escape them; this is an incompatibility if you were relying on this bug, but not if you were relying on
escaping behaving as documented.

• Improved and expanded translation files for many of the languages Django supports by default.

• And as always, a large number of improvements to Django’s documentation, including both corrections to
existing documents and expanded and new documentation.

Django 1.0 release notes

Welcome to Django 1.0!

We’ve been looking forward to this moment for over three years, and it’s finally here. Django 1.0 represents a the
largest milestone in Django’s development to date: a Web framework that a group of perfectionists can truly be proud
of.

Django 1.0 represents over three years of community development as an Open Source project. Django’s received
contributions from hundreds of developers, been translated into fifty languages, and today is used by developers on
every continent and in every kind of job.

An interesting historical note: when Django was first released in July 2005, the initial released version of Django came
from an internal repository at revision number 8825. Django 1.0 represents revision 8961 of our public repository. It
seems fitting that our 1.0 release comes at the moment where community contributions overtake those made privately.

Stability and forwards-compatibility

The release of Django 1.0 comes with a promise of API stability and forwards-compatibility. In a nutshell, this means
that code you develop against Django 1.0 will continue to work against 1.1 unchanged, and you should need to make
only minor changes for any 1.X release.

See the API stability guide for full details.

9.1. Final releases 835

http://code.djangoproject.com/log/django/branches/releases/1.0.X
http://docs.djangoproject.com/en/dev/topics/templates/#string-literals-and-automatic-escaping
http://docs.djangoproject.com/en/dev/topics/templates/#string-literals-and-automatic-escaping

Django Documentation, Release 1.2.7

Backwards-incompatible changes

Django 1.0 has a number of backwards-incompatible changes from Django 0.96. If you have apps written against
Django 0.96 that you need to port, see our detailed porting guide:

Porting your apps from Django 0.96 to 1.0 Django 1.0 breaks compatibility with 0.96 in some areas.

This guide will help you port 0.96 projects and apps to 1.0. The first part of this document includes the common
changes needed to run with 1.0. If after going through the first part your code still breaks, check the section Less-
common Changes for a list of a bunch of less-common compatibility issues.

See Also:

The 1.0 release notes. That document explains the new features in 1.0 more deeply; the porting guide is more con-
cerned with helping you quickly update your code.

Common changes This section describes the changes between 0.96 and 1.0 that most users will need to make.

Use Unicode Change string literals (’foo’) into Unicode literals (u’foo’). Django now uses Unicode strings
throughout. In most places, raw strings will continue to work, but updating to use Unicode literals will prevent some
obscure problems.

See Unicode data for full details.

Models Common changes to your models file:

Rename maxlength to max_length Rename your maxlength argument to max_length (this was changed
to be consistent with form fields):

Replace __str__ with __unicode__ Replace your model’s __str__ function with a __unicode__
method, and make sure you use Unicode (u’foo’) in that method.

Remove prepopulated_from Remove the prepopulated_from argument on model fields. It’s no longer
valid and has been moved to the ModelAdmin class in admin.py. See the admin, below, for more details about
changes to the admin.

Remove core Remove the core argument from your model fields. It is no longer necessary, since the equivalent
functionality (part of inline editing) is handled differently by the admin interface now. You don’t have to worry about
inline editing until you get to the admin section, below. For now, remove all references to core.

Replace class Admin: with admin.py Remove all your inner class Admin declarations from your mod-
els. They won’t break anything if you leave them, but they also won’t do anything. To register apps with the admin
you’ll move those declarations to an admin.py file; see the admin below for more details.

See Also:

A contributor to djangosnippets has written a script that’ll scan your models.py and generate a corresponding admin.py.

836 Chapter 9. Release notes

http://www.djangosnippets.org/
http://www.djangosnippets.org/snippets/603/

Django Documentation, Release 1.2.7

Example Below is an example models.py file with all the changes you’ll need to make:

Old (0.96) models.py:

class Author(models.Model):
first_name = models.CharField(maxlength=30)
last_name = models.CharField(maxlength=30)
slug = models.CharField(maxlength=60, prepopulate_from=(’first_name’, ’last_name’))

class Admin:
list_display = [’first_name’, ’last_name’]

def __str__(self):
return ’%s %s’ % (self.first_name, self.last_name)

New (1.0) models.py:

class Author(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)
slug = models.CharField(max_length=60)

def __unicode__(self):
return u’%s %s’ % (self.first_name, self.last_name)

New (1.0) admin.py:

from django.contrib import admin
from models import Author

class AuthorAdmin(admin.ModelAdmin):
list_display = [’first_name’, ’last_name’]
prepopulated_fields = {

’slug’: (’first_name’, ’last_name’)
}

admin.site.register(Author, AuthorAdmin)

The Admin One of the biggest changes in 1.0 is the new admin. The Django administrative interface
(django.contrib.admin) has been completely refactored; admin definitions are now completely decoupled from
model definitions, the framework has been rewritten to use Django’s new form-handling library and redesigned with
extensibility and customization in mind.

Practically, this means you’ll need to rewrite all of your class Admin declarations. You’ve already seen in models
above how to replace your class Admin with a admin.site.register() call in an admin.py file. Below
are some more details on how to rewrite that Admin declaration into the new syntax.

Use new inline syntax The new edit_inline options have all been moved to admin.py. Here’s an example:

Old (0.96):

class Parent(models.Model):
...

class Child(models.Model):
parent = models.ForeignKey(Parent, edit_inline=models.STACKED, num_in_admin=3)

New (1.0):

9.1. Final releases 837

Django Documentation, Release 1.2.7

class ChildInline(admin.StackedInline):
model = Child
extra = 3

class ParentAdmin(admin.ModelAdmin):
model = Parent
inlines = [ChildInline]

admin.site.register(Parent, ParentAdmin)

See InlineModelAdmin objects for more details.

Simplify fields, or use fieldsets The old fields syntax was quite confusing, and has been simplified. The
old syntax still works, but you’ll need to use fieldsets instead.

Old (0.96):

class ModelOne(models.Model):
...

class Admin:
fields = (

(None, {’fields’: (’foo’,’bar’)}),
)

class ModelTwo(models.Model):
...

class Admin:
fields = (

(’group1’, {’fields’: (’foo’,’bar’), ’classes’: ’collapse’}),
(’group2’, {’fields’: (’spam’,’eggs’), ’classes’: ’collapse wide’}),

)

New (1.0):

class ModelOneAdmin(admin.ModelAdmin):
fields = (’foo’, ’bar’)

class ModelTwoAdmin(admin.ModelAdmin):
fieldsets = (

(’group1’, {’fields’: (’foo’,’bar’), ’classes’: ’collapse’}),
(’group2’, {’fields’: (’spam’,’eggs’), ’classes’: ’collapse wide’}),

)

See Also:

• More detailed information about the changes and the reasons behind them can be found on the NewformsAd-
minBranch wiki page

• The new admin comes with a ton of new features; you can read about them in the admin documentation.

URLs

Update your root urls.py If you’re using the admin site, you need to update your root urls.py.

Old (0.96) urls.py:

838 Chapter 9. Release notes

http://code.djangoproject.com/wiki/NewformsAdminBranch
http://code.djangoproject.com/wiki/NewformsAdminBranch

Django Documentation, Release 1.2.7

from django.conf.urls.defaults import *

urlpatterns = patterns(’’,
(r’^admin/’, include(’django.contrib.admin.urls’)),

... the rest of your URLs here ...
)

New (1.0) urls.py:

from django.conf.urls.defaults import *

The next two lines enable the admin and load each admin.py file:
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns(’’,
(r’^admin/(.*)’, admin.site.root),

... the rest of your URLs here ...
)

Views

Use django.forms instead of newforms Replace django.newforms with django.forms – Django 1.0
renamed the newforms module (introduced in 0.96) to plain old forms. The oldforms module was also removed.

If you’re already using the newforms library, and you used our recommended import statement syntax, all you
have to do is change your import statements.

Old:

from django import newforms as forms

New:

from django import forms

If you’re using the old forms system (formerly known as django.forms and django.oldforms), you’ll have
to rewrite your forms. A good place to start is the forms documentation

Handle uploaded files using the new API Replace use of uploaded files – that is, entries in request.FILES –
as simple dictionaries with the new UploadedFile. The old dictionary syntax no longer works.

Thus, in a view like:

def my_view(request):
f = request.FILES[’file_field_name’]
...

...you’d need to make the following changes:

Old (0.96) New (1.0)
f[’content’] f.read()
f[’filename’] f.name
f[’content-type’] f.content_type

9.1. Final releases 839

Django Documentation, Release 1.2.7

Work with file fields using the new API The internal implementation of django.db.models.FileField
have changed. A visible result of this is that the way you access special attributes (URL, filename, image size, etc) of
these model fields has changed. You will need to make the following changes, assuming your model’s FileField
is called myfile:

Old (0.96) New (1.0)
myfile.get_content_filename() myfile.content.path
myfile.get_content_url() myfile.content.url
myfile.get_content_size() myfile.content.size
myfile.save_content_file() myfile.content.save()
myfile.get_content_width() myfile.content.width
myfile.get_content_height() myfile.content.height

Note that the width and height attributes only make sense for ImageField fields. More details can be found in
the model API documentation.

Use Paginator instead of ObjectPaginator The ObjectPaginator in 0.96 has been removed and re-
placed with an improved version, django.core.paginator.Paginator.

Templates

Learn to love autoescaping By default, the template system now automatically HTML-escapes the output of every
variable. To learn more, see Automatic HTML escaping.

To disable auto-escaping for an individual variable, use the safe filter:

This will be escaped: {{ data }}
This will not be escaped: {{ data|safe }}

To disable auto-escaping for an entire template, wrap the template (or just a particular section of the template) in the
autoescape tag:

{% autoescape off %}
... unescaped template content here ...

{% endautoescape %}

Less-common changes The following changes are smaller, more localized changes. They should only affect more
advanced users, but it’s probably worth reading through the list and checking your code for these things.

Signals

• Add **kwargs to any registered signal handlers.

• Connect, disconnect, and send signals via methods on the Signal object instead of through module methods
in django.dispatch.dispatcher.

• Remove any use of the Anonymous and Any sender options; they no longer exist. You can still receive signals
sent by any sender by using sender=None

• Make any custom signals you’ve declared into instances of django.dispatch.Signal instead of anony-
mous objects.

Here’s quick summary of the code changes you’ll need to make:

840 Chapter 9. Release notes

Django Documentation, Release 1.2.7

Old (0.96) New (1.0)
def callback(sender) def callback(sender, **kwargs)
sig = object() sig = django.dispatch.Signal()
dispatcher.connect(callback, sig) sig.connect(callback)
dispatcher.send(sig, sender) sig.send(sender)
dispatcher.connect(callback, sig,
sender=Any)

sig.connect(callback,
sender=None)

Comments If you were using Django 0.96’s django.contrib.comments app, you’ll need to upgrade to the
new comments app introduced in 1.0. See Upgrading from Django’s previous comment system for details.

Template tags

spaceless tag The spaceless template tag now removes all spaces between HTML tags, instead of preserving a
single space.

Local flavors

U.S. local flavor django.contrib.localflavor.usa has been renamed to
django.contrib.localflavor.us. This change was made to match the naming scheme of other local
flavors. To migrate your code, all you need to do is change the imports.

Sessions

Getting a new session key SessionBase.get_new_session_key() has been renamed to
_get_new_session_key(). get_new_session_object() no longer exists.

Fixtures

Loading a row no longer calls save() Previously, loading a row automatically ran the model’s save() method.
This is no longer the case, so any fields (for example: timestamps) that were auto-populated by a save() now need
explicit values in any fixture.

Settings

Better exceptions The old EnvironmentError has split into an ImportError when Django fails to find the
settings module and a RuntimeError when you try to reconfigure settings after having already used them

LOGIN_URL has moved The LOGIN_URL constant moved from django.contrib.auth into the
settings module. Instead of using from django.contrib.auth import LOGIN_URL refer to
settings.LOGIN_URL.

9.1. Final releases 841

Django Documentation, Release 1.2.7

APPEND_SLASH behavior has been updated In 0.96, if a URL didn’t end in a slash or have a period in the final
component of its path, and APPEND_SLASH was True, Django would redirect to the same URL, but with a slash
appended to the end. Now, Django checks to see whether the pattern without the trailing slash would be matched by
something in your URL patterns. If so, no redirection takes place, because it is assumed you deliberately wanted to
catch that pattern.

For most people, this won’t require any changes. Some people, though, have URL patterns that look like this:

r’/some_prefix/(.*)$’

Previously, those patterns would have been redirected to have a trailing slash. If you always want a slash on such
URLs, rewrite the pattern as:

r’/some_prefix/(.*/)$’

Smaller model changes

Different exception from get() Managers now return a MultipleObjectsReturned exception instead of
AssertionError:

Old (0.96):

try:
Model.objects.get(...)

except AssertionError:
handle_the_error()

New (1.0):

try:
Model.objects.get(...)

except Model.MultipleObjectsReturned:
handle_the_error()

LazyDate has been fired The LazyDate helper class no longer exists.

Default field values and query arguments can both be callable objects, so instances of LazyDate can be replaced
with a reference to datetime.datetime.now:

Old (0.96):

class Article(models.Model):
title = models.CharField(maxlength=100)
published = models.DateField(default=LazyDate())

New (1.0):

import datetime

class Article(models.Model):
title = models.CharField(max_length=100)
published = models.DateField(default=datetime.datetime.now)

DecimalField is new, and FloatField is now a proper float Old (0.96):

842 Chapter 9. Release notes

Django Documentation, Release 1.2.7

class MyModel(models.Model):
field_name = models.FloatField(max_digits=10, decimal_places=3)
...

New (1.0):

class MyModel(models.Model):
field_name = models.DecimalField(max_digits=10, decimal_places=3)
...

If you forget to make this change, you will see errors about FloatField not taking a max_digits attribute in
__init__, because the new FloatField takes no precision-related arguments.

If you’re using MySQL or PostgreSQL, no further changes are needed. The database column types for
DecimalField are the same as for the old FloatField.

If you’re using SQLite, you need to force the database to view the appropriate columns as decimal types, rather than
floats. To do this, you’ll need to reload your data. Do this after you have made the change to using DecimalField
in your code and updated the Django code.

Warning: Back up your database first!
For SQLite, this means making a copy of the single file that stores the database (the name of that file is the
DATABASE_NAME in your settings.py file).

To upgrade each application to use a DecimalField, you can do the following, replacing <app> in the code below
with each app’s name:

$./manage.py dumpdata --format=xml <app> > data-dump.xml
$./manage.py reset <app>
$./manage.py loaddata data-dump.xml

Notes:

1. It’s important that you remember to use XML format in the first step of this process. We are exploiting a feature
of the XML data dumps that makes porting floats to decimals with SQLite possible.

2. In the second step you will be asked to confirm that you are prepared to lose the data for the application(s) in
question. Say yes; we’ll restore this data in the third step, of course.

3. DecimalField is not used in any of the apps shipped with Django prior to this change being made, so you
do not need to worry about performing this procedure for any of the standard Django models.

If something goes wrong in the above process, just copy your backed up database file over the original file and start
again.

Internationalization

django.views.i18n.set_language() now requires a POST request Previously, a GET request was
used. The old behavior meant that state (the locale used to display the site) could be changed by a GET request,
which is against the HTTP specification’s recommendations. Code calling this view must ensure that a POST request
is now made, instead of a GET. This means you can no longer use a link to access the view, but must use a form
submission of some kind (e.g. a button).

_() is no longer in builtins _() (the callable object whose name is a single underscore) is no longer monkey-
patched into builtins – that is, it’s no longer available magically in every module.

9.1. Final releases 843

Django Documentation, Release 1.2.7

If you were previously relying on _() always being present, you should now explicitly import ugettext or
ugettext_lazy, if appropriate, and alias it to _ yourself:

from django.utils.translation import ugettext as _

HTTP request/response objects

Dictionary access to HttpRequest HttpRequest objects no longer directly support dictionary-style ac-
cess; previously, both GET and POST data were directly available on the HttpRequest object (e.g.,
you could check for a piece of form data by using if ’some_form_key’ in request or by reading
request[’some_form_key’]. This is no longer supported; if you need access to the combined GET and POST
data, use request.REQUEST instead.

It is strongly suggested, however, that you always explicitly look in the appropriate dictionary for the type of re-
quest you expect to receive (request.GET or request.POST); relying on the combined request.REQUEST
dictionary can mask the origin of incoming data.

Accessing HTTPResponse headers django.http.HttpResponse.headers has been renamed to
_headers and HttpResponse now supports containment checking directly. So use if header in
response: instead of if header in response.headers:.

Generic relations

Generic relations have been moved out of core The generic relation classes – GenericForeignKey and
GenericRelation – have moved into the django.contrib.contenttypes module.

Testing

django.test.Client.login() has changed Old (0.96):

from django.test import Client
c = Client()
c.login(’/path/to/login’,’myuser’,’mypassword’)

New (1.0):

... same as above, but then:
c.login(username=’myuser’, password=’mypassword’)

Management commands

Running management commands from your code django.core.management has been greatly refactored.

Calls to management services in your code now need to use call_command. For example, if you have some test
code that calls flush and load_data:

from django.core import management
management.flush(verbosity=0, interactive=False)
management.load_data([’test_data’], verbosity=0)

844 Chapter 9. Release notes

Django Documentation, Release 1.2.7

...you’ll need to change this code to read:

from django.core import management
management.call_command(’flush’, verbosity=0, interactive=False)
management.call_command(’loaddata’, ’test_data’, verbosity=0)

Subcommands must now precede options django-admin.py and manage.py now require subcommands to
precede options. So:

$ django-admin.py --settings=foo.bar runserver

...no longer works and should be changed to:

$ django-admin.py runserver --settings=foo.bar

Syndication

Feed.__init__ has changed The __init__() method of the syndication framework’s Feed class now takes
an HttpRequest object as its second parameter, instead of the feed’s URL. This allows the syndication frame-
work to work without requiring the sites framework. This only affects code that subclasses Feed and overrides the
__init__() method, and code that calls Feed.__init__() directly.

Data structures

SortedDictFromList is gone django.newforms.forms.SortedDictFromList was removed.
django.utils.datastructures.SortedDict can now be instantiated with a sequence of tuples.

To update your code:

1. Use django.utils.datastructures.SortedDict wherever you were using
django.newforms.forms.SortedDictFromList.

2. Because django.utils.datastructures.SortedDict.copy() doesn’t return a deepcopy as
SortedDictFromList.copy() did, you will need to update your code if you were relying on a deep-
copy. Do this by using copy.deepcopy directly.

Database backend functions

Database backend functions have been renamed Almost all of the database backend-level functions have been
renamed and/or relocated. None of these were documented, but you’ll need to change your code if you’re using any
of these functions, all of which are in django.db:

Old (0.96) New (1.0)
backend.get_autoinc_sql connection.ops.autoinc_sql
backend.get_date_extract_sql connection.ops.date_extract_sql
backend.get_date_trunc_sql connection.ops.date_trunc_sql
backend.get_datetime_cast_sql connection.ops.datetime_cast_sql
backend.get_deferrable_sql connection.ops.deferrable_sql
backend.get_drop_foreignkey_sql connection.ops.drop_foreignkey_sql
backend.get_fulltext_search_sql connection.ops.fulltext_search_sql

Continued on next page

9.1. Final releases 845

Django Documentation, Release 1.2.7

Table 9.1 – continued from previous page
Old (0.96) New (1.0)

backend.get_last_insert_id connection.ops.last_insert_id
backend.get_limit_offset_sql connection.ops.limit_offset_sql
backend.get_max_name_length connection.ops.max_name_length
backend.get_pk_default_value connection.ops.pk_default_value
backend.get_random_function_sql connection.ops.random_function_sql
backend.get_sql_flush connection.ops.sql_flush
backend.get_sql_sequence_reset connection.ops.sequence_reset_sql
backend.get_start_transaction_sql connection.ops.start_transaction_sql
backend.get_tablespace_sql connection.ops.tablespace_sql
backend.quote_name connection.ops.quote_name
backend.get_query_set_class connection.ops.query_set_class
backend.get_field_cast_sql connection.ops.field_cast_sql
backend.get_drop_sequence connection.ops.drop_sequence_sql

backend.OPERATOR_MAPPING connection.operators
backend.allows_group_by_ordinal connection.features.allows_group_by_ordinal
backend.allows_unique_and_pk connection.features.allows_unique_and_pk
backend.autoindexes_primary_keys connection.features.autoindexes_primary_keys
backend.needs_datetime_string_cast connection.features.needs_datetime_string_cast
backend.needs_upper_for_iops connection.features.needs_upper_for_iops
backend.supports_constraints connection.features.supports_constraints
backend.supports_tablespaces connection.features.supports_tablespaces
backend.uses_case_insensitive_names connection.features.uses_case_insensitive_names
backend.uses_custom_queryset connection.features.uses_custom_queryset

A complete list of backwards-incompatible changes can be found at http://code.djangoproject.com/wiki/BackwardsIncompatibleChanges.

What’s new in Django 1.0

A lot!

Since Django 0.96, we’ve made over 4,000 code commits, fixed more than 2,000 bugs, and edited, added, or removed
around 350,000 lines of code. We’ve also added 40,000 lines of new documentation, and greatly improved what was
already there.

In fact, new documentation is one of our favorite features of Django 1.0, so we might as well start there. First, there’s
a new documentation site:

http://docs.djangoproject.com/

The documentation has been greatly improved, cleaned up, and generally made awesome. There’s now dedicated
search, indexes, and more.

We can’t possibly document everything that’s new in 1.0, but the documentation will be your definitive guide. Any-
where you see something like: New in version 1.0: This feature is new in Django 1.0 You’ll know that you’re looking
at something new or changed.

The other major highlights of Django 1.0 are:

Re-factored admin application The Django administrative interface (django.contrib.admin) has been com-
pletely refactored; admin definitions are now completely decoupled from model definitions (no more class Admin
declaration in models!), rewritten to use Django’s new form-handling library (introduced in the 0.96 release as

846 Chapter 9. Release notes

http://code.djangoproject.com/wiki/BackwardsIncompatibleChanges
http://docs.djangoproject.com/

Django Documentation, Release 1.2.7

django.newforms, and now available as simply django.forms) and redesigned with extensibility and cus-
tomization in mind. Full documentation for the admin application is available online in the official Django documen-
tation:

See the admin reference for details

Improved Unicode handling Django’s internals have been refactored to use Unicode throughout; this drastically
simplifies the task of dealing with non-Western-European content and data in Django. Additionally, utility functions
have been provided to ease interoperability with third-party libraries and systems which may or may not handle Uni-
code gracefully. Details are available in Django’s Unicode-handling documentation.

See Unicode data.

An improved ORM Django’s object-relational mapper – the component which provides the mapping between
Django model classes and your database, and which mediates your database queries – has been dramatically im-
proved by a massive refactoring. For most users of Django this is backwards-compatible; the public-facing API for
database querying underwent a few minor changes, but most of the updates took place in the ORM’s internals. A
guide to the changes, including backwards-incompatible modifications and mentions of new features opened up by
this refactoring, is available on the Django wiki.

Automatic escaping of template variables To provide improved security against cross-site scripting (XSS) vulner-
abilities, Django’s template system now automatically escapes the output of variables. This behavior is configurable,
and allows both variables and larger template constructs to be marked as safe (requiring no escaping) or unsafe (re-
quiring escaping). A full guide to this feature is in the documentation for the autoescape tag.

django.contrib.gis (GeoDjango) A project over a year in the making, this adds world-class GIS (Geographic
Information Systems) support to Django, in the form of a contrib application. Its documentation is currently being
maintained externally, and will be merged into the main Django documentation shortly. Huge thanks go to Justin
Bronn, Jeremy Dunck, Brett Hoerner and Travis Pinney for their efforts in creating and completing this feature.

See http://geodjango.org/ for details.

Pluggable file storage Django’s built-in FileField and ImageField now can take advantage of pluggable
file-storage backends, allowing extensive customization of where and how uploaded files get stored by Django. For
details, see the files documentation; big thanks go to Marty Alchin for putting in the hard work to get this completed.

Jython compatibility Thanks to a lot of work from Leo Soto during a Google Summer of Code project, Django’s
codebase has been refactored to remove incompatibilities with Jython, an implementation of Python written in Java,
which runs Python code on the Java Virtual Machine. Django is now compatible with the forthcoming Jython 2.5
release.

See Running Django on Jython.

Generic relations in forms and admin Classes are now included in django.contrib.contenttypes which
can be used to support generic relations in both the admin interface and in end-user forms. See the documentation for
generic relations for details.

9.1. Final releases 847

http://code.djangoproject.com/wiki/QuerysetRefactorBranch
http://en.wikipedia.org/wiki/Geographic_information_system
http://en.wikipedia.org/wiki/Geographic_information_system
http://geodjango.org/
http://www.jython.org/

Django Documentation, Release 1.2.7

INSERT/UPDATE distinction Although Django’s default behavior of having a model’s save() method automati-
cally determine whether to perform an INSERT or an UPDATE at the SQL level is suitable for the majority of cases,
there are occasional situations where forcing one or the other is useful. As a result, models can now support an
additional parameter to save() which can force a specific operation.

See Forcing an INSERT or UPDATE for details.

Split CacheMiddleware Django’s CacheMiddleware has been split into three classes: CacheMiddleware
itself still exists and retains all of its previous functionality, but it is now built from two separate middleware classes
which handle the two parts of caching (inserting into and reading from the cache) separately, offering additional
flexibility for situations where combining these functions into a single middleware posed problems.

Full details, including updated notes on appropriate use, are in the caching documentation.

Refactored django.contrib.comments As part of a Google Summer of Code project, Thejaswi Puthraya
carried out a major rewrite and refactoring of Django’s bundled comment system, greatly increasing its flexibility
and customizability. Full documentation is available, as well as an upgrade guide if you were using the previous
incarnation of the comments application.

Removal of deprecated features A number of features and methods which had previously been marked as dep-
recated, and which were scheduled for removal prior to the 1.0 release, are no longer present in Django. These
include imports of the form library from django.newforms (now located simply at django.forms), the
form_for_model and form_for_instance helper functions (which have been replaced by ModelForm) and
a number of deprecated features which were replaced by the dispatcher, file-uploading and file-storage refactorings
introduced in the Django 1.0 alpha releases.

Known issues

We’ve done our best to make Django 1.0 as solid as possible, but unfortunately there are a couple of issues that we
know about in the release.

Multi-table model inheritance with to_field If you’re using multiple table model inheritance, be aware of this
caveat: child models using a custom parent_link and to_field will cause database integrity errors. A set of
models like the following are not valid:

class Parent(models.Model):
name = models.CharField(max_length=10)
other_value = models.IntegerField(unique=True)

class Child(Parent):
father = models.OneToOneField(Parent, primary_key=True, to_field="other_value", parent_link=True)
value = models.IntegerField()

This bug will be fixed in the next release of Django.

Caveats with support of certain databases Django attempts to support as many features as possible on all database
backends. However, not all database backends are alike, and in particular many of the supported database differ greatly
from version to version. It’s a good idea to checkout our notes on supported database:

• MySQL notes

• SQLite notes

• Oracle notes

848 Chapter 9. Release notes

Django Documentation, Release 1.2.7

9.1.4 Pre-1.0 releases

Django version 0.96 release notes

Welcome to Django 0.96!

The primary goal for 0.96 is a cleanup and stabilization of the features introduced in 0.95. There have been a few small
backwards-incompatible changes since 0.95, but the upgrade process should be fairly simple and should not require
major changes to existing applications.

However, we’re also releasing 0.96 now because we have a set of backwards-incompatible changes scheduled for the
near future. Once completed, they will involve some code changes for application developers, so we recommend that
you stick with Django 0.96 until the next official release; then you’ll be able to upgrade in one step instead of needing
to make incremental changes to keep up with the development version of Django.

Backwards-incompatible changes

The following changes may require you to update your code when you switch from 0.95 to 0.96:

MySQLdb version requirement Due to a bug in older versions of the MySQLdb Python module (which Django uses
to connect to MySQL databases), Django’s MySQL backend now requires version 1.2.1p2 or higher of MySQLdb,
and will raise exceptions if you attempt to use an older version.

If you’re currently unable to upgrade your copy of MySQLdb to meet this requirement, a separate, backwards-
compatible backend, called “mysql_old”, has been added to Django. To use this backend, change the
DATABASE_ENGINE setting in your Django settings file from this:

DATABASE_ENGINE = "mysql"

to this:

DATABASE_ENGINE = "mysql_old"

However, we strongly encourage MySQL users to upgrade to a more recent version of MySQLdb as soon as possi-
ble, The “mysql_old” backend is provided only to ease this transition, and is considered deprecated; aside from any
necessary security fixes, it will not be actively maintained, and it will be removed in a future release of Django.

Also, note that some features, like the new DATABASE_OPTIONS setting (see the databases documentation for de-
tails), are only available on the “mysql” backend, and will not be made available for “mysql_old”.

Database constraint names changed The format of the constraint names Django generates for foreign key refer-
ences have changed slightly. These names are generally only used when it is not possible to put the reference directly
on the affected column, so they are not always visible.

The effect of this change is that running manage.py reset and similar commands against an existing database
may generate SQL with the new form of constraint name, while the database itself contains constraints named in the
old form; this will cause the database server to raise an error message about modifying non-existent constraints.

If you need to work around this, there are two methods available:

1. Redirect the output of manage.py to a file, and edit the generated SQL to use the correct constraint names
before executing it.

2. Examine the output of manage.py sqlall to see the new-style constraint names, and use that as a guide to
rename existing constraints in your database.

9.1. Final releases 849

http://www.djangoproject.com/documentation/0.96/databases/

Django Documentation, Release 1.2.7

Name changes in manage.py A few of the options to manage.py have changed with the addition of fixture
support:

• There are new dumpdata and loaddata commands which, as you might expect, will dump and load data
to/from the database. These commands can operate against any of Django’s supported serialization formats.

• The sqlinitialdata command has been renamed to sqlcustom to emphasize that loaddata should
be used for data (and sqlcustom for other custom SQL – views, stored procedures, etc.).

• The vestigial install command has been removed. Use syncdb.

Backslash escaping changed The Django database API now escapes backslashes given as query parameters. If you
have any database API code that matches backslashes, and it was working before (despite the lack of escaping), you’ll
have to change your code to “unescape” the slashes one level.

For example, this used to work:

Find text containing a single backslash
MyModel.objects.filter(text__contains=’\\\\’)

The above is now incorrect, and should be rewritten as:

Find text containing a single backslash
MyModel.objects.filter(text__contains=’\\’)

Removed ENABLE_PSYCO setting The ENABLE_PSYCO setting no longer exists. If your settings file includes
ENABLE_PSYCO it will have no effect; to use Psyco, we recommend writing a middleware class to activate it.

What’s new in 0.96?

This revision represents over a thousand source commits and over four hundred bug fixes, so we can’t possibly catalog
all the changes. Here, we describe the most notable changes in this release.

New forms library django.newforms is Django’s new form-handling library. It’s a replacement for
django.forms, the old form/manipulator/validation framework. Both APIs are available in 0.96, but over the
next two releases we plan to switch completely to the new forms system, and deprecate and remove the old system.

There are three elements to this transition:

• We’ve copied the current django.forms to django.oldforms. This allows you to upgrade your code
now rather than waiting for the backwards-incompatible change and rushing to fix your code after the fact. Just
change your import statements like this:

from django import forms # 0.95-style
from django import oldforms as forms # 0.96-style

• The next official release of Django will move the current django.newforms to django.forms. This will
be a backwards-incompatible change, and anyone still using the old version of django.forms at that time
will need to change their import statements as described above.

• The next release after that will completely remove django.oldforms.

Although the newforms library will continue to evolve, it’s ready for use for most common cases. We recommend
that anyone new to form handling skip the old forms system and start with the new.

For more information about django.newforms, read the newforms documentation.

850 Chapter 9. Release notes

http://psyco.sourceforge.net/
http://www.djangoproject.com/documentation/0.96/newforms/

Django Documentation, Release 1.2.7

URLconf improvements You can now use any callable as the callback in URLconfs (previously, only strings that
referred to callables were allowed). This allows a much more natural use of URLconfs. For example, this URLconf:

from django.conf.urls.defaults import *

urlpatterns = patterns(’’,
(’^myview/$’, ’mysite.myapp.views.myview’)

)

can now be rewritten as:

from django.conf.urls.defaults import *
from mysite.myapp.views import myview

urlpatterns = patterns(’’,
(’^myview/$’, myview)

)

One useful application of this can be seen when using decorators; this change allows you to apply decorators to views
in your URLconf. Thus, you can make a generic view require login very easily:

from django.conf.urls.defaults import *
from django.contrib.auth.decorators import login_required
from django.views.generic.list_detail import object_list
from mysite.myapp.models import MyModel

info = {
"queryset" : MyModel.objects.all(),

}

urlpatterns = patterns(’’,
(’^myview/$’, login_required(object_list), info)

)

Note that both syntaxes (strings and callables) are valid, and will continue to be valid for the foreseeable future.

The test framework Django now includes a test framework so you can start transmuting fear into boredom (with
apologies to Kent Beck). You can write tests based on doctest or unittest and test your views with a simple test client.

There is also new support for “fixtures” – initial data, stored in any of the supported serialization formats, that will be
loaded into your database at the start of your tests. This makes testing with real data much easier.

See the testing documentation for the full details.

Improvements to the admin interface A small change, but a very nice one: dedicated views for adding and updating
users have been added to the admin interface, so you no longer need to worry about working with hashed passwords
in the admin.

Thanks

Since 0.95, a number of people have stepped forward and taken a major new role in Django’s development. We’d like
to thank these people for all their hard work:

• Russell Keith-Magee and Malcolm Tredinnick for their major code contributions. This release wouldn’t have
been possible without them.

• Our new release manager, James Bennett, for his work in getting out 0.95.1, 0.96, and (hopefully) future release.

9.1. Final releases 851

http://docs.python.org/library/doctest.html
http://docs.python.org/library/unittest.html
http://www.djangoproject.com/documentation/0.96/serialization/
http://www.djangoproject.com/documentation/0.96/testing/

Django Documentation, Release 1.2.7

• Our ticket managers Chris Beaven (aka SmileyChris), Simon Greenhill, Michael Radziej, and Gary Wilson.
They agreed to take on the monumental task of wrangling our tickets into nicely cataloged submission. Figuring
out what to work on is now about a million times easier; thanks again, guys.

• Everyone who submitted a bug report, patch or ticket comment. We can’t possibly thank everyone by name –
over 200 developers submitted patches that went into 0.96 – but everyone who’s contributed to Django is listed
in AUTHORS.

Django version 0.95 release notes

Welcome to the Django 0.95 release.

This represents a significant advance in Django development since the 0.91 release in January 2006. The details of
every change in this release would be too extensive to list in full, but a summary is presented below.

Suitability and API stability

This release is intended to provide a stable reference point for developers wanting to work on production-level appli-
cations that use Django.

However, it’s not the 1.0 release, and we’ll be introducing further changes before 1.0. For a clear look at which areas
of the framework will change (and which ones will not change) before 1.0, see the api-stability.txt file, which lives in
the docs/ directory of the distribution.

You may have a need to use some of the features that are marked as “subject to API change” in that document, but
that’s OK with us as long as it’s OK with you, and as long as you understand APIs may change in the future.

Fortunately, most of Django’s core APIs won’t be changing before version 1.0. There likely won’t be as big of a
change between 0.95 and 1.0 versions as there was between 0.91 and 0.95.

Changes and new features

The major changes in this release (for developers currently using the 0.91 release) are a result of merging the ‘magic-
removal’ branch of development. This branch removed a number of constraints in the way Django code had to be
written that were a consequence of decisions made in the early days of Django, prior to its open-source release. It’s
now possible to write more natural, Pythonic code that works as expected, and there’s less “black magic” happening
behind the scenes.

Aside from that, another main theme of this release is a dramatic increase in usability. We’ve made countless improve-
ments in error messages, documentation, etc., to improve developers’ quality of life.

The new features and changes introduced in 0.95 include:

• Django now uses a more consistent and natural filtering interface for retrieving objects from the database.

• User-defined models, functions and constants now appear in the module namespace they were defined in. (Pre-
viously everything was magically transferred to the django.models.* namespace.)

• Some optional applications, such as the FlatPage, Sites and Redirects apps, have been decoupled and moved into
django.contrib. If you don’t want to use these applications, you no longer have to install their database tables.

• Django now has support for managing database transactions.

• We’ve added the ability to write custom authentication and authorization backends for authenticating users
against alternate systems, such as LDAP.

• We’ve made it easier to add custom table-level functions to models, through a new “Manager” API.

852 Chapter 9. Release notes

http://code.djangoproject.com/browser/django/trunk/AUTHORS

Django Documentation, Release 1.2.7

• It’s now possible to use Django without a database. This simply means that the framework no longer requires you
to have a working database set up just to serve dynamic pages. In other words, you can just use URLconfs/views
on their own. Previously, the framework required that a database be configured, regardless of whether you
actually used it.

• It’s now more explicit and natural to override save() and delete() methods on models, rather than needing to
hook into the pre_save() and post_save() method hooks.

• Individual pieces of the framework now can be configured without requiring the setting of an environment
variable. This permits use of, for example, the Django templating system inside other applications.

• More and more parts of the framework have been internationalized, as we’ve expanded internationalization
(i18n) support. The Django codebase, including code and templates, has now been translated, at least in part,
into 31 languages. From Arabic to Chinese to Hungarian to Welsh, it is now possible to use Django’s admin site
in your native language.

The number of changes required to port from 0.91-compatible code to the 0.95 code base are significant in some cases.
However, they are, for the most part, reasonably routine and only need to be done once. A list of the necessary changes
is described in the Removing The Magic wiki page. There is also an easy checklist for reference when undertaking
the porting operation.

Problem reports and getting help

Need help resolving a problem with Django? The documentation in the distribution is also available online at the
Django Web site. The FAQ document is especially recommended, as it contains a number of issues that come up time
and again.

For more personalized help, the django-users mailing list is a very active list, with more than 2,000 subscribers who
can help you solve any sort of Django problem. We recommend you search the archives first, though, because many
common questions appear with some regularity, and any particular problem may already have been answered.

Finally, for those who prefer the more immediate feedback offered by IRC, there’s a #django channel on
irc.freenode.net that is regularly populated by Django users and developers from around the world. Friendly peo-
ple are usually available at any hour of the day – to help, or just to chat.

Thanks for using Django!

The Django Team July 2006

9.2 Development releases

These notes are retained for historical purposes. If you are upgrading between formal Django releases, you don’t need
to worry about these notes.

9.2.1 Django 1.2 RC 1 release notes

May 5, 2010

Welcome to the first Django 1.2 release candidate!

This is the third – and likely last – in a series of preview/development releases leading up to the eventual release of
Django 1.2. This release is targeted primarily at developers who are interested in trying out new features and testing
the Django codebase to help identify and resolve any critical bugs prior to the final 1.2 release.

As such, this release is not yet intended for production use, and any such use is discouraged.

9.2. Development releases 853

http://code.djangoproject.com/wiki/RemovingTheMagic
http://code.djangoproject.com/wiki/MagicRemovalCheatSheet1
http://www.djangoproject.com/documentation/0.95/
http://www.djangoproject.com/
http://groups.google.com/group/django-users

Django Documentation, Release 1.2.7

Django has been feature frozen since the 1.2 beta release, so this release candidate contains no new features, only
bugfixes; for a summary of features new to Django 1.2, consult the 1.2 alpha and 1.2 beta release notes.

Python compatibility

While not a new feature, it’s important to note that Django 1.2 introduces the first shift in our Python compatibility
policy since Django’s initial public debut. Previous Django releases were tested and supported on 2.x Python versions
from 2.3 up; Django 1.2, however, drops official support for Python 2.3. As such, the minimum Python version
required for Django is now 2.4, and Django is tested and supported on Python 2.4, 2.5 and 2.6, and will be supported
on the as-yet-unreleased Python 2.7.

This change should affect only a small number of Django users, as most operating-system vendors today are shipping
Python 2.4 or newer as their default version. If you’re still using Python 2.3, however, you’ll need to stick to Django
1.1 until you can upgrade; per our support policy, Django 1.1 will continue to receive security support until the release
of Django 1.3.

A roadmap for Django’s overall 2.x Python support, and eventual transition to Python 3.x, is currently being developed,
and will be announced prior to the release of Django 1.3.

The Django 1.2 roadmap

As of this release candidate, Django 1.2 is in both feature freeze and “string freeze” – all strings marked for translation
in the Django codebase will retain their current form in the final Django 1.2 release. Only critical release-blocking
bugs, documentation and updated translation files will receive attention between now and the final 1.2 release. Note
that Django’s localization infrastructure has been expanded for 1.2, and translation packages should now include a
formats.py file containing data for localized formatting of numbers and dates.

If no critical bugs are discovered, Django 1.2 will be released approximately one week after this release candidate, on
or about May 12, 2010.

What you can do to help

In order to provide a high-quality 1.2 release, we need your help. Although this release candidate is, again, not intended
for production use, you can help the Django team by trying out this release candidate in a safe testing environment and
reporting any bugs or issues you encounter. The Django ticket tracker is the central place to search for open issues:

• http://code.djangoproject.com/timeline

Please open a new ticket only if no existing ticket corresponds to a problem you’re running into.

Additionally, discussion of Django development, including progress toward the 1.2 release, takes place daily on the
django-developers mailing list:

• http://groups.google.com/group/django-developers

... and in the #django-dev IRC channel on irc.freenode.net. If you’re interested in helping out with
Django’s development, feel free to join the discussions there.

Django’s online documentation also includes pointers on how to contribute to Django:

• How to contribute to Django

Contributions on any level – developing code, writing documentation or simply triaging tickets and helping to test
proposed bugfixes – are always welcome and appreciated.

854 Chapter 9. Release notes

http://code.djangoproject.com/timeline
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

9.2.2 Django 1.2 beta 1 release notes

February 5, 2010

Welcome to Django 1.2 beta 1!

This is the second in a series of preview/development releases leading up to the eventual release of Django 1.2,
currently scheduled to take place in March 2010. This release is primarily targeted at developers who are interested in
trying out new features and testing the Django codebase to help identify and resolve bugs prior to the final 1.2 release.

As such, this release is not intended for production use, and any such use is discouraged.

This document covers changes since the Django 1.2 alpha release; the 1.2 alpha release notes cover new and updated
features in Django between 1.1 and 1.2 alpha.

Deprecations and other changes in 1.2 beta

This beta release deprecates two portions of public API, and introduces a potentially backwards-incompatible change
to another. Under our API stability policy, deprecation proceeds over multiple release cycles: initially, the deprecated
API will raise PendingDeprecationWarning, followed by raising DeprecationWarning in the next re-
lease, and finally removal of the deprecated API in the release after that. APIs beginning the deprecation process in
Django 1.2 will be removed in the Django 1.4 release.

Unit test runners

Django 1.2 changes the test runner tools to use a class-based approach. Old style function-based test runners will still
work, but should be updated to use the new class-based runners.

Syndication feeds

The django.contrib.syndication.feeds.Feed class is being replaced by the
django.contrib.syndication.views.Feed class. The old feeds.Feed class is deprecated. The
new class has an almost identical API, but allows instances to be used as views.

Also, in accordance with RSS best practices, RSS feeds will now include an atom:link element. You may need to
update your tests to take this into account.

For more information, see the full syndication framework documentation.

Cookie encoding

Due to cookie-handling bugs in Internet Explorer, Safari, and possibly other browsers, Django’s encoding of cookie
values was changed so that the characters comma (‘,’) and semi-colon (‘;’) are treated as non-safe characters, and are
therefore encoded as \054 and \073 respectively. This could produce backwards incompatibilities if you are relying
on the ability to set these characters directly in cookie values.

What’s new in 1.2 beta

This 1.2 beta release marks the final feature freeze for Django 1.2; while most feature development was completed for
1.2 alpha (which constituted a freeze on major features), a few other new features were added afterward and so are
new as of 1.2 beta.

9.2. Development releases 855

http://www.rssboard.org/rss-profile

Django Documentation, Release 1.2.7

Object-level permissions

A foundation for specifying permissions at the per-object level was added in Django 1.2 alpha but not documented
with the alpha release.

The default authentication backends shipped with Django do not currently make use of this, but third-party authenti-
cation backends are free to do so. See the authentication docs for more information.

Permissions for anonymous users

If you provide a custom authentication backend with the attribute supports_anonymous_user set to True, the
AnonymousUser class will check the backend for permissions, just as the normal User does. This is intended to
help centralize permission handling; apps can always delegate the question of whether something is allowed or not to
the authorization/authentication system. See the authentication docs for more details.

select_related() improvements

The select_related() method of QuerySet now accepts the related_name of a reverse one-to-one
relation in the list of fields to select. One-to-one relations will not, however, be traversed by a depth-based
select_related() call.

The Django 1.2 roadmap

Before the final Django 1.2 release, at least one additional preview/development releases will be made available. The
current schedule consists of at least the following:

• Week of March 2, 2010: First Django 1.2 release candidate. String freeze for translations.

• Week of March 9, 2010: Django 1.2 final release.

If necessary, additional beta or release-candidate packages will be issued prior to the final 1.2 release. Django 1.2 will
be released approximately one week after the final release candidate.

What you can do to help

In order to provide a high-quality 1.2 release, we need your help. Although this beta release is, again, not intended for
production use, you can help the Django team by trying out the beta codebase in a safe test environment and reporting
any bugs or issues you encounter. The Django ticket tracker is the central place to search for open issues:

• http://code.djangoproject.com/timeline

Please open new tickets if no existing ticket corresponds to a problem you’re running into.

Additionally, discussion of Django development, including progress toward the 1.2 release, takes place daily on the
django-developers mailing list:

• http://groups.google.com/group/django-developers

... and in the #django-dev IRC channel on irc.freenode.net. If you’re interested in helping out with
Django’s development, feel free to join the discussions there.

Django’s online documentation also includes pointers on how to contribute to Django:

• How to contribute to Django

856 Chapter 9. Release notes

http://code.djangoproject.com/timeline
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

Contributions on any level – developing code, writing documentation or simply triaging tickets and helping to test
proposed bugfixes – are always welcome and appreciated.

Development sprints for Django 1.2 will also be taking place at PyCon US 2010, on the dedicated sprint days (February
22 through 25), and anyone who wants to help out is welcome to join in, either in person at PyCon or virtually in the
IRC channel or on the mailing list.

9.2.3 Django 1.2 alpha 1 release notes

January 5, 2010

Welcome to Django 1.2 alpha 1!

This is the first in a series of preview/development releases leading up to the eventual release of Django 1.2, currently
scheduled to take place in March 2010. This release is primarily targeted at developers who are interested in trying
out new features and testing the Django codebase to help identify and resolve bugs prior to the final 1.2 release.

As such, this release is not intended for production use, and any such use is discouraged.

Backwards-incompatible changes in 1.2

CSRF Protection

There have been large changes to the way that CSRF protection works, detailed in the CSRF documentaton. The
following are the major changes that developers must be aware of:

• CsrfResponseMiddleware and CsrfMiddleware have been deprecated, and will be removed com-
pletely in Django 1.4, in favor of a template tag that should be inserted into forms.

• All contrib apps use a csrf_protect decorator to protect the view. This requires the use of the
csrf_token template tag in the template, so if you have used custom templates for contrib views, you MUST
READ THE UPGRADE INSTRUCTIONS to fix those templates.

• CsrfViewMiddleware is included in MIDDLEWARE_CLASSES by default. This turns on CSRF protection
by default, so that views that accept POST requests need to be written to work with the middleware. Instructions
on how to do this are found in the CSRF docs.

• CSRF-related code has moved from contrib to core (with backwards compatible imports in the old loca-
tions, which are deprecated).

if tag changes

Due to new features in the if template tag, it no longer accepts ‘and’, ‘or’ and ‘not’ as valid variable names. Previ-
ously that worked in some cases even though these strings were normally treated as keywords. Now, the keyword status
is always enforced, and template code like {% if not %} or {% if and %} will throw a TemplateSyntaxError.

LazyObject

LazyObject is an undocumented utility class used for lazily wrapping other objects of unknown type. In Django
1.1 and earlier, it handled introspection in a non-standard way, depending on wrapped objects implementing a public
method get_all_members(). Since this could easily lead to name clashes, it has been changed to use the standard
method, involving __members__ and __dir__(). If you used LazyObject in your own code, and implemented
the get_all_members() method for wrapped objects, you need to make the following changes:

9.2. Development releases 857

Django Documentation, Release 1.2.7

• If your class does not have special requirements for introspection (i.e. you have not implemented
__getattr__() or other methods that allow for attributes not discoverable by normal mechanisms), you
can simply remove the get_all_members() method. The default implementation on LazyObject will
do the right thing.

• If you have more complex requirements for introspection, first rename the get_all_members() method to
__dir__(). This is the standard method, from Python 2.6 onwards, for supporting introspection. If you are
require support for Python < 2.6, add the following code to the class:

__members__ = property(lambda self: self.__dir__())

__dict__ on Model instances

Historically, the __dict__ attribute of a model instance has only contained attributes corresponding to the fields on
a model.

In order to support multiple database configurations, Django 1.2 has added a _state attribute to object instances.
This attribute will appear in __dict__ for a model instance. If your code relies on iterating over __dict__ to obtain
a list of fields, you must now filter the _state attribute of out __dict__.

get_db_prep_*() methods on Field

Prior to v1.2, a custom field had the option of defining several functions to support conversion of Python values into
database-compatible values. A custom field might look something like:

class CustomModelField(models.Field):
...

def get_db_prep_save(self, value):
...

def get_db_prep_value(self, value):
...

def get_db_prep_lookup(self, lookup_type, value):
...

In 1.2, these three methods have undergone a change in prototype, and two extra methods have been introduced:

class CustomModelField(models.Field):
...

def get_prep_value(self, value):
...

def get_prep_lookup(self, lookup_type, value):
...

def get_db_prep_save(self, value, connection):
...

def get_db_prep_value(self, value, connection, prepared=False):
...

def get_db_prep_lookup(self, lookup_type, value, connection, prepared=False):
...

858 Chapter 9. Release notes

Django Documentation, Release 1.2.7

These changes are required to support multiple databases: get_db_prep_* can no longer make any assumptions
regarding the database for which it is preparing. The connection argument now provides the preparation methods
with the specific connection for which the value is being prepared.

The two new methods exist to differentiate general data preparation requirements, and requirements that are database-
specific. The prepared argument is used to indicate to the database preparation methods whether generic
value preparation has been performed. If an unprepared (i.e., prepared=False) value is provided to the
get_db_prep_*() calls, they should invoke the corresponding get_prep_*() calls to perform generic data
preparation.

Conversion functions has been provided which will transparently convert functions adhering to the old prototype into
functions compatible with the new prototype. However, this conversion function will be removed in Django 1.4, so
you should upgrade your Field definitions to use the new prototype.

If your get_db_prep_*() methods made no use of the database connection, you should be able to up-
grade by renaming get_db_prep_value() to get_prep_value() and get_db_prep_lookup() to
get_prep_lookup()‘. If you require database specific conversions, then you
will need to provide an implementation ‘‘get_db_prep_* that uses the connection
argument to resolve database-specific values.

Stateful template tags

Template tags that store rendering state on the node itself may experience problems if they are used with the new
cached template loader.

All of the built-in Django template tags are safe to use with the cached loader, but if you’re using custom template tags
that come from third party packages, or that you wrote yourself, you should ensure that the Node implementation for
each tag is thread-safe. For more information, see template tag thread safety considerations.

Test runner exit status code

The exit status code of the test runners (tests/runtests.py and python manage.py test) no longer rep-
resents the number of failed tests, since a failure of 256 or more tests resulted in a wrong exit status code. The exit
status code for the test runner is now 0 for success (no failing tests) and 1 for any number of test failures. If needed,
the number of test failures can be found at the end of the test runner’s output.

Features deprecated in 1.2

CSRF response rewriting middleware

CsrfResponseMiddleware, the middleware that automatically inserted CSRF tokens into POST forms in
outgoing pages, has been deprecated in favor of a template tag method (see above), and will be removed com-
pletely in Django 1.4. CsrfMiddleware, which includes the functionality of CsrfResponseMiddleware
and CsrfViewMiddleware has likewise been deprecated.

Also, the CSRF module has moved from contrib to core, and the old imports are deprecated, as described in the
upgrading notes.

SMTPConnection

The SMTPConnection class has been deprecated in favor of a generic E-mail backend API. Old code that explicitly
instantiated an instance of an SMTPConnection:

9.2. Development releases 859

Django Documentation, Release 1.2.7

from django.core.mail import SMTPConnection
connection = SMTPConnection()
messages = get_notification_email()
connection.send_messages(messages)

should now call get_connection() to instantiate a generic e-mail connection:

from django.core.mail import get_connection
connection = get_connection()
messages = get_notification_email()
connection.send_messages(messages)

Depending on the value of the EMAIL_BACKEND setting, this may not return an SMTP connection. If you explicitly
require an SMTP connection with which to send e-mail, you can explicitly request an SMTP connection:

from django.core.mail import get_connection
connection = get_connection(’django.core.mail.backends.smtp.EmailBackend’)
messages = get_notification_email()
connection.send_messages(messages)

If your call to construct an instance of SMTPConnection required additional arguments, those arguments can be
passed to the get_connection() call:

connection = get_connection(’django.core.mail.backends.smtp.EmailBackend’, hostname=’localhost’, port=1234)

Specifying databases

Prior to Django 1.1, Django used a number of settings to control access to a single database. Django 1.2 introduces
support for multiple databases, and as a result, the way you define database settings has changed.

Any existing Django settings file will continue to work as expected until Django 1.4. Old-style database settings
will be automatically translated to the new-style format.

In the old-style (pre 1.2) format, there were a number of DATABASE_ settings at the top level of your settings file. For
example:

DATABASE_NAME = ’test_db’
DATABASE_ENGINE = ’postgresql_psycopg2’
DATABASE_USER = ’myusername’
DATABASE_PASSWORD = ’s3krit’

These settings are now contained inside a dictionary named DATABASES. Each item in the dictionary corresponds
to a single database connection, with the name ’default’ describing the default database connection. The setting
names have also been shortened to reflect the fact that they are stored in a dictionary. The sample settings given
previously would now be stored using:

DATABASES = {
’default’: {

’NAME’: ’test_db’,
’ENGINE’: ’django.db.backends.postgresql_psycopg2’,
’USER’: ’myusername’,
’PASSWORD’: ’s3krit’,

}
}

This affects the following settings:

860 Chapter 9. Release notes

Django Documentation, Release 1.2.7

Old setting New Setting
DATABASE_ENGINE ENGINE
DATABASE_HOST HOST
DATABASE_NAME NAME
DATABASE_OPTIONS OPTIONS
DATABASE_PASSWORD PASSWORD
DATABASE_PORT PORT
DATABASE_USER USER
TEST_DATABASE_CHARSET TEST_CHARSET
TEST_DATABASE_COLLATION TEST_COLLATION
TEST_DATABASE_NAME TEST_NAME

These changes are also required if you have manually created a database connection using DatabaseWrapper()
from your database backend of choice.

In addition to the change in structure, Django 1.2 removes the special handling for the built-in database
backends. All database backends must now be specified by a fully qualified module name (i.e.,
django.db.backends.postgresql_psycopg2, rather than just postgresql_psycopg2).

User Messages API

The API for storing messages in the user Message model (via user.message_set.create) is now deprecated
and will be removed in Django 1.4 according to the standard release process.

To upgrade your code, you need to replace any instances of:

user.message_set.create(’a message’)

with the following:

from django.contrib import messages
messages.add_message(request, messages.INFO, ’a message’)

Additionally, if you make use of the method, you need to replace the following:

for message in user.get_and_delete_messages():
...

with:

from django.contrib import messages
for message in messages.get_messages(request):

...

For more information, see the full messages documentation. You should begin to update your code to use the new API
immediately.

Date format helper functions

django.utils.translation.get_date_formats() and django.utils.translation.get_partial_date_formats()
have been deprecated in favor of the appropriate calls to django.utils.formats.get_format() which is
locale aware when USE_L10N is set to True, and falls back to default settings if set to False.

To get the different date formats, instead of writing:

from django.utils.translation import get_date_formats
date_format, datetime_format, time_format = get_date_formats()

9.2. Development releases 861

Django Documentation, Release 1.2.7

use:

from django.utils import formats

date_format = formats.get_format(’DATE_FORMAT’)
datetime_format = formats.get_format(’DATETIME_FORMAT’)
time_format = formats.get_format(’TIME_FORMAT’)

or, when directly formatting a date value:

from django.utils import formats
value_formatted = formats.date_format(value, ’DATETIME_FORMAT’)

The same applies to the globals found in django.forms.fields:

• DEFAULT_DATE_INPUT_FORMATS

• DEFAULT_TIME_INPUT_FORMATS

• DEFAULT_DATETIME_INPUT_FORMATS

Use django.utils.formats.get_format() to get the appropriate formats.

What’s new in Django 1.2 alpha 1

The following new features are present as of this alpha release; this release also marks the end of major feature
development for the 1.2 release cycle. Some minor features will continue development until the 1.2 beta release,
however.

CSRF support

Django now has much improved protection against Cross-Site Request Forgery (CSRF) attacks. This type of attack
occurs when a malicious Web site contains a link, a form button or some javascript that is intended to perform some
action on your Web site, using the credentials of a logged-in user who visits the malicious site in their browser. A
related type of attack, ‘login CSRF’, where an attacking site tricks a user’s browser into logging into a site with
someone else’s credentials, is also covered.

E-mail Backends

You can now configure the way that Django sends e-mail. Instead of using SMTP to send all e-mail, you can now
choose a configurable e-mail backend to send messages. If your hosting provider uses a sandbox or some other non-
SMTP technique for sending mail, you can now construct an e-mail backend that will allow Django’s standard mail
sending methods to use those facilities.

This also makes it easier to debug mail sending - Django ships with backend implementations that allow you to send
e-mail to a file, to the console, or to memory - you can even configure all e-mail to be thrown away.

Messages Framework

Django now includes a robust and configurable messages framework with built-in support for cookie- and session-
based messaging, for both anonymous and authenticated clients. The messages framework replaces the deprecated
user message API and allows you to temporarily store messages in one request and retrieve them for display in a
subsequent request (usually the next one).

862 Chapter 9. Release notes

Django Documentation, Release 1.2.7

Support for multiple databases

Django 1.2 adds the ability to use more than one database in your Django project. Queries can be issued at a specific
database with the using() method on querysets; individual objects can be saved to a specific database by providing a
using argument when you save the instance.

‘Smart’ if tag

The if tag has been upgraded to be much more powerful. First, support for comparison operators has been added. No
longer will you have to type:

{% ifnotequal a b %}
...

{% endifnotequal %}

...as you can now do:

{% if a != b %}
...

{% endif %}

The operators supported are ==, !=, <, >, <=, >= and in, all of which work like the Python operators, in addition to
and, or and not which were already supported.

Also, filters may now be used in the if expression. For example:

<div
{% if user.email|lower == message.recipient|lower %}
class="highlight"

{% endif %}
>{{ message }}</div>

Template caching

In previous versions of Django, every time you rendered a template it would be reloaded from disk. In Django 1.2,
you can use a cached template loader to load templates once, then use the cached result for every subsequent render.
This can lead to a significant performance improvement if your templates are broken into lots of smaller subtemplates
(using the {% extends %} or {% include %} tags).

As a side effect, it is now much easier to support non-Django template languages. For more details, see the notes on
supporting non-Django template languages.

Natural keys in fixtures

Fixtures can refer to remote objects using Natural keys. This lookup scheme is an alternative to the normal primary-key
based object references in a fixture, improving readability, and resolving problems referring to objects whose primary
key value may not be predictable or known.

BigIntegerField

Models can now use a 64 bit BigIntegerField type.

9.2. Development releases 863

Django Documentation, Release 1.2.7

Fast Failure for Tests

The test subcommand of django-admin.py, and the runtests.py script used to run Django’s own test suite,
support a new --failfast option. When specified, this option causes the test runner to exit after encountering
a failure instead of continuing with the test run. In addition, the handling of Ctrl-C during a test run has been
improved to trigger a graceful exit from the test run that reports details of the tests run before the interruption.

Improved localization

Django’s internationalization framework has been expanded by locale aware formatting and form processing. That
means, if enabled, dates and numbers on templates will be displayed using the format specified for the current locale.
Django will also use localized formats when parsing data in forms. See Format localization for more details.

Added readonly_fields to ModelAdmin

django.contrib.admin.ModelAdmin.readonly_fields has been added to enable non-editable fields in
add/change pages for models and inlines. Field and calculated values can be displayed along side editable fields.

Customizable syntax highlighting

You can now use the DJANGO_COLORS environment variable to modify or disable the colors used by
django-admin.py to provide syntax highlighting.

The Django 1.2 roadmap

Before the final Django 1.2 release, several other preview/development releases will be made available. The current
schedule consists of at least the following:

• Week of January 26, 2010: First Django 1.2 beta release. Final feature freeze for Django 1.2.

• Week of March 2, 2010: First Django 1.2 release candidate. String freeze for translations.

• Week of March 9, 2010: Django 1.2 final release.

If necessary, additional alpha, beta or release-candidate packages will be issued prior to the final 1.2 release. Django
1.2 will be released approximately one week after the final release candidate.

What you can do to help

In order to provide a high-quality 1.2 release, we need your help. Although this alpha release is, again, not intended
for production use, you can help the Django team by trying out the alpha codebase in a safe test environment and
reporting any bugs or issues you encounter. The Django ticket tracker is the central place to search for open issues:

• http://code.djangoproject.com/timeline

Please open new tickets if no existing ticket corresponds to a problem you’re running into.

Additionally, discussion of Django development, including progress toward the 1.2 release, takes place daily on the
django-developers mailing list:

• http://groups.google.com/group/django-developers

864 Chapter 9. Release notes

http://code.djangoproject.com/timeline
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

... and in the #django-dev IRC channel on irc.freenode.net. If you’re interested in helping out with
Django’s development, feel free to join the discussions there.

Django’s online documentation also includes pointers on how to contribute to Django:

• How to contribute to Django

Contributions on any level – developing code, writing documentation or simply triaging tickets and helping to test
proposed bugfixes – are always welcome and appreciated.

Development sprints for Django 1.2 will also be taking place at PyCon US 2010, on the dedicated sprint days (February
22 through 25), and anyone who wants to help out is welcome to join in, either in person at PyCon or virtually in the
IRC channel or on the mailing list.

9.2.4 Django 1.1 RC 1 release notes

July 21, 2009

Welcome to the first Django 1.1 release candidate!

This is the third – and likely last – in a series of preview/development releases leading up to the eventual release of
Django 1.1, currently scheduled to take place approximately one week after this release candidate. This release is
targeted primarily at developers who are interested in trying out new features and testing the Django codebase to help
identify and resolve any critical bugs prior to the final 1.1 release.

As such, this release is not yet intended for production use, and any such use is discouraged.

What’s new in Django 1.1 RC 1

The Django codebase has – with one exception – been in feature freeze since the first 1.1 beta release, and so this
release candidate contains only one new feature (see below); work leading up to this release candidate has instead
been focused on bugfixing, particularly on the new features introduced prior to the 1.1 beta.

For an overview of those features, consult the Django 1.1 beta release notes.

URL namespaces

The 1.1 beta release introduced the ability to use reverse URL resolution with Django’s admin application, which
exposed a set of named URLs. Unfortunately, achieving consistent and correct reverse resolution for admin URLs
proved extremely difficult, and so one additional feature was added to Django to resolve this issue: URL namespaces.

In short, this feature allows the same group of URLs, from the same application, to be included in a Django URLConf
multiple times, with varying (and potentially nested) named prefixes which will be used when performing reverse
resolution. For full details, see the documentation on defining URL namespaces.

Due to the changes needed to support this feature, the URL pattern names used when reversing admin URLs have
changed since the 1.1 beta release; if you were developing applications which took advantage of this new feature, you
will need to update your code to reflect the new names (for most purposes, changing admin_ to admin: in names to
be reversed will suffice). For a full list of URL pattern names used by the admin and information on how namespaces
are applied to them, consult the documentation on reversing admin URLs.

The Django 1.1 roadmap

As of this release candidate, Django 1.1 is in both feature freeze and “string freeze” – all strings marked for translation
in the Django codebase will retain their current form in the final Django 1.1 release. Only critical release-blocking
bugs will receive attention between now and the final 1.1 release.

9.2. Development releases 865

Django Documentation, Release 1.2.7

If no such bugs are discovered, Django 1.1 will be released approximately one week after this release candidate, on or
about July 28, 2009.

What you can do to help

In order to provide a high-quality 1.1 release, we need your help. Although this release candidate is, again, not intended
for production use, you can help the Django team by trying out this release candidate in a safe testing environment and
reporting any bugs or issues you encounter. The Django ticket tracker is the central place to search for open issues:

• http://code.djangoproject.com/timeline

Please open a new ticket only if no existing ticket corresponds to a problem you’re running into.

Additionally, discussion of Django development, including progress toward the 1.1 release, takes place daily on the
django-developers mailing list:

• http://groups.google.com/group/django-developers

... and in the #django-dev IRC channel on irc.freenode.net. If you’re interested in helping out with
Django’s development, feel free to join the discussions there.

Django’s online documentation also includes pointers on how to contribute to Django:

• How to contribute to Django

Contributions on any level – developing code, writing documentation or simply triaging tickets and helping to test
proposed bugfixes – are always welcome and appreciated.

9.2.5 Django 1.1 beta 1 release notes

March 23, 2009

Welcome to Django 1.1 beta 1!

This is the second in a series of preview/development releases leading up to the eventual release of Django 1.1,
currently scheduled to take place in April 2009. This release is primarily targeted at developers who are interested in
trying out new features and testing the Django codebase to help identify and resolve bugs prior to the final 1.1 release.

As such, this release is not intended for production use, and any such use is discouraged.

What’s new in Django 1.1 beta 1

See Also:

The 1.1 alpha release notes, which has a list of everything new between Django 1.0 and Django 1.1 alpha.

Model improvements

A number of features have been added to Django’s model layer:

“Unmanaged” models You can now control whether or not Django creates database tables for a model using the
managed model option. This defaults to True, meaning that Django will create the appropriate database tables in
syncdb and remove them as part of reset command. That is, Django manages the database table’s lifecycle.

If you set this to False, however, no database table creating or deletion will be automatically performed for this
model. This is useful if the model represents an existing table or a database view that has been created by some other
means.

866 Chapter 9. Release notes

http://code.djangoproject.com/timeline
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

For more details, see the documentation for the managed option.

Proxy models You can now create proxy models: subclasses of existing models that only add Python behavior and
aren’t represented by a new table. That is, the new model is a proxy for some underlying model, which stores all the
real data.

All the details can be found in the proxy models documentation. This feature is similar on the surface to unmanaged
models, so the documentation has an explanation of how proxy models differ from unmanaged models.

Deferred fields In some complex situations, your models might contain fields which could contain a lot of data (for
example, large text fields), or require expensive processing to convert them to Python objects. If you know you don’t
need those particular fields, you can now tell Django not to retrieve them from the database.

You’ll do this with the new queryset methods defer() and only().

New admin features

Since 1.1 alpha, a couple of new features have been added to Django’s admin application:

Editable fields on the change list You can now make fields editable on the admin list views via the new list_editable
admin option. These fields will show up as form widgets on the list pages, and can be edited and saved in bulk.

Admin “actions” You can now define admin actions that can perform some action to a group of models in bulk.
Users will be able to select objects on the change list page and then apply these bulk actions to all selected objects.

Django ships with one pre-defined admin action to delete a group of objects in one fell swoop.

Testing improvements

A couple of small but very useful improvements have been made to the testing framework:

• The test Client now can automatically follow redirects with the follow argument to Client.get() and
Client.post(). This makes testing views that issue redirects simpler.

• It’s now easier to get at the template context in the response returned the test client: you’ll simply access the
context as request.context[key]. The old way, which treats request.context as a list of contexts,
one for each rendered template, is still available if you need it.

Conditional view processing

Django now has much better support for conditional view processing using the standard ETag and Last-Modified
HTTP headers. This means you can now easily short-circuit view processing by testing less-expensive conditions. For
many views this can lead to a serious improvement in speed and reduction in bandwidth.

Other improvements

Finally, a grab-bag of other neat features made their way into this beta release, including:

• The dumpdata management command now accepts individual model names as arguments, allowing you to
export the data just from particular models.

9.2. Development releases 867

Django Documentation, Release 1.2.7

• There’s a new safeseq template filter which works just like safe for lists, marking each item in the list as
safe.

• Cache backends now support incr() and decr() commands to increment and decrement the value of a cache
key. On cache backends that support atomic increment/decrement – most notably, the memcached backend –
these operations will be atomic, and quite fast.

• Django now can easily delegate authentication to the Web server via a new authentication backend that supports
the standard REMOTE_USER environment variable used for this purpose.

• There’s a new django.shortcuts.redirect() function that makes it easier to issue redirects given an
object, a view name, or a URL.

• The postgresql_psycopg2 backend now supports native PostgreSQL autocommit. This is an advanced,
PostgreSQL-specific feature, that can make certain read-heavy applications a good deal faster.

The Django 1.1 roadmap

Before Django 1.1 goes final, at least one other preview/development release will be made available. The current
schedule consists of at least the following:

• Week of April 2, 2009: Django 1.1 release candidate. At this point all strings marked for translation must freeze
to allow translations to be submitted in advance of the final release.

• Week of April 13, 2009: Django 1.1 final.

If deemed necessary, additional beta or release candidate packages will be issued prior to the final 1.1 release.

What you can do to help

In order to provide a high-quality 1.1 release, we need your help. Although this beta release is, again, not intended for
production use, you can help the Django team by trying out the beta codebase in a safe test environment and reporting
any bugs or issues you encounter. The Django ticket tracker is the central place to search for open issues:

• http://code.djangoproject.com/timeline

Please open new tickets if no existing ticket corresponds to a problem you’re running into.

Additionally, discussion of Django development, including progress toward the 1.1 release, takes place daily on the
django-developers mailing list:

• http://groups.google.com/group/django-developers

... and in the #django-dev IRC channel on irc.freenode.net. If you’re interested in helping out with
Django’s development, feel free to join the discussions there.

Django’s online documentation also includes pointers on how to contribute to Django:

• How to contribute to Django

Contributions on any level – developing code, writing documentation or simply triaging tickets and helping to test
proposed bugfixes – are always welcome and appreciated.

Development sprints for Django 1.1 will also be taking place at PyCon US 2009, on the dedicated sprint days (March
30 through April 2), and anyone who wants to help out is welcome to join in, either in person at PyCon or virtually in
the IRC channel or on the mailing list.

868 Chapter 9. Release notes

http://code.djangoproject.com/timeline
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

9.2.6 Django 1.1 alpha 1 release notes

February 23, 2009

Welcome to Django 1.1 alpha 1!

This is the first in a series of preview/development releases leading up to the eventual release of Django 1.1, currently
scheduled to take place in April 2009. This release is primarily targeted at developers who are interested in trying out
new features and testing the Django codebase to help identify and resolve bugs prior to the final 1.1 release.

As such, this release is not intended for production use, and any such use is discouraged.

What’s new in Django 1.1 alpha 1

ORM improvements

Two major enhancements have been added to Django’s object-relational mapper (ORM):

Aggregate support It’s now possible to run SQL aggregate queries (i.e. COUNT(), MAX(), MIN(), etc.) from
within Django’s ORM. You can choose to either return the results of the aggregate directly, or else annotate the objects
in a QuerySet with the results of the aggregate query.

This feature is available as new QuerySet.aggregate()‘() and QuerySet.annotate()‘() methods, and
is covered in detail in the ORM aggregation documentation

Query expressions Queries can now refer to a another field on the query and can traverse relationships to refer to
fields on related models. This is implemented in the new F object; for full details, including examples, consult the
documentation for F expressions.

Performance improvements

Tests written using Django’s testing framework now run dramatically faster (as much as 10 times faster in many cases).

This was accomplished through the introduction of transaction-based tests: when using django.test.TestCase,
your tests will now be run in a transaction which is rolled back when finished, instead of by flushing and re-populating
the database. This results in an immense speedup for most types of unit tests. See the documentation for TestCase
and TransactionTestCase for a full description, and some important notes on database support.

Other improvements

Other new features and changes introduced since Django 1.0 include:

• The CSRF protection middleware has been split into two classes – CsrfViewMiddleware checks
incoming requests, and CsrfResponseMiddleware processes outgoing responses. The combined
CsrfMiddleware class (which does both) remains for backwards-compatibility, but using the split classes is
now recommended in order to allow fine-grained control of when and where the CSRF processing takes place.

• reverse() and code which uses it (e.g., the {% url %} template tag) now works with URLs in Django’s
administrative site, provided that the admin URLs are set up via include(admin.site.urls) (sending
admin requests to the admin.site.root view still works, but URLs in the admin will not be “reversible”
when configured this way).

• The include() function in Django URLconf modules can now accept sequences of URL patterns (generated
by patterns()) in addition to module names.

9.2. Development releases 869

Django Documentation, Release 1.2.7

• Instances of Django forms (see the forms overview) now have two additional methods, hidden_fields()
and visible_fields(), which return the list of hidden – i.e., <input type="hidden"> – and visible
fields on the form, respectively.

• The redirect_to generic view (see the generic views documentation) now accepts an additional keyword
argument permanent. If permanent is True, the view will emit an HTTP permanent redirect (status code
301). If False, the view will emit an HTTP temporary redirect (status code 302).

• A new database lookup type – week_day – has been added for DateField and DateTimeField. This
type of lookup accepts a number between 1 (Sunday) and 7 (Saturday), and returns objects where the field value
matches that day of the week. See the full list of lookup types for details.

• The {% for %} tag in Django’s template language now accepts an optional {% empty %} clause, to be
displayed when {% for %} is asked to loop over an empty sequence. See the list of built-in template tags for
examples of this.

The Django 1.1 roadmap

Before Django 1.1 goes final, several other preview/development releases will be made available. The current schedule
consists of at least the following:

• Week of March 20, 2009: Django 1.1 beta 1, at which point Django 1.1 will be in “feature freeze”: no new
features will be implemented for 1.1 past that point, and all new feature work will be deferred to Django 1.2.

• Week of April 2, 2009: Django 1.1 release candidate. At this point all strings marked for translation must freeze
to allow translations to be submitted in advance of the final release.

• Week of April 13, 2009: Django 1.1 final.

If deemed necessary, additional alpha, beta or release candidate packages will be issued prior to the final 1.1 release.

What you can do to help

In order to provide a high-quality 1.1 release, we need your help. Although this alpha release is, again, not intended
for production use, you can help the Django team by trying out the alpha codebase in a safe test environment and
reporting any bugs or issues you encounter. The Django ticket tracker is the central place to search for open issues:

• http://code.djangoproject.com/timeline

Please open new tickets if no existing ticket corresponds to a problem you’re running into.

Additionally, discussion of Django development, including progress toward the 1.1 release, takes place daily on the
django-developers mailing list:

• http://groups.google.com/group/django-developers

... and in the #django-dev IRC channel on irc.freenode.net. If you’re interested in helping out with
Django’s development, feel free to join the discussions there.

Django’s online documentation also includes pointers on how to contribute to Django:

• How to contribute to Django

Contributions on any level – developing code, writing documentation or simply triaging tickets and helping to test
proposed bugfixes – are always welcome and appreciated.

Development sprints for Django 1.1 will also be taking place at PyCon US 2009, on the dedicated sprint days (March
30 through April 2), and anyone who wants to help out is welcome to join in, either in person at PyCon or virtually in
the IRC channel or on the mailing list.

870 Chapter 9. Release notes

http://code.djangoproject.com/timeline
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

9.2.7 Django 1.0 beta 2 release notes

Welcome to Django 1.0 beta 2!

This is the fourth in a series of preview/development releases leading up to the eventual release of Django 1.0, currently
scheduled to take place in early September 2008. This releases is primarily targeted at developers who are interested
in testing the Django codebase and helping to identify and resolve bugs prior to the final 1.0 release.

As such, this release is not intended for production use, and any such use is discouraged.

What’s new in Django 1.0 beta 2

Django’s development trunk has been the site of nearly constant activity over the past year, with several major new
features landing since the 0.96 release. For features which were new as of Django 1.0 alpha 1, see the 1.0 alpha 1
release notes. For features which were new as of Django 1.0 alpha 2, see the 1.0 alpha 2 release notes. For features
which were new as of Django 1.0 beta 1, see the 1.0 beta 1 release notes.

This beta release includes two major features:

Refactored django.contrib.comments As part of a Google Summer of Code project, Thejaswi Puthraya car-
ried out a major rewrite and refactoring of Django’s bundled comment system, greatly increasing its flexibility
and customizability. Full documentation is available, as well as an upgrade guide if you were using the previous
incarnation of the comments application..

Refactored documentation Django’s bundled and online documentation has also been significantly refactored; the
new documentation system uses Sphinx to build the docs and handle such niceties as topical indexes, reference
documentation and cross-references within the docs. You can check out the new documentation online or, if you
have Sphinx installed, build the HTML yourself from the documentation files bundled with Django.

Along with these new features, the Django team has also been hard at work polishing Django’s codebase for the final
1.0 release; this beta release contains a large number of smaller improvements and bugfixes from the ongoing push to
1.0.

Also, as part of its ongoing deprecation process, Django’s old form-handling system has been removed; this means
django.oldforms no longer exists, and its various API hooks (such as automatic manipulators) are no longer
present in Django. This system has been completely replaced by the new form-handling system in django.forms.

The Django 1.0 roadmap

One of the primary goals of this beta release is to focus attention on the remaining features to be implemented for
Django 1.0, and on the bugs that need to be resolved before the final release. As of this beta release, Django is in
its final “feature freeze” for 1.0; feature requests will be deferred to later releases, and the development effort will be
focused solely on bug-fixing and stability. Django is also now in a “string freeze”; translatable strings (labels, error
messages, etc.) in Django’s codebase will not be changed prior to the release, in order to allow our translators to
produce the final 1.0 version of Django’s translation files.

Following this release, we’ll be conducting a final development sprint on August 30, 2008, based in London and
coordinated online; the goal of this sprint will be to squash as many bugs as possible in anticipation of the final 1.0
release, which is currently targeted for September 2, 2008. The official Django 1.0 release party will take place during
the first-ever DjangoCon, to be held in Mountain View, California, USA, September 6-7.

What you can do to help

In order to provide a high-quality 1.0 release, we need your help. Although this beta release is, again, not intended for
production use, you can help the Django team by trying out the beta codebase in a safe test environment and reporting
any bugs or issues you encounter. The Django ticket tracker is the central place to search for open issues:

9.2. Development releases 871

http://sphinx.pocoo.org/
http://docs.djangoproject.com/en/dev/

Django Documentation, Release 1.2.7

http://code.djangoproject.com/timeline

Please open new tickets if no existing ticket corresponds to a problem you’re running into.

Additionally, discussion of Django development, including progress toward the 1.0 release, takes place daily on the
django-developers mailing list:

http://groups.google.com/group/django-developers

...and in the #django-dev IRC channel on irc.freenode.net. If you’re interested in helping out with Django’s
development, feel free to join the discussions there.

Django’s online documentation also includes pointers on how to contribute to Django:

contributing to Django

Contributions on any level – developing code, writing documentation or simply triaging tickets and helping to test
proposed bugfixes – are always welcome and appreciated.

9.2.8 Django 1.0 beta 1 release notes

Welcome to Django 1.0 beta 1!

This is the third in a series of preview/development releases leading up to the eventual release of Django 1.0, currently
scheduled to take place in early September 2008. This releases is primarily targeted at developers who are interested
in testing the Django codebase and helping to identify and resolve bugs prior to the final 1.0 release.

As such, this release is not intended for production use, and any such use is discouraged.

What’s new in Django 1.0 beta 1

Django’s development trunk has been the site of nearly constant activity over the past year, with several major new
features landing since the 0.96 release. For features which were new as of Django 1.0 alpha 1, see the 1.0 alpha 1
release notes. For features which were new as of Django 1.0 alpha 2, see the 1.0 alpha 2 release notes.

This beta release does not contain any major new features, but does include several smaller updates and improvements
to Django:

Generic relations in forms and admin Classes are now included in django.contrib.contenttypes which
can be used to support generic relations in both the admin interface and in end-user forms. See the documentation
for generic relations for details.

Improved flexibility in the admin Following up on the refactoring of Django’s administrative interface
(django.contrib.admin), introduced in Django 1.0 alpha 1, two new hooks have been added to allow
customized pre- and post-save handling of model instances in the admin. Full details are in the admin documen-
tation.

INSERT/UPDATE distinction Although Django’s default behavior of having a model’s save() method automati-
cally determine whether to perform an INSERT or an UPDATE at the SQL level is suitable for the majority
of cases, there are occasional situations where forcing one or the other is useful. As a result, models can now
support an additional parameter to save() which can force a specific operation. Consult the database API
documentation for details and important notes about appropriate use of this parameter.

Split CacheMiddleware Django’s CacheMiddleware has been split into three classes: CacheMiddleware
itself still exists and retains all of its previous functionality, but it is now built from two separate middleware
classes which handle the two parts of caching (inserting into and reading from the cache) separately, offering
additional flexibility for situations where combining these functions into a single middleware posed problems.
Full details, including updated notes on appropriate use, are in the caching documentation.

872 Chapter 9. Release notes

http://code.djangoproject.com/timeline
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

Removal of deprecated features A number of features and methods which had previously been marked as depre-
cated, and which were scheduled for removal prior to the 1.0 release, are no longer present in Django. These
include imports of the form library from django.newforms (now located simply at django.forms),
the form_for_model and form_for_instance helper functions (which have been replaced by
ModelForm) and a number of deprecated features which were replaced by the dispatcher, file-uploading and
file-storage refactorings introduced in the Django 1.0 alpha releases. A full list of these and all other backwards-
incompatible changes is available on the Django wiki.

A number of other improvements and bugfixes have also been included: some tricky cases involving case-sensitivity
in differing MySQL collations have been resolved, Windows packaging and installation has been improved and the
method by which Django generates unique session identifiers has been made much more robust.

The Django 1.0 roadmap

One of the primary goals of this beta release is to focus attention on the remaining features to be implemented for
Django 1.0, and on the bugs that need to be resolved before the final release. Following this release, we’ll be conducting
a series of development sprints building up to the release-candidate stage, followed soon after by Django 1.0. The
timeline is projected to be:

• August 15, 2008: Sprint (based in Austin, Texas, USA, and online).

• August 17, 2008: Sprint (based in Tel Aviv, Israel, and online).

• August 21, 2008: Django 1.0 release candidate 1. At this point, all strings marked for translation within
Django’s codebase will be frozen, to provide contributors time to check and finalize all of Django’s bundled
translation files prior to the final 1.0 release.

• August 22, 2008: Sprint (based in Portland, Oregon, USA, and online).

• August 26, 2008: Django 1.0 release candidate 2.

• August 30, 2008: Sprint (based in London, England, UK, and online).

• September 2, 2008: Django 1.0 final release. The official Django 1.0 release party will take place during the
first-ever DjangoCon, to be held in Mountain View, California, USA, September 6-7.

Of course, like any estimated timeline, this is subject to change as requirements dictate. The latest information will
always be available on the Django project wiki:

http://code.djangoproject.com/wiki/VersionOneRoadmap

What you can do to help

In order to provide a high-quality 1.0 release, we need your help. Although this beta release is, again, not intended for
production use, you can help the Django team by trying out the beta codebase in a safe test environment and reporting
any bugs or issues you encounter. The Django ticket tracker is the central place to search for open issues:

http://code.djangoproject.com/timeline

Please open new tickets if no existing ticket corresponds to a problem you’re running into.

Additionally, discussion of Django development, including progress toward the 1.0 release, takes place daily on the
django-developers mailing list:

http://groups.google.com/group/django-developers

...and in the #django-dev IRC channel on irc.freenode.net. If you’re interested in helping out with Django’s
development, feel free to join the discussions there.

Django’s online documentation also includes pointers on how to contribute to Django:

9.2. Development releases 873

http://code.djangoproject.com/wiki/BackwardsIncompatibleChanges#Removedseveralmoredeprecatedfeaturesfor1.0
http://code.djangoproject.com/wiki/VersionOneRoadmap
http://code.djangoproject.com/timeline
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

contributing to Django

Contributions on any level – developing code, writing documentation or simply triaging tickets and helping to test
proposed bugfixes – are always welcome and appreciated.

9.2.9 Django 1.0 alpha 2 release notes

Welcome to Django 1.0 alpha 2!

This is the second in a series of preview/development releases leading up to the eventual release of Django 1.0,
currently scheduled to take place in early September 2008. This releases is primarily targeted at developers who are
interested in testing the Django codebase and helping to identify and resolve bugs prior to the final 1.0 release.

As such, this release is not intended for production use, and any such use is strongly discouraged.

What’s new in Django 1.0 alpha 2

Django’s development trunk has been the site of nearly constant activity over the past year, with several major new
features landing since the 0.96 release. For features which were new as of Django 1.0 alpha 1, see the 1.0 alpha 1
release notes. Since the 1.0 alpha 1 release several new features have landed, including:

django.contrib.gis (GeoDjango) A project over a year in the making, this adds world-class GIS (Geographic
Information Systems) support to Django, in the form of a contrib application. Its documentation is currently
being maintained externally, and will be merged into the main Django documentation prior to the final 1.0
release. Huge thanks go to Justin Bronn, Jeremy Dunck, Brett Hoerner and Travis Pinney for their efforts in
creating and completing this feature.

Pluggable file storage Django’s built-in FileField and ImageField now can take advantage of pluggable file-
storage backends, allowing extensive customization of where and how uploaded files get stored by Django.
For details, see the files documentation; big thanks go to Marty Alchin for putting in the hard work to get this
completed.

Jython compatibility Thanks to a lot of work from Leo Soto during a Google Summer of Code project, Django’s
codebase has been refactored to remove incompatibilities with Jython, an implementation of Python written in
Java, which runs Python code on the Java Virtual Machine. Django is now compatible with the forthcoming
Jython 2.5 release.

There are many other new features and improvements in this release, including two major performance boosts: strings
marked for translation using Django’s internationalization system now consume far less memory, and Django’s in-
ternal dispatcher – which is invoked frequently during request/response processing and when working with Django’s
object-relational mapper – is now significantly faster.

The Django 1.0 roadmap

One of the primary goals of this alpha release is to focus attention on the remaining features to be implemented
for Django 1.0, and on the bugs that need to be resolved before the final release. Following this release, we’ll be
conducting a series of development sprints building up to the beta and release-candidate stages, followed soon after by
Django 1.0. The timeline is projected to be:

• August 14, 2008: Django 1.0 beta release. Past this point Django will be in a “feature freeze” for the 1.0
release; after Django 1.0 beta, the development focus will be solely on bug fixes and stabilization.

• August 15, 2008: Sprint (based in Austin, Texas, USA, and online).

• August 17, 2008: Sprint (based in Tel Aviv, Israel, and online).

874 Chapter 9. Release notes

http://geodjango.org/
http://en.wikipedia.org/wiki/Geographic_information_system
http://en.wikipedia.org/wiki/Geographic_information_system
http://geodjango.org/docs/
http://www.jython.org/

Django Documentation, Release 1.2.7

• August 21, 2008: Django 1.0 release candidate 1. At this point, all strings marked for translation within
Django’s codebase will be frozen, to provide contributors time to check and finalize all of Django’s bundled
translation files prior to the final 1.0 release.

• August 22, 2008: Sprint (based in Portland, Oregon, USA, and online).

• August 26, 2008: Django 1.0 release candidate 2.

• August 30, 2008: Sprint (based in London, England, UK, and online).

• September 2, 2008: Django 1.0 final release. The official Django 1.0 release party will take place during the
first-ever DjangoCon, to be held in Mountain View, California, USA, September 6-7.

Of course, like any estimated timeline, this is subject to change as requirements dictate. The latest information will
always be available on the Django project wiki:

http://code.djangoproject.com/wiki/VersionOneRoadmap

What you can do to help

In order to provide a high-quality 1.0 release, we need your help. Although this alpha release is, again, not intended
for production use, you can help the Django team by trying out the alpha codebase in a safe test environment and
reporting any bugs or issues you encounter. The Django ticket tracker is the central place to search for open issues:

http://code.djangoproject.com/timeline

Please open new tickets if no existing ticket corresponds to a problem you’re running into.

Additionally, discussion of Django development, including progress toward the 1.0 release, takes place daily on the
django-developers mailing list:

http://groups.google.com/group/django-developers

...and in the #django-dev IRC channel on irc.freenode.net. If you’re interested in helping out with Django’s
development, feel free to join the discussions there.

Django’s online documentation also includes pointers on how to contribute to Django:

contributing to Django

Contributions on any level – developing code, writing documentation or simply triaging tickets and helping to test
proposed bugfixes – are always welcome and appreciated.

9.2.10 Django 1.0 alpha release notes

Welcome to Django 1.0 alpha!

This is the first in a series of preview/development releases leading up to the eventual release of Django 1.0, currently
scheduled to take place in early September 2008. This release is primarily targeted at developers who are interested in
testing the Django codebase and helping to identify and resolve bugs prior to the final 1.0 release.

As such, this release is not intended for production use, and any such use is strongly discouraged.

What’s new in Django 1.0 alpha

Django’s development trunk has been the site of nearly constant activity over the past year, with several major new
features landing since the 0.96 release. Some of the highlights include:

9.2. Development releases 875

http://code.djangoproject.com/wiki/VersionOneRoadmap
http://code.djangoproject.com/timeline
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

Refactored admin application (newforms-admin) The Django administrative interface
(django.contrib.admin) has been completely refactored; admin definitions are now completely
decoupled from model definitions (no more class Admin declaration in models!), rewritten to use Django’s
new form-handling library (introduced in the 0.96 release as django.newforms, and now available as
simply django.forms) and redesigned with extensibility and customization in mind. Full documentation
for the admin application is available online in the official Django documentation:

admin reference

Improved Unicode handling Django’s internals have been refactored to use Unicode throughout; this drastically
simplifies the task of dealing with non-Western-European content and data in Django. Additionally, utility
functions have been provided to ease interoperability with third-party libraries and systems which may or may
not handle Unicode gracefully. Details are available in Django’s Unicode-handling documentation:

unicode reference

An improved Django ORM Django’s object-relational mapper – the component which provides the mapping be-
tween Django model classes and your database, and which mediates your database queries – has been dra-
matically improved by a massive refactoring. For most users of Django this is backwards-compatible; the
public-facing API for database querying underwent a few minor changes, but most of the updates took place in
the ORM’s internals. A guide to the changes, including backwards-incompatible modifications and mentions of
new features opened up by this refactoring, is available on the Django wiki:

http://code.djangoproject.com/wiki/QuerysetRefactorBranch

Automatic escaping of template variables To provide improved security against cross-site scripting (XSS) vulnera-
bilities, Django’s template system now automatically escapes the output of variables. This behavior is config-
urable, and allows both variables and larger template constructs to be marked as safe (requiring no escaping) or
unsafe (requiring escaping). A full guide to this feature is in the documentation for the autoescape tag.

There are many more new features, many bugfixes and many enhancements to existing features from previous re-
leases. The newforms library, for example, has undergone massive improvements including several useful add-
ons in django.contrib which complement and build on Django’s form-handling capabilities, and Django’s file-
uploading handlers have been refactored to allow finer-grained control over the uploading process as well as streaming
uploads of large files.

Along with these improvements and additions, we’ve made a number of of backwards-incompatible changes to the
framework, as features have been fleshed out and APIs have been finalized for the 1.0 release. A complete guide
to these changes will be available as part of the final Django 1.0 release, and a comprehensive list of backwards-
incompatible changes is also available on the Django wiki for those who want to begin developing and testing their
upgrade process:

http://code.djangoproject.com/wiki/BackwardsIncompatibleChanges

The Django 1.0 roadmap

One of the primary goals of this alpha release is to focus attention on the remaining features to be implemented
for Django 1.0, and on the bugs that need to be resolved before the final release. Following this release, we’ll be
conducting a series of sprints building up to a series of beta releases and a release-candidate stage, followed soon after
by Django 1.0. The timeline is projected to be:

• August 1, 2008: Sprint (based in Washington, DC, and online).

• August 5, 2008: Django 1.0 beta 1 release. This will also constitute the feature freeze for 1.0. Any feature to be
included in 1.0 must be completed and in trunk by this time.

• August 8, 2008: Sprint (based in Lawrence, KS, and online).

• August 12, 2008: Django 1.0 beta 2 release.

876 Chapter 9. Release notes

http://code.djangoproject.com/wiki/QuerysetRefactorBranch
http://code.djangoproject.com/wiki/BackwardsIncompatibleChanges

Django Documentation, Release 1.2.7

• August 15, 2008: Sprint (based in Austin, TX, and online).

• August 19, 2008: Django 1.0 release candidate 1.

• August 22, 2008: Sprint (based in Portland, OR, and online).

• August 26, 2008: Django 1.0 release candidate 2.

• September 2, 2008: Django 1.0 final release. The official Django 1.0 release party will take place during the
first-ever DjangoCon, to be held in Mountain View, CA, September 6-7.

Of course, like any estimated timeline, this is subject to change as requirements dictate. The latest information will
always be available on the Django project wiki:

http://code.djangoproject.com/wiki/VersionOneRoadmap

What you can do to help

In order to provide a high-quality 1.0 release, we need your help. Although this alpha release is, again, not intended
for production use, you can help the Django team by trying out the alpha codebase in a safe test environment and
reporting any bugs or issues you encounter. The Django ticket tracker is the central place to search for open issues:

http://code.djangoproject.com/timeline

Please open new tickets if no existing ticket corresponds to a problem you’re running into.

Additionally, discussion of Django development, including progress toward the 1.0 release, takes place daily on the
django-developers mailing list:

http://groups.google.com/group/django-developers

...and in the #django-dev IRC channel on irc.freenode.net. If you’re interested in helping out with Django’s
development, feel free to join the discussions there.

Django’s online documentation also includes pointers on how to contribute to Django:

contributing to Django

Contributions on any level – developing code, writing documentation or simply triaging tickets and helping to test
proposed bugfixes – are always welcome and appreciated.

9.2. Development releases 877

http://code.djangoproject.com/wiki/VersionOneRoadmap
http://code.djangoproject.com/timeline
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

878 Chapter 9. Release notes

CHAPTER

TEN

DJANGO INTERNALS

Documentation for people hacking on Django itself. This is the place to go if you’d like to help improve Django, learn
or learn about how Django works “under the hood”.

Warning: Elsewhere in the Django documentation, coverage of a feature is a sort of a contract: once an API is in
the official documentation, we consider it “stable” and don’t change it without a good reason. APIs covered here,
however, are considered “internal-only”: we reserve the right to change these internals if we must.

10.1 Contributing to Django

If you think working with Django is fun, wait until you start working on it. We’re passionate about helping Django
users make the jump to contributing members of the community, so there are many ways you can help Django’s
development:

• Blog about Django. We syndicate all the Django blogs we know about on the community page; contact ja-
cob@jacobian.org if you’ve got a blog you’d like to see on that page.

• Report bugs and request features in our ticket tracker. Please read Reporting bugs, below, for the details on how
we like our bug reports served up.

• Submit patches for new and/or fixed behavior. Please read Submitting patches, below, for details on how to
submit a patch. If you’re looking for an easy way to start contributing to Django have a look at the easy-pickings
tickets.

• Join the django-developers mailing list and share your ideas for how to improve Django. We’re always open to
suggestions, although we’re likely to be skeptical of large-scale suggestions without some code to back it up.

• Triage patches that have been submitted by other users. Please read Ticket triage below, for details on the triage
process.

That’s all you need to know if you’d like to join the Django development community. The rest of this document
describes the details of how our community works and how it handles bugs, mailing lists, and all the other minutiae of
Django development.

10.1.1 Reporting bugs

Well-written bug reports are incredibly helpful. However, there’s a certain amount of overhead involved in working
with any bug tracking system, so your help in keeping our ticket tracker as useful as possible is appreciated. In
particular:

• Do read the FAQ to see if your issue might be a well-known question.

879

http://www.djangoproject.com/community/
mailto:jacob@jacobian.org
mailto:jacob@jacobian.org
http://code.djangoproject.com/newticket
http://code.djangoproject.com/query?status=new&status=assigned&status=reopened&keywords=~easy-pickings&order=priority
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

• Do search the tracker to see if your issue has already been filed.

• Do ask on django-users first if you’re not sure if what you’re seeing is a bug.

• Do write complete, reproducible, specific bug reports. Include as much information as you possibly can, com-
plete with code snippets, test cases, etc. This means including a clear, concise description of the problem, and a
clear set of instructions for replicating the problem. A minimal example that illustrates the bug in a nice small
test case is the best possible bug report.

• Don’t use the ticket system to ask support questions. Use the django-users list, or the #django IRC channel for
that.

• Don’t use the ticket system to make large-scale feature requests. We like to discuss any big changes to Django’s
core on the django-developers list before actually working on them.

• Don’t reopen issues that have been marked “wontfix”. This mark means that the decision has been made that
we can’t or won’t fix this particular issue. If you’re not sure why, please ask on django-developers.

• Don’t use the ticket tracker for lengthy discussions, because they’re likely to get lost. If a particular ticket is
controversial, please move discussion to django-developers.

• Don’t post to django-developers just to announce that you have filed a bug report. All the tickets are mailed to
another list (django-updates), which is tracked by developers and triagers, so we see them as they are filed.

10.1.2 Reporting security issues

Report security issues to security@djangoproject.com. This is a private list only open to long-time, highly trusted
Django developers, and its archives are not publicly readable.

In the event of a confirmed vulnerability in Django itself, we will take the following actions:

• Acknowledge to the reporter that we’ve received the report and that a fix is forthcoming. We’ll give a rough
timeline and ask the reporter to keep the issue confidential until we announce it.

• Halt all other development as long as is needed to develop a fix, including patches against the current and two
previous releases.

• Determine a go-public date for announcing the vulnerability and the fix. To try to mitigate a possible “arms race”
between those applying the patch and those trying to exploit the hole, we will not announce security problems
immediately.

• Pre-notify everyone we know to be running the affected version(s) of Django. We will send these notifications
through private e-mail which will include documentation of the vulnerability, links to the relevant patch(es), and
a request to keep the vulnerability confidential until the official go-public date.

• Publicly announce the vulnerability and the fix on the pre-determined go-public date. This will probably mean
a new release of Django, but in some cases it may simply be patches against current releases.

10.1.3 Submitting patches

We’re always grateful for patches to Django’s code. Indeed, bug reports with associated patches will get fixed far
more quickly than those without patches.

“Claiming” tickets

In an open-source project with hundreds of contributors around the world, it’s important to manage communication
efficiently so that work doesn’t get duplicated and contributors can be as effective as possible. Hence, our policy is for

880 Chapter 10. Django internals

http://code.djangoproject.com/search
http://groups.google.com/group/django-users
http://groups.google.com/group/django-users
http://groups.google.com/group/django-developers
http://groups.google.com/group/django-developers
http://groups.google.com/group/django-developers
http://groups.google.com/group/django-updates
mailto:security@djangoproject.com

Django Documentation, Release 1.2.7

contributors to “claim” tickets in order to let other developers know that a particular bug or feature is being worked
on.

If you have identified a contribution you want to make and you’re capable of fixing it (as measured by your coding
ability, knowledge of Django internals and time availability), claim it by following these steps:

• Create an account to use in our ticket system.

• If a ticket for this issue doesn’t exist yet, create one in our ticket tracker.

• If a ticket for this issue already exists, make sure nobody else has claimed it. To do this, look at the “Assigned
to” section of the ticket. If it’s assigned to “nobody,” then it’s available to be claimed. Otherwise, somebody else
is working on this ticket, and you either find another bug/feature to work on, or contact the developer working
on the ticket to offer your help.

• Log into your account, if you haven’t already, by clicking “Login” in the upper right of the ticket page.

• Claim the ticket by clicking the radio button next to “Accept ticket” near the bottom of the page, then clicking
“Submit changes.”

If you have an account but have forgotten your password, you can reset it using the password reset page.

Ticket claimers’ responsibility

Once you’ve claimed a ticket, you have a responsibility to work on that ticket in a reasonably timely fashion. If you
don’t have time to work on it, either unclaim it or don’t claim it in the first place!

If there’s no sign of progress on a particular claimed ticket for a week or two, another developer may ask you to
relinquish the ticket claim so that it’s no longer monopolized and somebody else can claim it.

If you’ve claimed a ticket and it’s taking a long time (days or weeks) to code, keep everybody updated by posting
comments on the ticket. If you don’t provide regular updates, and you don’t respond to a request for a progress report,
your claim on the ticket may be revoked. As always, more communication is better than less communication!

Which tickets should be claimed?

Of course, going through the steps of claiming tickets is overkill in some cases. In the case of small changes, such as
typos in the documentation or small bugs that will only take a few minutes to fix, you don’t need to jump through the
hoops of claiming tickets. Just submit your patch and be done with it.

Patch style

• Make sure your code matches our coding style.

• Submit patches in the format returned by the svn diff command. An exception is for code changes that are
described more clearly in plain English than in code. Indentation is the most common example; it’s hard to read
patches when the only difference in code is that it’s indented.

Patches in git diff format are also acceptable.

• When creating patches, always run svn diff from the top-level trunk directory – i.e., the one that contains
django, docs, tests, AUTHORS, etc. This makes it easy for other people to apply your patches.

• Attach patches to a ticket in the ticket tracker, using the “attach file” button. Please don’t put the patch in the
ticket description or comment unless it’s a single line patch.

• Name the patch file with a .diff extension; this will let the ticket tracker apply correct syntax highlighting,
which is quite helpful.

10.1. Contributing to Django 881

http://www.djangoproject.com/accounts/register/
http://code.djangoproject.com/newticket
http://www.djangoproject.com/accounts/password/reset/
http://code.djangoproject.com/newticket

Django Documentation, Release 1.2.7

• Check the “Has patch” box on the ticket details. This will make it obvious that the ticket includes a patch, and
it will add the ticket to the list of tickets with patches.

• The code required to fix a problem or add a feature is an essential part of a patch, but it is not the only part.
A good patch should also include a regression test to validate the behavior that has been fixed (and prevent the
problem from arising again).

• If the code associated with a patch adds a new feature, or modifies behavior of an existing feature, the patch
should also contain documentation.

Non-trivial patches

A “non-trivial” patch is one that is more than a simple bug fix. It’s a patch that introduces Django functionality and
makes some sort of design decision.

If you provide a non-trivial patch, include evidence that alternatives have been discussed on django-developers. If
you’re not sure whether your patch should be considered non-trivial, just ask.

10.1.4 Ticket triage

Unfortunately, not all bug reports in the ticket tracker provide all the required details. A number of tickets have patches,
but those patches don’t meet all the requirements of a good patch.

One way to help out is to triage bugs that have been reported by other users. The core team–as well as many community
members–work on this regularly, but more help is always appreciated.

Most of the workflow is based around the concept of a ticket’s “triage stage”. This stage describes where in its lifetime
a given ticket is at any time. Along with a handful of flags, this field easily tells us what and who each ticket is waiting
on.

Since a picture is worth a thousand words, let’s start there:

882 Chapter 10. Django internals

http://code.djangoproject.com/query?status=new&status=assigned&status=reopened&has_patch=1&order=priority
http://groups.google.com/group/django-developers
http://code.djangoproject.com/newticket

Django Documentation, Release 1.2.7

We’ve got two roles in this diagram:

• Core developers: people with commit access who are responsible for making the big decisions, writing large
portions of the code and integrating the contributions of the community.

• Ticket triagers: anyone in the Django community who chooses to become involved in Django’s development
process. Our Trac installation is intentionally left open to the public, and anyone can triage tickets. Django is a
community project, and we encourage triage by the community.

Triage stages

Second, note the five triage stages:

1. A ticket starts as Unreviewed, meaning that nobody has examined the ticket.

2. Design decision needed means “this concept requires a design decision,” which should be discussed either in
the ticket comments or on django-developers. The “Design decision needed” step will generally only be used
for feature requests. It can also be used for issues that might be bugs, depending on opinion or interpretation.
Obvious bugs (such as crashes, incorrect query results, or non-compliance with a standard) skip this step and
move straight to “Accepted”.

3. Once a ticket is ruled to be approved for fixing, it’s moved into the Accepted stage. This stage is where all the
real work gets done.

4. In some cases, a ticket might get moved to the Someday/Maybe state. This means the ticket is an enhancement
request that we might consider adding to the framework if an excellent patch is submitted. These tickets are not

10.1. Contributing to Django 883

http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

a high priority.

5. If a ticket has an associated patch (see below), it will be reviewed by the community. If the patch is complete,
it’ll be marked as Ready for checkin so that a core developer knows to review and commit the patch.

The second part of this workflow involves a set of flags the describe what the ticket has or needs in order to be “ready
for checkin”:

“Has patch” This means the ticket has an associated patch. These will be reviewed to see if the patch is “good”.

“Needs documentation” This flag is used for tickets with patches that need associated documentation. Complete
documentation of features is a prerequisite before we can check them into the codebase.

“Needs tests” This flags the patch as needing associated unit tests. Again, this is a required part of a valid patch.

“Patch needs improvement” This flag means that although the ticket has a patch, it’s not quite ready for checkin.
This could mean the patch no longer applies cleanly, there is a flaw in the implementation, or that the code
doesn’t meet our standards.

See Also:

The contributing howto guide has a detailed explanation of each of the triage stages and how the triage process works
in Trac.

Ticket Resolutions

A ticket can be resolved in a number of ways:

“fixed” Used by the core developers once a patch has been rolled into Django and the issue is fixed.

“invalid” Used if the ticket is found to be incorrect. This means that the issue in the ticket is actually the result of a
user error, or describes a problem with something other than Django, or isn’t a bug report or feature request at
all (for example, some new users submit support queries as tickets).

“wontfix” Used when a core developer decides that this request is not appropriate for consideration in Django. This
is usually chosen after discussion in the django-developers mailing list. Feel free to start or join in
discussions of “wontfix” tickets on the mailing list, but please do not reopen tickets closed as “wontfix” by core
developers.

“duplicate” Used when another ticket covers the same issue. By closing duplicate tickets, we keep all the discussion
in one place, which helps everyone.

“worksforme” Used when the ticket doesn’t contain enough detail to replicate the original bug.

“needsinfo” Used when the ticket does not contain enough information to replicate the reported issue but is potentially
still valid. The ticket should be reopened when more information is supplied.

If you believe that the ticket was closed in error – because you’re still having the issue, or it’s popped up somewhere
else, or the triagers have made a mistake – please reopen the ticket and provide further information. Please do not
reopen tickets that have been marked as “wontfix” by core developers.

See Also:

For more information on what to do when closing a ticket, please see the contributing howto guide.

Triage by the general community

Although the core developers make the big decisions in the ticket triage process, there’s a lot that general community
members can do to help the triage process. In particular, you can help out by:

• Closing “Unreviewed” tickets as “invalid”, “worksforme” or “duplicate.”

884 Chapter 10. Django internals

Django Documentation, Release 1.2.7

• Promoting “Unreviewed” tickets to “Design decision needed” if a design decision needs to be made, or “Ac-
cepted” in case of obvious bugs.

• Correcting the “Needs tests”, “Needs documentation”, or “Has patch” flags for tickets where they are incorrectly
set.

• Adding the easy-pickings keyword to tickets that are small and relatively straightforward.

• Checking that old tickets are still valid. If a ticket hasn’t seen any activity in a long time, it’s possible that the
problem has been fixed but the ticket hasn’t yet been closed.

• Contacting the owners of tickets that have been claimed but have not seen any recent activity. If the owner
doesn’t respond after a week or so, remove the owner’s claim on the ticket.

• Identifying trends and themes in the tickets. If there a lot of bug reports about a particular part of Django, it
may indicate we should consider refactoring that part of the code. If a trend is emerging, you should raise it for
discussion (referencing the relevant tickets) on django-developers.

However, we do ask the following of all general community members working in the ticket database:

• Please don’t close tickets as “wontfix.” The core developers will make the final determination of the fate of a
ticket, usually after consultation with the community.

• Please don’t promote your own tickets to “Ready for checkin”. You may mark other people’s tickets which
you’ve reviewed as “Ready for checkin”, but you should get at minimum one other community member to
review a patch that you submit.

• Please don’t reverse a decision that has been made by a core developer. If you disagree with a decision that has
been made, please post a message to django-developers.

• If you’re unsure if you should be making a change, don’t make the change but instead leave a comment with
your concerns on the ticket, or post a message to django-developers. It’s okay to be unsure, but your input is
still valuable.

10.1.5 Submitting and maintaining translations

Various parts of Django, such as the admin site and validation error messages, are internationalized. This means
they display different text depending on a user’s language setting. For this, Django uses the same internationalization
infrastructure available to Django applications described in the i18n documentation.

These translations are contributed by Django users worldwide. If you find an incorrect translation, or if you’d like to
add a language that isn’t yet translated, here’s what to do:

• Join the Django i18n mailing list and introduce yourself.

• Make sure you read the notes about Specialties of Django translation.

• Create translations using the methods described in the localization documentation. For this you will use
the django-admin.py makemessages tool. In this particular case it should be run from the top-level
django directory of the Django source tree.

The script runs over the entire Django source tree and pulls out all strings marked for translation. It cre-
ates (or updates) a message file in the directory conf/locale (for example for pt_BR, the file will be
conf/locale/pt_BR/LC_MESSAGES/django.po).

• Make sure that django-admin.py compilemessages -l <lang> runs without producing any warn-
ings.

• Repeat the last two steps for the djangojs domain (by appending the -d djangojs command line option
to the django-admin.py invocations).

10.1. Contributing to Django 885

http://code.djangoproject.com/query?status=new&status=assigned&status=reopened&keywords=~easy-pickings&order=priority
http://groups.google.com/group/django-developers
http://groups.google.com/group/django-developers
http://groups.google.com/group/django-developers
http://groups.google.com/group/django-i18n/

Django Documentation, Release 1.2.7

• Optionally, review and update the conf/locale/<locale>/formats.py file to describe the date, time
and numbers formatting particularities of your locale. See Format localization for details.

• Create a diff against the current Subversion trunk.

• Open a ticket in Django’s ticket system, set its Component field to Translations, and attach the patch to
it.

10.1.6 Submitting javascript patches

New in version 1.2: Please, see the release notes Django’s admin system leverages the jQuery framework to increase
the capabilities of the admin interface. In conjunction, there is an emphasis on admin javascript performance and
minimizing overall admin media file size. Serving compressed or “minified” versions of javascript files is considered
best practice in this regard.

To that end, patches for javascript files should include both the original code for future development (e.g. “foo.js”),
and a compressed version for production use (e.g. “foo.min.js”). Any links to the file in the codebase should point to
the compressed version.

To simplify the process of providing optimized javascript code, Django includes a handy script which should be used
to create a “minified” version. This script is located at /contrib/admin/media/js/compress.py.

Behind the scenes, compress.py is a front-end for Google’s Closure Compiler which is written in Java. However,
the Closure Compiler library is not bundled with Django directly, so those wishing to contribute complete javascript
patches will need to download and install the library independently.

The Closure Compiler library requires Java version 6 or higher (Java 1.6 or higher on Mac OS X). Note that Mac OS
X 10.5 and earlier did not ship with Java 1.6 by default, so it may be necessary to upgrade your Java installation before
the tool will be functional. Also note that even after upgrading Java, the default /usr/bin/java command may remain
linked to the previous Java binary, so relinking that command may be necessary as well.

Please don’t forget to run compress.py and include the diff of the minified scripts when submitting patches for
Django’s javascript.

10.1.7 Django conventions

Various Django-specific code issues are detailed in this section.

Use of django.conf.settings

Modules should not in general use settings stored in django.conf.settings at the top level (i.e. evaluated when
the module is imported). The explanation for this is as follows:

Manual configuration of settings (i.e. not relying on the DJANGO_SETTINGS_MODULE environment variable) is
allowed and possible as follows:

from django.conf import settings

settings.configure({}, SOME_SETTING=’foo’)

However, if any setting is accessed before the settings.configure line, this will not work. (Internally,
settings is a LazyObject which configures itself automatically when the settings are accessed if it has not
already been configured).

So, if there is a module containing some code as follows:

886 Chapter 10. Django internals

http://code.google.com/closure/compiler/

Django Documentation, Release 1.2.7

from django.conf import settings
from django.core.urlresolvers import get_callable

default_foo_view = get_callable(settings.FOO_VIEW)

...then importing this module will cause the settings object to be configured. That means that the ability for third
parties to import the module at the top level is incompatible with the ability to configure the settings object manually,
or makes it very difficult in some circumstances.

Instead of the above code, a level of laziness or indirection must be used, such as
django.utils.functional.LazyObject, django.utils.functional.lazy() or lambda.

10.1.8 Coding style

Please follow these coding standards when writing code for inclusion in Django:

• Unless otherwise specified, follow PEP 8.

You could use a tool like pep8.py to check for some problems in this area, but remember that PEP 8 is only a
guide, so respect the style of the surrounding code as a primary goal.

• Use four spaces for indentation.

• Use underscores, not camelCase, for variable, function and method names (i.e.
poll.get_unique_voters(), not poll.getUniqueVoters).

• Use InitialCaps for class names (or for factory functions that return classes).

• Mark all strings for internationalization; see the i18n documentation for details.

• In docstrings, use “action words” such as:

def foo():
"""
Calculates something and returns the result.
"""
pass

Here’s an example of what not to do:

def foo():
"""
Calculate something and return the result.
"""
pass

• Please don’t put your name in the code you contribute. Our policy is to keep contributors’ names in the
AUTHORS file distributed with Django – not scattered throughout the codebase itself. Feel free to include a
change to the AUTHORS file in your patch if you make more than a single trivial change.

Template style

• In Django template code, put one (and only one) space between the curly brackets and the tag contents.

Do this:

{{ foo }}

Don’t do this:

10.1. Contributing to Django 887

http://www.python.org/dev/peps/pep-0008
http://pypi.python.org/pypi/pep8/

Django Documentation, Release 1.2.7

{{foo}}

View style

• In Django views, the first parameter in a view function should be called request.

Do this:

def my_view(request, foo):
...

Don’t do this:

def my_view(req, foo):
...

Model style

• Field names should be all lowercase, using underscores instead of camelCase.

Do this:

class Person(models.Model):
first_name = models.CharField(max_length=20)
last_name = models.CharField(max_length=40)

Don’t do this:

class Person(models.Model):
FirstName = models.CharField(max_length=20)
Last_Name = models.CharField(max_length=40)

• The class Meta should appear after the fields are defined, with a single blank line separating the fields and
the class definition.

Do this:

class Person(models.Model):
first_name = models.CharField(max_length=20)
last_name = models.CharField(max_length=40)

class Meta:
verbose_name_plural = ’people’

Don’t do this:

class Person(models.Model):
first_name = models.CharField(max_length=20)
last_name = models.CharField(max_length=40)
class Meta:

verbose_name_plural = ’people’

Don’t do this, either:

class Person(models.Model):
class Meta:

verbose_name_plural = ’people’

888 Chapter 10. Django internals

Django Documentation, Release 1.2.7

first_name = models.CharField(max_length=20)
last_name = models.CharField(max_length=40)

• The order of model inner classes and standard methods should be as follows (noting that these are not all
required):

– All database fields

– Custom manager attributes

– class Meta

– def __unicode__()

– def __str__()

– def save()

– def get_absolute_url()

– Any custom methods

• If choices is defined for a given model field, define the choices as a tuple of tuples, with an all-uppercase
name, either near the top of the model module or just above the model class. Example:

GENDER_CHOICES = (
(’M’, ’Male’),
(’F’, ’Female’),

)

10.1.9 Documentation style

We place a high importance on consistency and readability of documentation. (After all, Django was created in a
journalism environment!)

How to document new features

We treat our documentation like we treat our code: we aim to improve it as often as possible. This section explains
how writers can craft their documentation changes in the most useful and least error-prone ways.

Documentation changes come in two forms:

• General improvements – Typo corrections, error fixes and better explanations through clearer writing and more
examples.

• New features – Documentation of features that have been added to the framework since the last release.

Our policy is:

All documentation of new features should be written in a way that clearly designates the features
are only available in the Django development version. Assume documentation readers are using the
latest release, not the development version.

Our preferred way for marking new features is by prefacing the features’ documentation with: ”.. versionadded::
X.Y”, followed by an optional one line comment and a mandatory blank line.

General improvements, or other changes to the APIs that should be emphasized should use the ”.. versionchanged::
X.Y” directive (with the same format as the versionadded mentioned above.

There’s a full page of information about the Django documentation system that you should read prior to working on
the documentation.

10.1. Contributing to Django 889

Django Documentation, Release 1.2.7

Guidelines for reST files

These guidelines regulate the format of our reST documentation:

• In section titles, capitalize only initial words and proper nouns.

• Wrap the documentation at 80 characters wide, unless a code example is significantly less readable when split
over two lines, or for another good reason.

Commonly used terms

Here are some style guidelines on commonly used terms throughout the documentation:

• Django – when referring to the framework, capitalize Django. It is lowercase only in Python code and in the
djangoproject.com logo.

• e-mail – it has a hyphen.

• MySQL

• PostgreSQL

• Python – when referring to the language, capitalize Python.

• realize, customize, initialize, etc. – use the American “ize” suffix, not “ise.”

• SQLite

• subclass – it’s a single word without a hyphen, both as a verb (“subclass that model”) and as a noun (“create a
subclass”).

• Web, World Wide Web, the Web – note Web is always capitalized when referring to the World Wide Web.

• Web site – use two words, with Web capitalized.

Django-specific terminology

• model – it’s not capitalized.

• template – it’s not capitalized.

• URLconf – use three capitalized letters, with no space before “conf.”

• view – it’s not capitalized.

10.1.10 Committing code

Please follow these guidelines when committing code to Django’s Subversion repository:

• For any medium-to-big changes, where “medium-to-big” is according to your judgment, please bring things up
on the django-developers mailing list before making the change.

If you bring something up on django-developers and nobody responds, please don’t take that to mean your idea
is great and should be implemented immediately because nobody contested it. Django’s lead developers don’t
have a lot of time to read mailing-list discussions immediately, so you may have to wait a couple of days before
getting a response.

• Write detailed commit messages in the past tense, not present tense.

– Good: “Fixed Unicode bug in RSS API.”

– Bad: “Fixes Unicode bug in RSS API.”

890 Chapter 10. Django internals

http://groups.google.com/group/django-developers
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

– Bad: “Fixing Unicode bug in RSS API.”

• For commits to a branch, prefix the commit message with the branch name. For example: “magic-removal:
Added support for mind reading.”

• Limit commits to the most granular change that makes sense. This means, use frequent small commits rather
than infrequent large commits. For example, if implementing feature X requires a small change to library Y, first
commit the change to library Y, then commit feature X in a separate commit. This goes a long way in helping
all core Django developers follow your changes.

• Separate bug fixes from feature changes.

Bug fixes need to be added to the current bugfix branch (e.g. the 1.0.X branch) as well as the current trunk.

• If your commit closes a ticket in the Django ticket tracker, begin your commit message with the text “Fixed
#abc”, where “abc” is the number of the ticket your commit fixes. Example: “Fixed #123 – Added support for
foo”. We’ve rigged Subversion and Trac so that any commit message in that format will automatically close the
referenced ticket and post a comment to it with the full commit message.

If your commit closes a ticket and is in a branch, use the branch name first, then the “Fixed #abc.” For example:
“magic-removal: Fixed #123 – Added whizbang feature.”

For the curious: We’re using a Trac post-commit hook for this.

• If your commit references a ticket in the Django ticket tracker but does not close the ticket, include the phrase
“Refs #abc”, where “abc” is the number of the ticket your commit references. We’ve rigged Subversion and
Trac so that any commit message in that format will automatically post a comment to the appropriate ticket.

Reverting commits

Nobody’s perfect; mistakes will be committed. When a mistaken commit is discovered, please follow these guidelines:

• Try very hard to ensure that mistakes don’t happen. Just because we have a reversion policy doesn’t relax your
responsibility to aim for the highest quality possible. Really: double-check your work before you commit it in
the first place!

• If possible, have the original author revert his/her own commit.

• Don’t revert another author’s changes without permission from the original author.

• If the original author can’t be reached (within a reasonable amount of time – a day or so) and the problem is
severe – crashing bug, major test failures, etc – then ask for objections on django-dev then revert if there are
none.

• If the problem is small (a feature commit after feature freeze, say), wait it out.

• If there’s a disagreement between the committer and the reverter-to-be then try to work it out on the django-
developers mailing list. If an agreement can’t be reached then it should be put to a vote.

• If the commit introduced a confirmed, disclosed security vulnerability then the commit may be reverted imme-
diately without permission from anyone.

• The release branch maintainer may back out commits to the release branch without permission if the commit
breaks the release branch.

10.1.11 Unit tests

Django comes with a test suite of its own, in the tests directory of the Django tarball. It’s our policy to make sure
all tests pass at all times.

The tests cover:

10.1. Contributing to Django 891

http://code.djangoproject.com/newticket
http://trac.edgewall.org/browser/trunk/contrib/trac-post-commit-hook
http://code.djangoproject.com/newticket
http://groups.google.com/group/django-developers
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

• Models and the database API (tests/modeltests/).

• Everything else in core Django code (tests/regressiontests)

• Contrib apps (django/contrib/<contribapp>/tests, see below)

We appreciate any and all contributions to the test suite!

The Django tests all use the testing infrastructure that ships with Django for testing applications. See Testing Django
applications for an explanation of how to write new tests.

Running the unit tests

Quickstart

Running the tests requires a Django settings module that defines the databases to use. To make it easy to get started.
Django provides a sample settings module that uses the SQLite database. To run the tests with this sample settings
module, cd into the Django tests/ directory and run:

./runtests.py --settings=test_sqlite

If you get an ImportError: No module named django.contrib error, you need to add your install of
Django to your PYTHONPATH. For more details on how to do this, read Pointing Python at the new Django version
below.

Using another settings module

The included settings module allows you to run the test suite using SQLite. If you want to test behavior using a
different database (and if you’re proposing patches for Django, it’s a good idea to test across databases), you may need
to define your own settings file.

To run the tests with different settings, cd to the tests/ directory and type:

./runtests.py --settings=path.to.django.settings

The DATABASES setting in this test settings module needs to define two databases:

• A default database. This database should use the backend that you want to use for primary testing

• A database with the alias other. The other database is used to establish that queries can be directed to
different databases. As a result, this database can use any backend you want. It doesn’t need to use the same
backend as the default database (although it can use the same backend if you want to).

If you’re using a backend that isn’t SQLite, you will need to provide other details for each database:

• The USER option for each of your databases needs to specify an existing user account for the database.

• The PASSWORD option needs to provide the password for the USER that has been specified.

• The NAME option must be the name of an existing database to which the given user has permission to connect.
The unit tests will not touch this database; the test runner creates a new database whose name is NAME prefixed
with test_, and this test database is deleted when the tests are finished. This means your user account needs
permission to execute CREATE DATABASE.

You will also need to ensure that your database uses UTF-8 as the default character set. If your database server doesn’t
use UTF-8 as a default charset, you will need to include a value for TEST_CHARSET in the settings dictionary for the
applicable database.

892 Chapter 10. Django internals

Django Documentation, Release 1.2.7

Running only some of the tests

Django’s entire test suite takes a few minutes to run. To run a subset of the unit tests, append the names of the test
modules to the runtests.py command line.

As an example, if you’d like to only run tests for generic relations and internationalization, type:

./runtests.py --settings=path.to.settings generic_relations i18n

See the list of directories in tests/modeltests and tests/regressiontests for module names.

If you just want to run a particular class of tests, you can specify a list of paths to individual test classes. For example,
to run the TranslationTests of the i18n module, type:

./runtests.py --settings=path.to.settings i18n.TranslationTests

You can specify an individual test like this:

./runtests.py --settings=path.to.settings i18n.TranslationTests.test_lazy_objects

Running all the tests

If you want to run the full suite of tests, you’ll need to install a number of dependencies:

• PyYAML

• Markdown

• Textile

• Docutils

• setuptools

• memcached, plus the either the python-memcached or cmemcached Python binding

• gettext (gettext on Windows)

If you want to test the memcached cache backend, you will also need to define a CACHE_BACKEND setting that points
at your memcached instance.

Each of these dependencies is optional. If you’re missing any of them, the associated tests will be skipped.

Contrib apps

Tests for apps in django/contrib/ go in their respective directories under django/contrib/, in a tests.py
file. (You can split the tests over multiple modules by using a tests directory in the normal Python way.)

For the tests to be found, a models.py file must exist (it doesn’t have to have anything in it). If you have URLs that
need to be mapped, put them in tests/urls.py.

To run tests for just one contrib app (e.g. markup), use the same method as above:

./runtests.py --settings=settings markup

10.1.12 Requesting features

We’re always trying to make Django better, and your feature requests are a key part of that. Here are some tips on how
to most effectively make a request:

10.1. Contributing to Django 893

http://pyyaml.org/wiki/PyYAML
http://pypi.python.org/pypi/Markdown/1.7
http://pypi.python.org/pypi/textile
http://pypi.python.org/pypi/docutils/0.4
http://pypi.python.org/pypi/setuptools/
http://www.danga.com/memcached/
http://pypi.python.org/pypi/python-memcached/
http://gijsbert.org/cmemcache/index.html
http://www.gnu.org/software/gettext/manual/gettext.html

Django Documentation, Release 1.2.7

• Request the feature on django-developers, not in the ticket tracker; it’ll get read more closely if it’s on the
mailing list.

• Describe clearly and concisely what the missing feature is and how you’d like to see it implemented. Include
example code (non-functional is OK) if possible.

• Explain why you’d like the feature. In some cases this is obvious, but since Django is designed to help real
developers get real work done, you’ll need to explain it, if it isn’t obvious why the feature would be useful.

As with most open-source projects, code talks. If you are willing to write the code for the feature yourself or if (even
better) you’ve already written it, it’s much more likely to be accepted. If it’s a large feature that might need multiple
developers we’re always happy to give you an experimental branch in our repository; see below.

10.1.13 Branch policy

In general, the trunk must be kept stable. People should be able to run production sites against the trunk at any time.
Additionally, commits to trunk ought to be as atomic as possible – smaller changes are better. Thus, large feature
changes – that is, changes too large to be encapsulated in a single patch, or changes that need multiple eyes on them –
must happen on dedicated branches.

This means that if you want to work on a large feature – anything that would take more than a single patch, or requires
large-scale refactoring – you need to do it on a feature branch. Our development process recognizes two options for
feature branches:

1. Feature branches using a distributed revision control system like Git, Mercurial, Bazaar, etc.

If you’re familiar with one of these tools, this is probably your best option since it doesn’t require any support
or buy-in from the Django core developers.

However, do keep in mind that Django will continue to use Subversion for the foreseeable future, and this will
naturally limit the recognition of your branch. Further, if your branch becomes eligible for merging to trunk
you’ll need to find a core developer familiar with your DVCS of choice who’ll actually perform the merge.

If you do decided to start a distributed branch of Django and choose to make it public, please add the branch to
the Django branches wiki page.

2. Feature branches using SVN have a higher bar. If you want a branch in SVN itself, you’ll need a “mentor”
among the core committers. This person is responsible for actually creating the branch, monitoring your process
(see below), and ultimately merging the branch into trunk.

If you want a feature branch in SVN, you’ll need to ask in django-developers for a mentor.

Branch rules

We’ve got a few rules for branches born out of experience with what makes a successful Django branch.

DVCS branches are obviously not under central control, so we have no way of enforcing these rules. However, if
you’re using a DVCS, following these rules will give you the best chance of having a successful branch (read: merged
back to trunk).

Developers with branches in SVN, however, must follow these rules. The branch mentor will keep on eye on the
branch and will delete it if these rules are broken.

• Only branch entire copies of the Django tree, even if work is only happening on part of that tree. This makes it
painless to switch to a branch.

• Merge changes from trunk no less than once a week, and preferably every couple-three days.

In our experience, doing regular trunk merges is often the difference between a successful branch and one that
fizzles and dies.

894 Chapter 10. Django internals

http://groups.google.com/group/django-developers
http://git-scm.com/
http://mercurial.selenic.com/
http://bazaar.canonical.com/
http://code.djangoproject.com/wiki/DjangoBranches
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

If you’re working on an SVN branch, you should be using svnmerge.py to track merges from trunk.

• Keep tests passing and documentation up-to-date. As with patches, we’ll only merge a branch that comes with
tests and documentation.

Once the branch is stable and ready to be merged into the trunk, alert django-developers.

After a branch has been merged, it should be considered “dead”; write access to it will be disabled, and old branches
will be periodically “trimmed.” To keep our SVN wrangling to a minimum, we won’t be merging from a given branch
into the trunk more than once.

Using branches

To use a branch, you’ll need to do two things:

• Get the branch’s code through Subversion.

• Point your Python site-packages directory at the branch’s version of the django package rather than the
version you already have installed.

Getting the code from Subversion

To get the latest version of a branch’s code, check it out using Subversion:

svn co http://code.djangoproject.com/svn/django/branches/<branch>/

...where <branch> is the branch’s name. See the list of branch names.

Alternatively, you can automatically convert an existing directory of the Django source code as long as you’ve checked
it out via Subversion. To do the conversion, execute this command from within your django directory:

svn switch http://code.djangoproject.com/svn/django/branches/<branch>/

The advantage of using svn switch instead of svn co is that the switch command retains any changes you
might have made to your local copy of the code. It attempts to merge those changes into the “switched” code. The
disadvantage is that it may cause conflicts with your local changes if the “switched” code has altered the same lines of
code.

(Note that if you use svn switch, you don’t need to point Python at the new version, as explained in the next
section.)

Pointing Python at the new Django version

Once you’ve retrieved the branch’s code, you’ll need to change your Python site-packages directory so
that it points to the branch version of the django directory. (The site-packages directory is somewhere
such as /usr/lib/python2.4/site-packages or /usr/local/lib/python2.4/site-packages
or C:\Python\site-packages.)

The simplest way to do this is by renaming the old django directory to django.OLD and moving the trunk version
of the code into the directory and calling it django.

Alternatively, you can use a symlink called django that points to the location of the branch’s django package. If
you want to switch back, just change the symlink to point to the old code.

A third option is to use a path file (<something>.pth) which should work on all systems (including Windows,
which doesn’t have symlinks available). First, make sure there are no files, directories or symlinks named django in
your site-packages directory. Then create a text file named django.pth and save it to your site-packages
directory. That file should contain a path to your copy of Django on a single line and optional comments. Here is an

10.1. Contributing to Django 895

http://www.orcaware.com/svn/wiki/Svnmerge.py
http://groups.google.com/group/django-developers
http://code.djangoproject.com/browser/django/branches
http://docs.python.org/library/site.html

Django Documentation, Release 1.2.7

example that points to multiple branches. Just uncomment the line for the branch you want to use (‘Trunk’ in this
example) and make sure all other lines are commented:

Trunk is a svn checkout of:
http://code.djangoproject.com/svn/django/trunk/
#
/path/to/trunk

<branch> is a svn checkout of:
http://code.djangoproject.com/svn/django/branches/<branch>/
#
#/path/to/<branch>

On windows a path may look like this:
C:/path/to/<branch>

If you’re using Django 0.95 or earlier and installed it using python setup.py install, you’ll have a
directory called something like Django-0.95-py2.4.egg instead of django. In this case, edit the file
setuptools.pth and remove the line that references the Django .egg file. Then copy the branch’s version
of the django directory into site-packages.

10.1.14 How we make decisions

Whenever possible, we strive for a rough consensus. To that end, we’ll often have informal votes on django-developers
about a feature. In these votes we follow the voting style invented by Apache and used on Python itself, where votes
are given as +1, +0, -0, or -1. Roughly translated, these votes mean:

• +1: “I love the idea and I’m strongly committed to it.”

• +0: “Sounds OK to me.”

• -0: “I’m not thrilled, but I won’t stand in the way.”

• -1: “I strongly disagree and would be very unhappy to see the idea turn into reality.”

Although these votes on django-developers are informal, they’ll be taken very seriously. After a suitable voting period,
if an obvious consensus arises we’ll follow the votes.

However, consensus is not always possible. If consensus cannot be reached, or if the discussion towards a consensus
fizzles out without a concrete decision, we use a more formal process.

Any core committer (see below) may call for a formal vote using the same voting mechanism above. A proposition
will be considered carried by the core team if:

• There are three “+1” votes from members of the core team.

• There is no “-1” vote from any member of the core team.

• The BDFLs haven’t stepped in and executed their positive or negative veto.

When calling for a vote, the caller should specify a deadline by which votes must be received. One week is generally
suggested as the minimum amount of time.

Since this process allows any core committer to veto a proposal, any “-1” votes (or BDFL vetos) should be accompa-
nied by an explanation that explains what it would take to convert that “-1” into at least a “+0”.

Whenever possible, these formal votes should be announced and held in public on the django-developers mailing list.
However, overly sensitive or contentious issues – including, most notably, votes on new core committers – may be
held in private.

896 Chapter 10. Django internals

http://groups.google.com/group/django-developers
http://groups.google.com/group/django-developers

Django Documentation, Release 1.2.7

10.1.15 Commit access

Django has two types of committers:

Core committers These are people who have a long history of contributions to Django’s codebase, a solid track
record of being polite and helpful on the mailing lists, and a proven desire to dedicate serious time to Django’s
development. The bar is high for full commit access.

Partial committers These are people who are “domain experts.” They have direct check-in access to the subsystems
that fall under their jurisdiction, and they’re given a formal vote in questions that involve their subsystems. This
type of access is likely to be given to someone who contributes a large subframework to Django and wants to
continue to maintain it.

Partial commit access is granted by the same process as full committers. However, the bar is set lower; proven
expertise in the area in question is likely to be sufficient.

Decisions on new committers will follow the process explained above in how we make decisions.

To request commit access, please contact an existing committer privately. Public requests for commit access are
potential flame-war starters, and will be ignored.

10.2 How the Django documentation works

... and how to contribute.

Django’s documentation uses the Sphinx documentation system, which in turn is based on docutils. The basic idea is
that lightly-formatted plain-text documentation is transformed into HTML, PDF, and any other output format.

To actually build the documentation locally, you’ll currently need to install Sphinx – easy_install Sphinx
should do the trick.

Note: The Django documentation can be generated with Sphinx version 0.6 or newer, but we recommend using
Sphinx 1.0.2 or newer.

Then, building the HTML is easy; just make html from the docs directory.

To get started contributing, you’ll want to read the reStructuredText Primer. After that, you’ll want to read about the
Sphinx-specific markup that’s used to manage metadata, indexing, and cross-references.

The main thing to keep in mind as you write and edit docs is that the more semantic markup you can add the better.
So:

Add ‘‘django.contrib.auth‘‘ to your ‘‘INSTALLED_APPS‘‘...

Isn’t nearly as helpful as:

Add :mod:‘django.contrib.auth‘ to your :setting:‘INSTALLED_APPS‘...

This is because Sphinx will generate proper links for the latter, which greatly helps readers. There’s basically no limit
to the amount of useful markup you can add.

10.2.1 Django-specific markup

Besides the Sphinx built-in markup, Django’s docs defines some extra description units:

• Settings:

10.2. How the Django documentation works 897

http://sphinx.pocoo.org/
http://docutils.sourceforge.net/
http://sphinx.pocoo.org/rest.html
http://sphinx.pocoo.org/markup/
http://sphinx.pocoo.org/markup/desc.html

Django Documentation, Release 1.2.7

.. setting:: INSTALLED_APPS

To link to a setting, use :setting:‘INSTALLED_APPS‘.

• Template tags:

.. templatetag:: regroup

To link, use :ttag:‘regroup‘.

• Template filters:

.. templatefilter:: linebreaksbr

To link, use :tfilter:‘linebreaksbr‘.

• Field lookups (i.e. Foo.objects.filter(bar__exact=whatever)):

.. fieldlookup:: exact

To link, use :lookup:‘exact‘.

• django-admin commands:

.. django-admin:: syncdb

To link, use :djadmin:‘syncdb‘.

• django-admin command-line options:

.. django-admin-option:: --traceback

To link, use :djadminopt:‘--traceback‘.

10.2.2 An example

For a quick example of how it all fits together, consider this hypothetical example:

• First, the ref/settings.txt document could have an overall layout like this:

========
Settings
========

...

.. _available-settings:

Available settings
==================

...

.. _deprecated-settings:

Deprecated settings
===================

...

• Next, the topics/settings.txt document could contain something like this:

898 Chapter 10. Django internals

Django Documentation, Release 1.2.7

You can access a :ref:‘listing of all available settings
<available-settings>‘. For a list of deprecated settings see
:ref:‘deprecated-settings‘.

You can find both in the :doc:‘settings reference document </ref/settings>‘.

We use the Sphinx doc cross reference element when we want to link to another document as a whole and the
ref element when we want to link to an arbitrary location in a document.

• Next, notice how the settings are annotated:

.. setting:: ADMIN_FOR

ADMIN_FOR

Default: ‘‘()‘‘ (Empty tuple)

Used for admin-site settings modules, this should be a tuple of settings
modules (in the format ‘‘’foo.bar.baz’‘‘) for which this site is an
admin.

The admin site uses this in its automatically-introspected
documentation of models, views and template tags.

This marks up the following header as the “canonical” target for the setting ADMIN_FOR This means any time
I talk about ADMIN_FOR, I can reference it using :setting:‘ADMIN_FOR‘.

That’s basically how everything fits together.

10.2.3 TODO

The work is mostly done, but here’s what’s left, in rough order of priority.

• Most of the various index.txt documents have very short or even non-existent intro text. Each of those
documents needs a good short intro the content below that point.

• The glossary is very perfunctory. It needs to be filled out.

• Add more metadata targets: there’s lots of places that look like:

‘‘File.close()‘‘
~~~~~~~~~~~~~~~~

... these should be:

.. method:: File.close()

That is, use metadata instead of titles.

• Add more links – nearly everything that’s an inline code literal right now can probably be turned into a xref.

See the literals_to_xrefs.py file in _ext – it’s a shell script to help do this work.

This will probably be a continuing, never-ending project.

• Add info field lists where appropriate.

• Add .. code-block:: <lang> to literal blocks so that they get highlighted.

10.2. How the Django documentation works 899

http://sphinx.pocoo.org/markup/inline.html#role-doc
http://sphinx.pocoo.org/markup/inline.html#role-ref
http://sphinx.pocoo.org/markup/desc.html#info-field-lists


Django Documentation, Release 1.2.7

10.2.4 Hints

Some hints for making things look/read better:

• Whenever possible, use links. So, use :setting:‘ADMIN_FOR‘ instead of ‘‘ADMIN_FOR‘‘.

• Some directives (.. setting::, for one) are prefix-style directives; they go before the unit they’re describ-
ing. These are known as “crossref” directives. Others (.. class::, e.g.) generate their own markup; these
should go inside the section they’re describing. These are called “description units”.

You can tell which are which by looking at in _ext/djangodocs.py; it registers roles as one of the other.

• When referring to classes/functions/modules, etc., you’ll want to use the fully-qualified name of the target
(:class:‘django.contrib.contenttypes.models.ContentType‘).

Since this doesn’t look all that awesome in the output – it shows the entire path to the object –
you can prefix the target with a ~ (that’s a tilde) to get just the “last bit” of that path. So
:class:‘~django.contrib.contenttypes.models.ContentType‘will just display a link with
the title “ContentType”.

10.3 Django committers

10.3.1 The original team

Django originally started at World Online, the Web department of the Lawrence Journal-World of Lawrence, Kansas,
USA.

Adrian Holovaty Adrian is a Web developer with a background in journalism. He’s known in journalism circles
as one of the pioneers of “journalism via computer programming”, and in technical circles as “the guy who
invented Django.”

He was lead developer at World Online for 2.5 years, during which time Django was developed and implemented
on World Online’s sites. He’s now the leader and founder of EveryBlock, a “news feed for your block”.

Adrian lives in Chicago, USA.

Simon Willison Simon is a well-respected Web developer from England. He had a one-year internship at World
Online, during which time he and Adrian developed Django from scratch. The most enthusiastic Brit you’ll ever
meet, he’s passionate about best practices in Web development and maintains a well-read web-development
blog.

Simon lives in Brighton, England.

Jacob Kaplan-Moss Jacob is a partner at Revolution Systems which provides support services around Django and
related open source technologies. A good deal of Jacob’s work time is devoted to working on Django. Jacob
previously worked at World Online, where Django was invented, where he was the lead developer of Ellington,
a commercial Web publishing platform for media companies.

Jacob lives in Lawrence, Kansas, USA.

Wilson Miner Wilson’s design-fu is what makes Django look so nice. He designed the Web site you’re looking at
right now, as well as Django’s acclaimed admin interface. Wilson is the designer for EveryBlock.

Wilson lives in San Francisco, USA.

10.3.2 Current developers

Currently, Django is led by a team of volunteers from around the globe.

900 Chapter 10. Django internals

http://ljworld.com/
http://holovaty.com/
http://everyblock.com/
http://simonwillison.net/
http://simonwillison.net/
http://simonwillison.net/
http://jacobian.org/
http://revsys.com/
http://wilsonminer.com/
http://everyblock.com/


Django Documentation, Release 1.2.7

BDFLs

Adrian and Jacob are the Co-Benevolent Dictators for Life of Django. When “rough consensus and working code”
fails, they’re the ones who make the tough decisions.

Core developers

These are the folks who have a long history of contributions, a solid track record of being helpful on the mailing lists,
and a proven desire to dedicate serious time to Django. In return, they’ve been granted the coveted commit bit, and
have free rein to hack on all parts of Django.

Malcolm Tredinnick Malcolm originally wanted to be a mathematician, somehow ended up a software developer.
He’s contributed to many Open Source projects, has served on the board of the GNOME foundation, and will
kick your ass at chess.

When he’s not busy being an International Man of Mystery, Malcolm lives in Sydney, Australia.

Russell Keith-Magee Russell studied physics as an undergraduate, and studied neural networks for his PhD. His first
job was with a startup in the defense industry developing simulation frameworks. Over time, mostly through
work with Django, he’s become more involved in Web development.

Russell has helped with several major aspects of Django, including a couple major internal refactorings, creation
of the test system, and more.

Russell lives in the most isolated capital city in the world — Perth, Australia.

Joseph Kocherhans Joseph is currently a developer at EveryBlock, and previously worked for the Lawrence Journal-
World where he built most of the backend for their Marketplace site. He often disappears for several days into
the woods, attempts to teach himself computational linguistics, and annoys his neighbors with his Charango
playing.

Joseph’s first contribution to Django was a series of improvements to the authorization system leading up to
support for pluggable authorization. Since then, he’s worked on the new forms system, its use in the admin, and
many other smaller improvements.

Joseph lives in Chicago, USA.

Luke Plant At University Luke studied physics and Materials Science and also met Michael Meeks who introduced
him to Linux and Open Source, re-igniting an interest in programming. Since then he has contributed to a
number of Open Source projects and worked professionally as a developer.

Luke has contributed many excellent improvements to Django, including database-level improvements, the
CSRF middleware and many unit tests.

Luke currently works for a church in Bradford, UK, and part-time as a freelance developer.

Brian Rosner Brian is currently the tech lead at Eldarion managing and developing Django / Pinax based Web sites.
He enjoys learning more about programming languages and system architectures and contributing to open source
projects. Brian is the host of the Django Dose podcasts.

Brian helped immensely in getting Django’s “newforms-admin” branch finished in time for Django 1.0; he’s
now a full committer, continuing to improve on the admin and forms system.

Brian lives in Denver, Colorado, USA.

Gary Wilson Gary starting contributing patches to Django in 2006 while developing Web applications for The Uni-
versity of Texas (UT). Since, he has made contributions to the e-mail and forms systems, as well as many other
improvements and code cleanups throughout the code base.

Gary is currently a developer and software engineering graduate student at UT, where his dedication to spreading
the ways of Python and Django never ceases.

10.3. Django committers 901

http://en.wikipedia.org/wiki/Benevolent_Dictator_For_Life
http://www.pointy-stick.com/
http://cecinestpasun.com/
http://everyblock.com/
http://en.wikipedia.org/wiki/Charango
http://lukeplant.me.uk/
http://en.wikipedia.org/wiki/Michael_Meeks_(software)
http://oebfare.com/
http://eldarion.com/
http://pinaxproject.com/
http://djangodose.com/
http://gdub.wordpress.com/
http://www.utexas.edu/
http://www.utexas.edu/


Django Documentation, Release 1.2.7

Gary lives in Austin, Texas, USA.

Justin Bronn Justin Bronn is a computer scientist and attorney specializing in legal topics related to intellectual
property and spatial law.

In 2007, Justin began developing django.contrib.gis in a branch, a.k.a. GeoDjango, which was merged
in time for Django 1.0. While implementing GeoDjango, Justin obtained a deep knowledge of Django’s internals
including the ORM, the admin, and Oracle support.

Justin lives in Houston, Texas.

Karen Tracey Karen has a background in distributed operating systems (graduate school), communications software
(industry) and crossword puzzle construction (freelance). The last of these brought her to Django, in late 2006,
when she set out to put a Web front-end on her crossword puzzle database. That done, she stuck around in the
community answering questions, debugging problems, etc. – because coding puzzles are as much fun as word
puzzles.

Karen lives in Apex, NC, USA.

Jannis Leidel Jannis graduated in media design from Bauhaus-University Weimar, is the author of a number of
pluggable Django apps and likes to contribute to Open Source projects like Pinax. He currently works as a
freelance Web developer and designer.

Jannis lives in Berlin, Germany.

James Tauber James is the lead developer of Pinax and the CEO and founder of Eldarion. He has been doing open
source software since 1993, Python since 1998 and Django since 2006. He serves on the board of the Python
Software Foundation and is currently on a leave of absence from a PhD in linguistics.

James currently lives in Boston, MA, USA but originally hails from Perth, Western Australia where he attended
the same high school as Russell Keith-Magee.

Alex Gaynor Alex is a student at Rensselaer Polytechnic Institute, and is also an independent contractor. He found
Django in 2007 and has been addicted ever since he found out you don’t need to write out your forms by hand.
He has a small obsession with compilers. He’s contributed to the ORM, forms, admin, and other components of
Django.

Alex lives in Chicago, IL, but spends most of his time in Troy, NY.

Andrew Godwin Andrew is a freelance Python developer and tinkerer, and has been developing against Django
since 2007. He graduated from Oxford University with a degree in Computer Science, and has become most
well known in the Django community for his work on South, the schema migrations library.

Andrew lives in London, UK.

Carl Meyer Carl has been working with Django since 2007 (long enough to remember queryset-refactor, but not
magic-removal), and works as a freelance developer with OddBird and Eldarion. He became a Django contrib-
utor by accident, because fixing bugs is more interesting than working around them.

Carl lives in Elkhart, IN, USA.

Ramiro Morales Ramiro has been reading Django source code and submitting patches since mid-2006 after research-
ing for a Python Web tool with matching awesomeness and being pointed to it by an old ninja.

A software developer in the electronic transactions industry, he is a living proof of the fact that anyone with
enough enthusiasm can contribute to Django, learning a lot and having fun in the process.

Ramiro lives in Córdoba, Argentina.

Chris Beaven Chris has been submitting patches and suggesting crazy ideas for Django since early 2006. An advocate
for community involvement and a long-term triager, he is still often found answering questions in the #django
IRC channel.

902 Chapter 10. Django internals

http://geodjango.org/
http://jezdez.com/
http://www.uni-weimar.de/
http://pinaxproject.com/
http://jtauber.com/
http://pinaxproject.com/
http://eldarion.com/
http://alexgaynor.net
http://www.aeracode.org/
http://www.oddbird.net/about/#hcard-carl
http://www.oddbird.net/
http://eldarion.com/
http://smileychris.com/


Django Documentation, Release 1.2.7

Chris lives in Napier, New Zealand (adding to the pool of Oceanic core developers). He works remotely as a
developer for Lincoln Loop.

Specialists

James Bennett James is Django’s release manager; he also contributes to the documentation.

James came to Web development from philosophy when he discovered that programmers get to argue just as
much while collecting much better pay. He lives in Lawrence, Kansas, where he works for the Journal-World
developing Ellington. He keeps a blog, has written a book on Django, and enjoys fine port and talking to his car.

Ian Kelly Ian is responsible for Django’s support for Oracle.

Matt Boersma Matt is also responsible for Django’s Oracle support.

Jeremy Dunck Jeremy is the lead developer of Pegasus News, a personalized local site based in Dallas, Texas. An
early contributor to Greasemonkey and Django, he sees technology as a tool for communication and access to
knowledge.

Jeremy helped kick off GeoDjango development, and is mostly responsible for the serious speed improvements
that signals received in Django 1.0.

Jeremy lives in Dallas, Texas, USA.

Simon Meers Simon discovered Django 0.96 during his Computer Science PhD research and has been developing
with it full-time ever since. His core code contributions are mostly in Django’s admin application. He is also
helping to improve Django’s documentation.

Simon works as a freelance developer based in Wollongong, Australia.

Gabriel Hurley Gabriel has been working with Django since 2008, shortly after the 1.0 release. Convinced by his
business partner that Python and Django were the right direction for the company, he couldn’t have been more
happy with the decision. His contributions range across many areas in Django, but years of copy-editing and an
eye for detail lead him to be particularly at home while working on Django’s documentation.

Gabriel works as a web developer in Berkeley, CA, USA.

Tim Graham When exploring Web frameworks for an independent study project in the fall of 2008, Tim discovered
Django and was lured to it by the documentation. He enjoys contributing to the docs because they’re awesome.

Tim works as a software engineer and lives in Philadelphia, PA, USA.

10.3.3 Developers Emeritus

Georg “Hugo” Bauer Georg created Django’s internationalization system, managed i18n contributions and made a
ton of excellent tweaks, feature additions and bug fixes.

Robert Wittams Robert was responsible for the first refactoring of Django’s admin application to allow for easier
reuse and has made a ton of excellent tweaks, feature additions and bug fixes.

10.4 Django’s release process

10.4.1 Official releases

Django’s release numbering works as follows:

• Versions are numbered in the form A.B or A.B.C.

10.4. Django’s release process 903

http://lincolnloop.com/
http://b-list.org/
http://b-list.org/
http://www.amazon.com/dp/1590599969/?tag=djangoproject-20
http://simonmeers.com/
http://strikeawe.com/


Django Documentation, Release 1.2.7

• A is the major version number, which is only incremented for major changes to Django, and these changes are
not necessarily backwards-compatible. That is, code you wrote for Django 6.0 may break when we release
Django 7.0.

• B is the minor version number, which is incremented for large yet backwards compatible changes. Code written
for Django 6.4 will continue to work under Django 6.5.

• C is the micro version number which, is incremented for bug and security fixes. A new micro-release will always
be 100% backwards-compatible with the previous micro-release.

• In some cases, we’ll make alpha, beta, or release candidate releases. These are of the form A.B
alpha/beta/rc N, which means the Nth alpha/beta/release candidate of version A.B.

An exception to this version numbering scheme is the pre-1.0 Django code. There’s no guarantee of backwards-
compatibility until the 1.0 release.

In Subversion, each Django release will be tagged under tags/releases. If it’s necessary to release a bug fix
release or a security release that doesn’t come from the trunk, we’ll copy that tag to branches/releases to make
the bug fix release.

Major releases

Major releases (1.0, 2.0, etc.) will happen very infrequently (think “years”, not “months”), and will probably represent
major, sweeping changes to Django.

Minor releases

Minor release (1.1, 1.2, etc.) will happen roughly every nine months – see release process, below for details. These
releases will contain new features, improvements to existing features, and such. A minor release may deprecate certain
features from previous releases. If a feature in version A.B is deprecated, it will continue to work in version A.B+1.
In version A.B+2, use of the feature will raise a DeprecationWarning but will continue to work. Version A.B+3
will remove the feature entirely.

So, for example, if we decided to remove a function that existed in Django 1.0:

• Django 1.1 will contain a backwards-compatible replica of the function which will raise a
PendingDeprecationWarning. This warning is silent by default; you need to explicitly turn on
display of these warnings.

• Django 1.2 will contain the backwards-compatible replica, but the warning will be promoted to a full-fledged
DeprecationWarning. This warning is loud by default, and will likely be quite annoying.

• Django 1.3 will remove the feature outright.

Micro releases

Micro releases (1.0.1, 1.0.2, 1.1.1, etc.) will be issued at least once half-way between minor releases, and probably
more often as needed.

These releases will always be 100% compatible with the associated minor release – the answer to “should I upgrade
to the latest micro release?” will always be “yes.”

Each minor release of Django will have a “release maintainer” appointed. This person will be responsible for making
sure that bug fixes are applied to both trunk and the maintained micro-release branch. This person will also work with
the release manager to decide when to release the micro releases.

904 Chapter 10. Django internals



Django Documentation, Release 1.2.7

10.4.2 Supported versions

At any moment in time, Django’s developer team will support a set of releases to varying levels:

• The current development trunk will get new features and bug fixes requiring major refactoring.

• All bug fixes applied to the trunk will also be applied to the last minor release, to be released as the next micro
release.

• Security fixes will be applied to the current trunk and the previous two minor releases.

As a concrete example, consider a moment in time halfway between the release of Django 1.3 and 1.4. At this point
in time:

• Features will be added to development trunk, to be released as Django 1.4.

• Bug fixes will be applied to a 1.3.X branch, and released as 1.3.1, 1.3.2, etc.

• Security releases will be applied to trunk, a 1.3.X branch and a 1.2.X branch. Security fixes will trigger the
release of 1.3.1, 1.2.1, etc.

10.4.3 Release process

Django uses a time-based release schedule, with minor (i.e. 1.1, 1.2, etc.) releases every nine months, or more,
depending on features.

After each previous release (and after a suitable cooling-off period of a week or two), the core development team will
examine the landscape and announce a timeline for the next release. Most releases will be scheduled in the 6-9 month
range, but if we have bigger features to development we might schedule a longer period to allow for more ambitious
work.

Release cycle

Each release cycle will be split into three periods, each lasting roughly one-third of the cycle:

Phase one: feature proposal

The first phase of the release process will be devoted to figuring out what features to include in the next version. This
should include a good deal of preliminary work on those features – working code trumps grand design.

At the end of part one, the core developers will propose a feature list for the upcoming release. This will be broken
into:

• “Must-have”: critical features that will delay the release if not finished

• “Maybe” features: that will be pushed to the next release if not finished

• “Not going to happen”: features explicitly deferred to a later release.

Anything that hasn’t got at least some work done by the end of the first third isn’t eligible for the next release; a design
alone isn’t sufficient.

Phase two: development

The second third of the release schedule is the “heads-down” working period. Using the roadmap produced at the end
of phase one, we’ll all work very hard to get everything on it done.

Longer release schedules will likely spend more than a third of the time in this phase.

10.4. Django’s release process 905



Django Documentation, Release 1.2.7

At the end of phase two, any unfinished “maybe” features will be postponed until the next release. Though it shouldn’t
happen, any “must-have” features will extend phase two, and thus postpone the final release.

Phase two will culminate with an alpha release.

Phase three: bugfixes

The last third of a release is spent fixing bugs – no new features will be accepted during this time. We’ll release a beta
release about halfway through, and an rc complete with string freeze two weeks before the end of the schedule.

Bug-fix releases

After a minor release (i.e 1.1), the previous release will go into bug-fix mode.

A branch will be created of the form branches/releases/1.0.X to track bug-fixes to the previous release.
When possible, bugs fixed on trunk must also be fixed on the bug-fix branch; this means that commits need to cleanly
separate bug fixes from feature additions. The developer who commits a fix to trunk will be responsible for also
applying the fix to the current bug-fix branch. Each bug-fix branch will have a maintainer who will work with the
committers to keep them honest on backporting bug fixes.

How this all fits together

Let’s look at a hypothetical example for how this all first together. Imagine, if you will, a point about halfway between
1.1 and 1.2. At this point, development will be happening in a bunch of places:

• On trunk, development towards 1.2 proceeds with small additions, bugs fixes, etc. being checked in daily.

• On the branch “branches/releases/1.1.X”, bug fixes found in the 1.1 release are checked in as needed. At some
point, this branch will be released as “1.1.1”, “1.1.2”, etc.

• On the branch “branches/releases/1.0.X”, security fixes are made if needed and released as “1.0.2”, “1.0.3”, etc.

• On feature branches, development of major features is done. These branches will be merged into trunk before
the end of phase two.

10.5 Django Deprecation Timeline

This document outlines when various pieces of Django will be removed, following their deprecation, as per the Django
deprecation policy

• 1.3

– AdminSite.root(). This release will remove the old method for hooking up admin URLs. This
has been deprecated since the 1.1 release.

– Authentication backends need to define the boolean attributes
supports_object_permissions and supports_anonymous_user. The old back-
end style is deprecated since the 1.2 release.

– The django.contrib.gis.db.backend module, including the SpatialBackend inter-
face, is deprecated since the 1.2 release.

• 1.4

906 Chapter 10. Django internals



Django Documentation, Release 1.2.7

– CsrfResponseMiddleware. This has been deprecated since the 1.2 release, in favour of
the template tag method for inserting the CSRF token. CsrfMiddleware, which combines
CsrfResponseMiddleware and CsrfViewMiddleware, is also deprecated.

– The old imports for CSRF functionality (django.contrib.csrf.*), which moved to core in
1.2, will be removed.

– SMTPConnection. The 1.2 release deprecated the SMTPConnection class in favor of a generic
E-mail backend API.

– The many to many SQL generation functions on the database backends will be removed.

– The ability to use the DATABASE_* family of top-level settings to define database connections will
be removed.

– The ability to use shorthand notation to specify a database backend (i.e., sqlite3 instead of
django.db.backends.sqlite3) will be removed.

– The get_db_prep_save, get_db_prep_value and get_db_prep_lookup methods on
Field were modified in 1.2 to support multiple databases. In 1.4, the support functions that allow
methods with the old prototype to continue working will be removed.

– The Message model (in django.contrib.auth), its related manager in the User model
(user.message_set), and the associated methods (user.message_set.create() and
user.get_and_delete_messages()), which have been deprecated since the 1.2 release, will
be removed. The messages framework should be used instead.

– Authentication backends need to support the obj parameter for permission checking. The
supports_object_permissions variable is not checked any longer and can be removed.

– Authentication backends need to support the AnonymousUser being passed to all methods dealing
with permissions. The supports_anonymous_user variable is not checked any longer and can
be removed.

– The ability to specify a callable template loader rather than a Loader class will be removed, as will
the load_template_source functions that are included with the built in template loaders for
backwards compatibility. These have been deprecated since the 1.2 release.

– django.utils.translation.get_date_formats() and
django.utils.translation.get_partial_date_formats(). These functions are
replaced by the new locale aware formatting; use django.utils.formats.get_format()
to get the appropriate formats.

– In django.forms.fields: DEFAULT_DATE_INPUT_FORMATS,
DEFAULT_TIME_INPUT_FORMATS and DEFAULT_DATETIME_INPUT_FORMATS. Use
django.utils.formats.get_format() to get the appropriate formats.

– The ability to use a function-based test runners will be removed, along with the
django.test.simple.run_tests() test runner.

– The views.feed() view and feeds.Feed class in django.contrib.syndication have
been deprecated since the 1.2 release. The class-based view views.Feed should be used instead.

– django.core.context_processors.auth. This release will remove the old method in fa-
vor of the new method in django.contrib.auth.context_processors.auth. This has
been deprecated since the 1.2 release.

– The postgresql database backend has been deprecated in favor of the postgresql_psycopg2
backend.

– The no language code has been deprecated in favor of the nb language code.

• 2.0

10.5. Django Deprecation Timeline 907



Django Documentation, Release 1.2.7

– django.views.defaults.shortcut(). This function has been moved to
django.contrib.contenttypes.views.shortcut() as part of the goal of remov-
ing all django.contrib references from the core Django codebase. The old shortcut will be
removed in the 2.0 release.

10.6 The Django source code repository

When deploying a Django application into a real production environment, you will almost always want to use an
official packaged release of Django. However, if you’d like to try out in-development code from an upcoming release
or contribute to the development of Django, you’ll need to obtain a checkout from Django’s source code repository.
This document covers the way the code repository is laid out and how to work with and find things in it.

10.6.1 High-level overview

The Django source code repository uses Subversion to track changes to the code over time, so you’ll need a copy of
the Subversion client (a program called svn) on your computer, and you’ll want to familiarize yourself with the basics
of how Subversion works. Subversion’s Web site offers downloads for various operating systems, and a free online
book is available to help you get up to speed with using Subversion.

The Django Subversion repository is located online at code.djangoproject.com/svn. A friendly Web-based interface
for browsing the code is also available, though when using Subversion you’ll always want to use the repository address
instead. At the top level of the repository are two directories: django contains the full source code for all Django
releases, while djangoproject.com contains the source code and templates for the djangoproject.com Web site.
For trying out in-development Django code, or contributing to Django, you’ll always want to check out code from
some location in the django directory.

Inside the django directory, Django’s source code is organized into three areas:

• branches contains branched copies of Django’s code, which are (or were) maintained for various purposes.
Some branches exist to provide a place to develop major or experimental new features without affecting the rest
of Django’s code, while others serve to provide bug fixes or support for older Django releases.

• tags contains snapshots of Django’s code at various important points in its history; mostly these are the exact
revisions from which packaged Django releases were produced.

• trunk contains the main in-development code which will become the next packaged release of Django, and is
where most development activity is focused.

10.6.2 Working with Django’s trunk

If you’d like to try out the in-development code for the next release of Django, or if you’d like to contribute to Django
by fixing bugs or developing new features, you’ll want to get the code from trunk. You can get a complete copy of this
code (a “Subversion checkout”) by typing:

svn co http://code.djangoproject.com/svn/django/trunk/

Note that this will get all of Django: in addition to the top-level django module containing Python code, you’ll also
get a copy of Django’s documentation, unit-test suite, packaging scripts and other miscellaneous bits. Django’s code
will be present in your checkout as a directory named django.

To try out the in-development trunk code with your own applications, simply place the directory containing your
checkout on your Python import path. Then import statements which look for Django will find the django module
within your checkout.

908 Chapter 10. Django internals

http://www.djangoproject.com/download/
http://www.djangoproject.com/download/
http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://code.djangoproject.com/svn/
http://code.djangoproject.com/browser/
http://code.djangoproject.com/browser/
http://www.djangoproject.com/


Django Documentation, Release 1.2.7

If you’re going to be working on Django’s code (say, to fix a bug or develop a new feature), you can probably stop
reading here and move over to the documentation for contributing to Django, which covers things like the preferred
coding style and how to generate and submit a patch.

10.6.3 Branches

Django uses branches for two main purposes:

1. Development of major or experimental features, to keep them from affecting progress on other work in trunk.

2. Security and bug-fix support for older releases of Django, during their support lifetimes.

Feature-development branches

Feature-development branches tend by their nature to be temporary. Some produce successful features which are
merged back into Django’s trunk to become part of an official release, but others do not; in either case there comes a
time when the branch is no longer being actively worked on by any developer. At this point the branch is considered
closed.

Unfortunately, Subversion has no standard way of indicating this. As a workaround, branches of Django which are
closed and no longer maintained are moved into the directory django/branches/attic.

For reference, the following are branches whose code eventually became part of Django itself, and so are no longer
separately maintained:

• boulder-oracle-sprint: Added support for Oracle databases to Django’s object-relational mapper. This
has been part of Django since the 1.0 release.

• gis: Added support for geographic/spatial queries to Django’s object-relational mapper. This has been part of
Django since the 1.0 release, as the bundled application django.contrib.gis.

• i18n: Added internationalization support to Django. This has been part of Django since the 0.90 release.

• magic-removal: A major refactoring of both the internals and public APIs of Django’s object-relational
mapper. This has been part of Django since the 0.95 release.

• multi-auth: A refactoring of Django’s bundled authentication framework which added support for authen-
tication backends. This has been part of Django since the 0.95 release.

• new-admin: A refactoring of Django’s bundled administrative application. This became part of Django as of
the 0.91 release, but was superseded by another refactoring (see next listing) prior to the Django 1.0 release.

• newforms-admin: The second refactoring of Django’s bundled administrative application. This became part
of Django as of the 1.0 release, and is the basis of the current incarnation of django.contrib.admin.

• queryset-refactor: A refactoring of the internals of Django’s object-relational mapper. This became part
of Django as of the 1.0 release.

• unicode: A refactoring of Django’s internals to consistently use Unicode-based strings in most places within
Django and Django applications. This became part of Django as of the 1.0 release.

Additionally, the following branches are closed, but their code was never merged into Django and the features they
aimed to implement were never finished:

• full-history

• generic-auth

• multiple-db-support

• per-object-permissions

10.6. The Django source code repository 909



Django Documentation, Release 1.2.7

• schema-evolution

• schema-evolution-ng

• search-api

• sqlalchemy

All of the above-mentioned branches now reside in django/branches/attic.

Support and bugfix branches

In addition to fixing bugs in current trunk, the Django project provides official bug-fix support for the most recent
released version of Django, and security support for the two most recently-released versions of Django. This support
is provided via branches in which the necessary bug or security fixes are applied; the branches are then used as the
basis for issuing bugfix or security releases.

As of the Django 1.0 release, these branches can be found in the repository in the directory
django/branches/releases, and new branches will be created there approximately one month
after each new Django release. For example, shortly after the release of Django 1.0, the branch
django/branches/releases/1.0.X was created to receive bug fixes, and shortly after the release of
Django 1.1 the branch django/branches/releases/1.1.X was created.

Prior to the Django 1.0 release, these branches were maintaind within the top-level django/branches directory,
and so the following branches exist there and provided support for older Django releases:

• 0.90-bugfixes

• 0.91-bugfixes

• 0.95-bugfixes

• 0.96-bugfixes

Official support for those releases has expired, and so they no longer receive direct maintenance from the Django
project. However, the branches continue to exist and interested community members have occasionally used them to
provide unofficial support for old Django releases.

10.6.4 Tags

The directory django/tags within the repository contains complete copies of the Django source code as it existed
at various points in its history. These “tagged” copies of Django are never changed or updated; new tags may be added
as needed, but once added they are considered read-only and serve as useful guides to Django’s development history.

Within django/tags/releases are copies of the code which formed each packaged release of Django,
and each tag is named with the version number of the release to which it corresponds. So, for example,
django/tags/releases/1.1 is a complete copy of the code which was packaged as the Django 1.1 release.

Within django/tags/notable_moments are copies of the Django code from points which do not directly cor-
respond to releases, but which are nonetheless important historical milestones for Django development. The current
“notable moments” marked there are:

• ipo: Django’s code as it existed at the moment Django was first publicly announced in 2005.

• pre-magic-removal: The state of Django’s code just before the merging of the magic-removal branch
(described above), which significantly updated Django’s object-relational mapper.

• pre-newforms-admin: The state of Django’s code just before the merging of the newforms-admin
branch (see above), which significantly updated Django’s bundled administrative application.

910 Chapter 10. Django internals



Django Documentation, Release 1.2.7

• Tags corresponding to each of the alpha, beta and release-candidate packages in the run up to the Django 1.0
release.

10.6. The Django source code repository 911



Django Documentation, Release 1.2.7

912 Chapter 10. Django internals



CHAPTER

ELEVEN

INDICES, GLOSSARY AND TABLES

• genindex

• modindex

• Glossary

913



Django Documentation, Release 1.2.7

914 Chapter 11. Indices, glossary and tables



CHAPTER

TWELVE

DEPRECATED/OBSOLETE
DOCUMENTATION

The following documentation covers features that have been deprecated or that have been replaced in newer versions
of Django.

12.1 Deprecated/obsolete documentation

These documents cover features that have been deprecated or that have been replaced in newer versions of Django.
They’re preserved here for folks using old versions of Django or those still using deprecated APIs. No new code based
on these APIs should be written.

12.1.1 Customizing the Django admin interface

Warning: The design of the admin has changed somewhat since this document was written, and parts may not
apply any more. This document is no longer maintained since an official API for customizing the Django admin
interface is in development.

Django’s dynamic admin interface gives you a fully-functional admin for free with no hand-coding required. The
dynamic admin is designed to be production-ready, not just a starting point, so you can use it as-is on a real site. While
the underlying format of the admin pages is built in to Django, you can customize the look and feel by editing the
admin stylesheet and images.

Here’s a quick and dirty overview some of the main styles and classes used in the Django admin CSS.

Modules

The .module class is a basic building block for grouping content in the admin. It’s generally applied to a div or
a fieldset. It wraps the content group in a box and applies certain styles to the elements within. An h2 within a
div.module will align to the top of the div as a header for the whole group.

915



Django Documentation, Release 1.2.7

Column Types

Note: All admin pages (except the dashboard) are fluid-width. All fixed-width classes from previous Django versions
have been removed.

The base template for each admin page has a block that defines the column structure for the page. This sets a class
on the page content area (div#content) so everything on the page knows how wide it should be. There are three
column types available.

colM This is the default column setting for all pages. The “M” stands for “main”. Assumes that all content on the
page is in one main column (div#content-main).

colMS This is for pages with one main column and a sidebar on the right. The “S” stands for “sidebar”. Assumes that
main content is in div#content-main and sidebar content is in div#content-related. This is used
on the main admin page.

colSM Same as above, with the sidebar on the left. The source order of the columns doesn’t matter.

For instance, you could stick this in a template to make a two-column page with the sidebar on the right:

{% block coltype %}colMS{% endblock %}

Text Styles

Font Sizes

Most HTML elements (headers, lists, etc.) have base font sizes in the stylesheet based on context. There are three
classes are available for forcing text to a certain size in any context.

small 11px

tiny 10px

mini 9px (use sparingly)

Font Styles and Alignment

There are also a few styles for styling text.

.quiet Sets font color to light gray. Good for side notes in instructions. Combine with .small or .tiny for sheer
excitement.

.help This is a custom class for blocks of inline help text explaining the function of form elements. It makes text
smaller and gray, and when applied to p elements within .form-row elements (see Form Styles below), it will
offset the text to align with the form field. Use this for help text, instead of small quiet. It works on other
elements, but try to put the class on a p whenever you can.

916 Chapter 12. Deprecated/obsolete documentation



Django Documentation, Release 1.2.7

.align-left It aligns the text left. Only works on block elements containing inline elements.

.align-right Are you paying attention?

.nowrap Keeps text and inline objects from wrapping. Comes in handy for table headers you want to stay on one line.

Floats and Clears

float-left floats left

float-right floats right

clear clears all

Object Tools

Certain actions which apply directly to an object are used in form and changelist pages. These appear in a “toolbar” row
above the form or changelist, to the right of the page. The tools are wrapped in a ul with the class object-tools.
There are two custom tool types which can be defined with an additional class on the a for that tool. These are
.addlink and .viewsitelink.

Example from a changelist page:

<ul class="object-tools">
<li><a href="/stories/add/" class="addlink">Add redirect</a></li>

</ul>

and from a form page:

<ul class="object-tools">
<li><a href="/history/303/152383/">History</a></li>
<li><a href="/r/303/152383/" class="viewsitelink">View on site</a></li>

</ul>

Form Styles

Fieldsets

Admin forms are broken up into groups by fieldset elements. Each form fieldset should have a class .module.
Each fieldset should have a header h2 within the fieldset at the top (except the first group in the form, and in some
cases where the group of fields doesn’t have a logical label).

Each fieldset can also take extra classes in addition to .module to apply appropriate formatting to the group of fields.

.aligned This will align the labels and inputs side by side on the same line.

.wide Used in combination with .aligned to widen the space available for the labels.

12.1. Deprecated/obsolete documentation 917



Django Documentation, Release 1.2.7

Form Rows

Each row of the form (within the fieldset) should be enclosed in a div with class form-row. If the field in the
row is required, a class of required should also be added to the div.form-row.

Labels

Form labels should always precede the field, except in the case of checkboxes and radio buttons, where the input
should come first. Any explanation or help text should follow the label in a p with class .help.

918 Chapter 12. Deprecated/obsolete documentation



PYTHON MODULE INDEX

c
django.conf.urls.defaults, ??
django.contrib.admin, ??
django.contrib.admindocs, ??
django.contrib.auth, ??
django.contrib.auth.backends, ??
django.contrib.auth.forms, ??
django.contrib.auth.middleware, ??
django.contrib.comments, ??
django.contrib.comments.forms, ??
django.contrib.comments.models, ??
django.contrib.comments.moderation, ??
django.contrib.comments.signals, ??
django.contrib.contenttypes, ??
django.contrib.databrowse, ??
django.contrib.flatpages, ??
django.contrib.formtools, ??
django.contrib.formtools.wizard, ??
django.contrib.gis, ??
django.contrib.gis.admin, ??
django.contrib.gis.db.models, ??
django.contrib.gis.feeds, ??
django.contrib.gis.gdal, ??
django.contrib.gis.geos, ??
django.contrib.gis.measure, ??
django.contrib.gis.utils, ??
django.contrib.gis.utils.geoip, ??
django.contrib.gis.utils.layermapping,

??
django.contrib.gis.utils.ogrinspect, ??
django.contrib.humanize, ??
django.contrib.localflavor, ??
django.contrib.markup, ??
django.contrib.messages, ??
django.contrib.messages.middleware, ??
django.contrib.redirects, ??
django.contrib.sessions, ??
django.contrib.sessions.middleware, ??
django.contrib.sitemaps, ??
django.contrib.sites, ??
django.contrib.syndication, ??

django.contrib.webdesign, ??
django.core.exceptions, ??
django.core.files, ??
django.core.files.storage, ??
django.core.mail, ??
django.core.paginator, ??
django.core.signals, ??
django.core.urlresolvers, ??
django.core.validators, ??

d
django.db, ??
django.db.backends, ??
django.db.models, ??
django.db.models.fields, ??
django.db.models.fields.related, ??
django.db.models.signals, ??
django.dispatch, ??

f
django.forms.fields, ??
django.forms.forms, ??
django.forms.models, ??
django.forms.widgets, ??

h
django.http, ??

m
django.middleware, ??
django.middleware.cache, ??
django.middleware.common, ??
django.middleware.csrf, ??
django.middleware.doc, ??
django.middleware.gzip, ??
django.middleware.http, ??
django.middleware.locale, ??
django.middleware.transaction, ??

s
django.shortcuts, ??

919



Django Documentation, Release 1.2.7

t
django.test, ??
django.test.client, ??
django.test.signals, ??
django.test.utils, ??

u
django.utils, ??
django.utils.cache, ??
django.utils.datastructures, ??
django.utils.encoding, ??
django.utils.feedgenerator, ??
django.utils.http, ??
django.utils.safestring, ??
django.utils.translation, ??
django.utils.tzinfo, ??

v
django.views.decorators.gzip, ??
django.views.decorators.http, ??
django.views.decorators.vary, ??
django.views.i18n, ??
django.views.static, ??

920 Python Module Index


